
Weak and Strong Superiorization:

Between Feasibility-Seeking and

Minimization∗

Yair Censor

Department of Mathematics, University of Haifa,

Mt. Carmel, Haifa 3498838, Israel

September 30, 2014. Revised: November 27, 2014.

Abstract

We review the superiorization methodology, which can be thought

of, in some cases, as lying between feasibility-seeking and constrained

minimization. It is not quite trying to solve the full fledged con-

strained minimization problem; rather, the task is to find a feasible

point which is superior (with respect to an objective function value) to

one returned by a feasibility-seeking only algorithm. We distinguish

between two research directions in the superiorization methodology

that nourish from the same general principle: Weak superiorization

and strong superiorization and clarify their nature.

1 Introduction

What is superiorization. The superiorization methodology works by tak-

ing an iterative algorithm, investigating its perturbation resilience, and then,

using proactively such permitted perturbations, forcing the perturbed algo-

rithm to do something useful in addition to what it is originally designed

∗Presented at the Tenth Workshop on Mathematical Modelling of Environmental and
Life Sciences Problems, October 16-19, 2014, Constantza, Romania.

http://www.ima.ro/workshop/tenth_workshop/.

1

to do. The original unperturbed algorithm is called the “Basic Algorithm”

and the perturbed algorithm is called the “Superiorized Version of the Basic

Algorithm”.

If the original algorithm1 is computationally efficient and useful in terms

of the application at hand, and if the perturbations are simple and not ex-

pensive to calculate, then the advantage of this methodology is that, for

essentially the computational cost of the original Basic Algorithm, we are

able to get something more by steering its iterates according to the pertur-

bations.

This is a very general principle, which has been successfully used in some

important practical applications and awaits to be implemented and tested

in additional fields; see, e.g., the recent papers [21, 34], for applications in

intensity-modulated radiation therapy and in nondestructive testing. Al-

though not limited to this case, an important special case of the superior-

ization methodology is when the original algorithm is a feasibility-seeking

algorithm, or one that strives to find constraint-compatible points for a fam-

ily of constraints, and the perturbations that are interlaced into the orig-

inal algorithm aim at reducing (not necessarily minimizing) a given merit

(objective) function. We distinguish between two research directions in the

superiorization methodology that nourish from the same general principle.

One is the direction when the constraints are assumed to be consistent

(nonempty intersection) and the notion of “bounded perturbation resilience”

is used. In this case one treats the “Superiorized Version of the Basic Al-

gorithm” as a recursion formula without a stopping rule that produces an

infinite sequence of iterates and asymptotic convergence questions are in the

focus of study.

The second direction does not assume consistency of the constraints but

uses instead a proximity function that measures the violation of the con-

straints. Instead of seeking asymptotic feasibility, it looks at -compatibility

and uses the notion of “strong perturbation resilience”. The same core “Su-

periorized Version of the Basic Algorithm” might be investigated in each of

these directions, but the second is apparently more practical since it relates

better to problems formulated and treated in practice. We use the terms

“weak superiorization” and “strong superiorization” as a nomenclature for

1We use the term “algorithm” for the iterative processes discussed here, even for those

that do not include any termination criterion. This does not create any ambiguity because

whether we consider an infinite iterative process or an algorithm with a termination rule

is always clear from the context.

2

the first and second directions, respectively2.

The purpose of this paper. Since its inception in 2007, the superior-

ization method has evolved and gained ground. Quoting and distilling from

earlier publications, we review here the two directions of the superiorization

methodology. A recent review paper on the subject which should be read to-

gether with this paper is Herman’s [25]. Unless otherwise stated, we restrict

ourselves, for simplicity, to the dimensional Euclidean space  although

some materials below remain valid in Hilbert space.

Superiorization related work. Recent publications on the superioriza-

tion methodology (SM) are devoted to either weak or strong superiorization,

without yet using these terms. They are [2, 3, 8, 14, 20, 21, 22, 26, 27, 28, 30,

32], culminating in [34] and [10]. The latter contains a detailed description

of the SM, its motivation, and an up-to-date review of SM-related previous

works scattered in earlier publications, including a reference to [3] in which it

all started, although without using yet the terms superiorization and pertur-

bation resilience. [3] was the first to propose this approach and implement

it in practice, but its roots go back to [4, 5] where it was shown that if

iterates of a nonexpansive operator converge for any initial point, then its

inexact iterates with summable errors also converge, see also [19]. Bounded

perturbation resilience of a parallel projection method (PPM) was observed

as early as 2001 in [17, Theorem 2] (without using this term). More details

on related work appear in [10, Section 3] and in [15, Section 1].

2 The framework

Let  be a mathematically-formulated problem, of any kind or sort, with

solution set Ψ  The following cases immediately come to mind although

any  and its Ψ can potentially be used.

Case 1  is a convex feasibility problem (CFP) of the form: find a vector

∗ ∈ ∩=1 where  ⊆  are closed convex subsets of the Euclidean space

 . In this case Ψ = ∩=1

Case 2  is a constrained minimization problem: minimize {() |  ∈ Φ}
of an objective function  over a feasible region Φ In this case Ψ = {∗ ∈
Φ | (∗) ≤ () for all  ∈ Φ}

2These terms were proposed in [16], following a private discussion with our colleague

and coworker in this field Gabor Herman.

3

The superiorization methodology is intended for function reduction prob-

lems of the following form.

Problem 3 The Function Reduction Problem. Let Ψ ⊆  be the

solution set of some given mathematically-formulated problem  and let  :

 →  be an objective function. Let A :  →  be an algorithmic

operator that defines an iterative Basic Algorithm for the solution of  . Find

a vector ∗ ∈ Ψ whose function  value is lesser than that of a point in Ψ

that would have been reached by applying the Basic Algorithm for the solution

of problem 

As explained below, the superiorization methodology approaches this

problem by automatically generating from the Basic Algorithm its Supe-

riorized Version. The so obtained vector ∗ need not be a minimizer of 
over Ψ  Another point to observe is that the very problem formulation itself

depends not only on the data  Ψ and  but also on the pair of algorithms —

the original unperturbed Basic Algorithm, represented by A for the solution
of problem  and its superiorized version.

A fundamental difference between weak and strong superiorization lies in

the meaning attached to the term “solution of problem ” in Problem 3. In

weak superiorization solving the problem  is understood as generating an

infinite sequence {}∞=0 that converges to a point ∗ ∈ Ψ  thus Ψ must

be nonempty. In strong superiorization solving the problem  is understood

as finding a point ∗ that is -compatible with Ψ  for some positive  thus

nonemptiness of Ψ need not be assumed.

We concentrate in the next sections mainly on Case 1. Superiorization

work on Case 2, where  is a maximum likelihood optimization problem and

Ψ — its solution set, appears in [22, 28, 29].

3 Weak superiorization

In weak superiorization the set Ψ is assumed to be nonempty and one treats

the “Superiorized Version of the Basic Algorithm” as a recursion formula that

produces an infinite sequence of iterates. Convergence questions are studied

in their asymptotically. The SM strives to asymptotically find a point in Ψ

which is superior, i.e., has a lower, but not necessarily minimal, value of the

 function, to one returned by the Basic Algorithm that solves the original

problem  only.

4

This is done by first investigating the bounded perturbation resilience of

an available Basic Algorithm designed to solve efficiently the original prob-

lem  and then proactively using such permitted perturbations to steer its

iterates toward lower values of the  objective function while not loosing the

overall convergence to a point in Ψ .

Definition 4 Bounded perturbation resilience (BPR). Let Γ ⊆ 

be a given nonempty set. An algorithmic operator A :  →  is said

to be bounded perturbations resilient with respect to Γ if the fol-

lowing is true: If a sequence {}∞=0 generated by the iterative process
+1 = A() for all  ≥ 0 converges to a point in Γ for all 0 ∈  , then

any sequence {}∞=0 of points in  that is generated by +1 = A(+)
for all  ≥ 0 also converges to a point in Γ for all 0 ∈  provided that,

for all  ≥ 0,  are bounded perturbations, meaning that  ≥ 0 for
all  ≥ 0 such that

∞X
=0

 ∞ and that the sequence {}∞=0 is bounded.

Let  :  →  be a real-valued convex continuous function and let ()

be the subgradient set of  at  and, for simplicity of presentation, assume

here that Γ =   In other specific cases care must be taken regarding

how Γ and Ψ are related. The following Superiorized Version of the Basic

Algorithm A is based on [16, Algorithm 4.1].

Algorithm 5 Superiorized Version of the Basic Algorithm A.
(0) Initialization: Let  be a natural number and let 0 ∈  be an

arbitrary user-chosen vector.

(1) Iterative step: Given a current iteration vector  pick an  ∈
{1 2     } and start an inner loop of calculations as follows:
(1.1) Inner loop initialization: Define 0 = 

(1.2) Inner loop step: Given  as long as    do as follows:

(1.2.1) Pick a 0   ≤ 1 in a way that guarantees that
∞X
=0

−1X
=0

 ∞ (1)

(1.2.2) Pick an  ∈ () and define  as follows:

 =

⎧⎨⎩ − °°°°  if 0 ∈ ()

0 if 0 ∈ ()
(2)

5

(1.2.3) Calculate the perturbed iterate

+1 =  + 
 (3)

and if + 1   set ← + 1 and go to (1.2), otherwise go to (1.3).

(1.3) Exit the inner loop with the vector 

(1.4) Calculate

+1 = A() (4)

set  ←  + 1 and go back to (1).

Let us consider Case 1 in Section 2 wherein  is a convex feasibility

problem. The Dynamic String-Averaging Projection (DSAP) method of [14]

constitutes a family of algorithmic operators that can play the role of the

above A in a Basic Algorithm for the solution of the CFP  .

Let 1 2      be nonempty closed convex subsets of a Hilbert space

 where  is a natural number. Set  = ∩=1 and assume  6= ∅. For
 = 1 2     denote by  :=  the orthogonal (least Euclidean distance)

projection onto the set  An index vector is a vector  = (1 2     ) such

that  ∈ {1 2    } for all  = 1 2     , whose length is () =  The

product of the individual projections onto the sets whose indices appear in

the index vector  is  [] :=  · · ·1, called a string operator.

A finite set Ω of index vectors is called fit if for each  ∈ {1 2    },
there exists a vector  = (1 2     ) ∈ Ω such that  =  for some  ∈
{1 2     }. Denote by M the collection of all pairs (Ω ), where Ω is a

finite fit set of index vectors and  : Ω→ (0∞) is such thatP∈Ω() = 1
For any (Ω ) ∈M define the convex combination of the end-points of

all strings defined by members of Ω

Ω() :=
X
∈Ω

() []()  ∈  (5)

Let ∆ ∈ (0 1) and an integer ̄ ≥  be arbitrary fixed and denote

byM∗ ≡M∗(∆ ̄) the set of all (Ω ) ∈M such that the lengths of the

strings are bounded and the weights are all bounded away from zero, i.e.,

M∗ = {(Ω ) ∈M | () ≤ ̄ and () ≥ ∆ ∀  ∈ Ω} (6)

Algorithm 6 The DSAP method with variable strings and variable

weights

6

Initialization: select an arbitrary 0 ∈ ,

Iterative step: given a current iteration vector  pick a pair (Ω ) ∈
M∗ and calculate the next iteration vector +1 by

+1 = Ω(
). (7)

The first prototypical string-averaging algorithmic scheme appeared in

[9] and subsequent work on its realization with various algorithmic opera-

tors includes [11, 12, 13, 15, 18, 23, 31, 32, 33]. If in the DSAP method

one uses only a single index vector  = (1 2    ) that includes all con-

straints indices then the fully-sequential Kaczmarz cyclic projection method

is obtained. For linear hyperplanes as constraints sets the latter is equiva-

lent with the, independently discovered, ART (for Algebraic Reconstruction

Technique) in image reconstruction from projections, see [24]. If, at the

other extreme, one uses exactly  one-dimensional index vectors  = ()

for  = 1 2     each consisting of exactly one constraint index, then the

fully-simultaneous projection method of Cimmino is recovered. In-between

these “extremes” the DSAP method allows for a large arsenal of specific

feasibility-seeking projection algorithms. See [1, 6, 7] for more information

on projection methods.

The superiorized version of the DSAP algorithm is obtained by using

Algorithm 6 as the algorithmic operator A in Algorithm 5. The following

result about its behavior was proved. Consider the set  := { ∈  |
() ≤ () for all  ∈ } and assume that  6= ∅
Theorem 7 [16, Theorem 4.1] Let  :  →  be a convex continuous

function, and let ∗ ⊆  be a nonempty subset. Let 0 ∈ (0 1] and ̄ ≥ 1
be such that, for all  ∈ ∗ and all  such that ||− || ≤ 0

|()− ()| ≤ ̄||− || (8)

and suppose that {(Ω )}∞=0 ⊂M∗ Then any sequence {}∞=0 generated
by the superiorized version of the DSAP algorithm, converges in the norm of

 to a ∗ ∈  and exactly one of the following two alternatives holds:

(a) ∗ ∈ ;

(b) ∗ ∈  and there exist a natural number 0 and a 0 ∈ (0 1) such
that for each  ∈ ∗ and each integer  ≥ 0,

k+1 − k2 ≤ k − k2 − 0

−1X
=1

 (9)

7

This shows that {}∞=0 is strictly Fejér-monotone with respect to ∗
i.e., that k+1 − k2  k − k2 for all  ≥ 0 because 0

P−1
=1  

0 The strict Fejér-monotonicity however does not guarantee convergence

to a constrained minimum point but it says that the so-created feasibility-

seeking sequence {}∞=0 has the additional property of getting strictly closer,
without necessarily converging, to the points of a subset of the solution set

of of the constrained minimization problem.

Published experimental results repeatedly confirm that reduction of the

value of the objective function  is indeed achieved, without loosing the

convergence toward feasibility, see [2, 3, 8, 14, 20, 21, 22, 26, 27, 28, 30, 32].

In some of these cases the SM returns a lower value of the objective function

 than an exact minimization method with which it is compared, e.g., [10,

Table 1].

4 Strong superiorization

As in the previous section, let us consider again, Case 1 in Section 2 wherein 

is a convex feasibility problem. In this section we present a restricted version

of the SM of [27] as adapted to this situation in [10]. Let 1 2      be

nonempty closed convex subsets of  where  is a natural number and set

 = ∩=1. We do not assume that  6= ∅ but only that there is some
nonempty subset Λ ∈  such that  ⊆ Λ Instead of the nonemptiness

assumption we associate with the family of constraints {}=1 a proximity
function  : Λ→ R+ that is an indicator of how incompatible an  ∈ Λ

is with the constraints. For any given   0, a point  ∈ Λ for which

() ≤  is called an -compatible solution for . We further assume

that we have a feasibility-seeking algorithmic operator A :  → Λ, with

which we define the Basic Algorithm as the iterative process

+1 = A() for all  ≥ 0 for an arbitrary 0 ∈ Λ (10)

The following definition helps to evaluate the output of the Basic Algorithm

upon termination by a stopping rule. This definition as well as most of the

remainder of this section appeared in [27].

Definition 8 The -output of a sequence. Given  ⊆ Λ ⊆  , a prox-

imity function  : Λ→ +, a sequence
©

ª∞
=0
⊂ Λ and an   0 then

an element  of the sequence which has the properties: (i) 
¡

¢ ≤ 

8

and (ii) 
¡

¢
  for all 0 ≤    is called an -output of the

sequence
©

ª∞
=0

with respect to the pair ( ).

We denote the -output by 
¡
 

©

ª∞
=0

¢
=   Clearly, an -output


¡
 

©

ª∞
=0

¢
of a sequence

©

ª∞
=0

might or might not exist, but if it

does, then it is unique. If
©

ª∞
=0

is produced by an algorithm intended

for the feasible set  such as the Basic Algorithm, without a termination

criterion, then 
¡
 

©

ª∞
=0

¢
is the output produced by that algorithm

when it includes the termination rule to stop when an -compatible solution

for  is reached.

Definition 9 Strong perturbation resilience. Assume that we are given

a  ⊆ Λ, a proximity function , an algorithmic operator A and an

0 ∈ Λ. We use
©

ª∞
=0

to denote the sequence generated by the Basic

Algorithm when it is initialized by 0. The Basic Algorithm is said to be

strongly perturbation resilient iff the following hold: (i) there exist

an   0 such that the -output 
¡
 

©

ª∞
=0

¢
exists for every 0 ∈ Λ;

(ii) for every   0 for which the -output 
¡
 

©

ª∞
=0

¢
exists for every

0 ∈ Λ, we have also that the 0-output 
¡
 0

©

ª∞
=0

¢
exists for every

0   and for every sequence
©

ª∞
=0

generated by

+1 = A ¡ + 

¢
 for all  ≥ 0 (11)

where the vector sequence
©

ª∞
=0

is bounded and the scalars {}∞=0 are
such that  ≥ 0, for all  ≥ 0 and

P∞
=0  ∞.

A theorem which gives sufficient conditions for strong perturbation re-

silience of the Basic Algorithm has been proved in [27, Theorem 1]. Along

with the  ⊆  , we look at the objective function  :  → , with the

convention that a point in  for which the value of  is smaller is considered

superior to a point in  for which the value of  is larger. The essential idea

of the SM is to make use of the perturbations of (11) to transform a strongly

perturbation resilient Basic Algorithm that seeks a constraints-compatible

solution for  into its Superiorized Version whose outputs are equally good

from the point of view of constraints-compatibility, but are superior (not

necessarily optimal) according to the objective function .

Definition 10 Given a function  :  →  and a point  ∈  , we say

that a vector  ∈  is nonascending for  at  iff kk ≤ 1 and there is
a   0 such that for all  ∈ [0 ] we have  ( + ) ≤  () 

9

Obviously, the zero vector is always such a vector, but for superiorization

to work we need a sharp inequality to occur in (10) frequently enough. The

Superiorized Version of the Basic Algorithm assumes that we have available

a summable sequence {}∞=0 of positive real numbers (for example,  = ,

where 0    1) and it generates, simultaneously with the sequence
©

ª∞
=0

in Λ, sequences
©

ª∞
=0

and {}∞=0. The latter is generated as a subse-
quence of {}∞=0, resulting in a nonnegative summable sequence {}∞=0.
The algorithm further depends on a specified initial point 0 ∈ Λ and on a

positive integer  . It makes use of a logical variable called loop. The Supe-

riorized Version of the Basic Algorithm is presented next by its pseudo-code.

Algorithm 11 Superiorized Version of the Basic Algorithm

1. set  = 0

2. set  = 0

3. set  = −1
4. repeat

5. set  = 0

6. set  = 

7. while 

8. set  to be a nonascending vector for  at 

9. set loop=true

10. while loop

11. set  = + 1

12. set  = 

13. set  =  + 


14. if  ()≤ ¡¢ then
15. set =+ 1

10

16. set =

17. set loop = false

18. set +1=A ¡¢
19. set  =  + 1

Theorem 12 Any sequence
©

ª∞
=0
, generated by the Superiorized Version

of the Basic Algorithm, Algorithm 11, satisfies (11). Further, if, for a given

  0 the -output 
¡
 

©

ª∞
=0

¢
of the Basic Algorithm exists for every

0 ∈ Λ, then every sequence
©

ª∞
=0
, generated by the Algorithm 11, has an

0-output 
¡
 0

©

ª∞
=0

¢
for every 0  .

The proof of this theorem follows from the analysis of the behavior of the

Superiorized Version of the Basic Algorithm in [27, pp. 5537—5538]. In other

words, Algorithm 11 produces outputs that are essentially as constraints-

compatible as those produced by the original Basic Algorithm. However,

due to the repeated steering of the process by lines 7 to 17 toward reducing

the value of the objective function , we can expect that its output will be

superior (from the point of view of ) to the output of the (unperturbed)

Basic Algorithm.

Algorithms 5 and 11 are not identical. For example, the first employes

negative subgradients while the second allows to use any nonascending direc-

tions of  Nevertheless, they are based on the same leading principle of the

superiorization methodology. Comments on the differences between them

can be found in [16, Remark 4.1]. While experimental work has repeatedly

demonstrated benefits of the SM, the Theorems 7 and 12 related to these

superiorized versions of the Basic Algorithm, respectively, leave much to be

desired in terms of rigorously analyzing the behavior of the SM under various

conditions.

5 Concluding comments

In many mathematical formulations of significant real-world technological

or physical problems, the objective function is exogenous to the modeling

process which defines the constraints. In such cases, the faith of the mod-

eler in the usefulness of an objective function for the application at hand is

11

limited and, as a consequence, it is probably not worthwhile to invest too

much resources in trying to reach an exact constrained minimum point. This

is an argument in favor of using the superiorization methodology for prac-

tical applications. In doing so the amount of computational efforts invested

alternatingly between performing perturbations and applying the Basic Al-

gorithm’s algorithmic operator can, and needs to, be carefully controlled in

order to allow both activities to properly influence the outcome. Better the-

oretical insights into the behavior of weak and of strong superiorization as

well as better ways of implementing the methodology are needed and await

to be developed.

References

[1] H.H. Bauschke and J.M. Borwein, On projection algorithms for solving

convex feasibility problems, SIAM Review 38 (1996), 367—426.

[2] H.H. Bauschke and V.R. Koch, Projection methods: Swiss army knives

for solving feasibility and best approximation problems with half-spaces,

Contemporary Mathematics, accepted for publication.

https://people.ok.ubc.ca/bauschke/Research/c16.pdf.

[3] D. Butnariu, R. Davidi, G.T. Herman, and I.G. Kazantsev, Stable con-

vergence behavior under summable perturbations of a class of projection

methods for convex feasibility and optimization problems, IEEE Journal

of Selected Topics in Signal Processing 1 (2007), 540—547.

[4] D. Butnariu, S. Reich and A.J. Zaslavski, Convergence to fixed points

of inexact orbits of Bregman-monotone and of nonexpansive operators

in Banach spaces, in: H.F. Nathansky, B.G. de Buen, K. Goebel, W.A.

Kirk, and B. Sims, Fixed Point Theory and its Applications, (Confer-

ence Proceedings, Guanajuato, Mexico, 2005), Yokahama Publishers,

Yokahama, Japan, pp. 11—32, 2006.

[5] D. Butnariu, S. Reich and A.J. Zaslavski, Stable convergence theorems

for infinite products and powers of nonexpansive mappings, Numerical

Functional Analysis and Optimization 29 (2008), 304—323.

12

[6] Y. Censor and A. Cegielski, Projection methods: An annotated bibliog-

raphy of books and reviews, Optimization, accepted for publication.

DOI:10.1080/02331934.2014.957701.

[7] Y. Censor, W. Chen, P.L. Combettes, R. Davidi and G.T. Herman, On

the effectiveness of projection methods for convex feasibility problems

with linear inequality constraints, Computational Optimization and Ap-

plications 51 (2012), 1065—1088.

[8] Y. Censor, R. Davidi and G.T. Herman, Perturbation resilience and su-

periorization of iterative algorithms, Inverse Problems 26 (2010), 065008

(12pp).

[9] Y. Censor, T. Elfving and G.T. Herman, Averaging strings of sequential

iterations for convex feasibility problems. In: D. Butnariu, Y. Censor

and S. Reich (editors), Inherently Parallel Algorithms in Feasibility and

Optimization and Their Applications, Elsevier Science Publishers, Am-

sterdam, 2001, pp. 101—114.

[10] Y. Censor, R. Davidi, G.T. Herman, R.W. Schulte and L. Tetruashvili,

Projected subgradient minimization versus superiorization, Journal of

Optimization Theory and Applications 160 (2014), 730—747.

[11] Y. Censor and A. Segal, On the string averaging method for sparse

common fixed point problems, International Transactions in Operational

Research 16 (2009), 481—494.

[12] Y. Censor and A. Segal, On string-averaging for sparse problems and on

the split common fixed point problem, Contemporary Mathematics 513

(2010), 125—142.

[13] Y. Censor and E. Tom, Convergence of string-averaging projection

schemes for inconsistent convex feasibility problems, Optimization Meth-

ods and Software 18 (2003), 543—554.

[14] Y. Censor and A.J. Zaslavski, Convergence and perturbation resilience

of dynamic string-averaging projection methods, Computational Opti-

mization and Applications 54 (2013), 65—76.

13

[15] Y. Censor and A.J. Zaslavski, String-averaging projected subgradient

methods for constrained minimization, Optimization Methods & Soft-

ware 29 (2014), 658—670.

[16] Y. Censor and A.J. Zaslavski, Strict Fejér monotonicity by superioriza-

tion of feasibility-seeking projection methods, Journal of Optimization

Theory and Applications, accepted for publication. DOI:10.1007/s10957-

014-0591-x.

[17] P.L. Combettes, On the numerical robustness of the parallel projection

method in signal synthesis, IEEE Signal Processing Letters 8 (2001),

45—47.

[18] G. Crombez, Finding common fixed points of strict paracontractions

by averaging strings of sequential iterations, Journal of Nonlinear and

Convex Analysis 3 (2002), 345—351.

[19] R. Davidi, Algorithms for Superiorization and their Applications to Im-

age Reconstruction, Ph.D. dissertation, Department of Computer Sci-

ence, The City University of New York, NY, USA, 2010.

[20] R. Davidi, G.T. Herman, and Y. Censor, Perturbation-resilient block-

iterative projection methods with application to image reconstruction

from projections, International Transactions in Operational Research

16 (2009), 505—524.

[21] R. Davidi, Y. Censor, R.W. Schulte, S. Geneser and L. Xing,

Feasibility-seeking and superiorization algorithms applied to inverse

treatment planning in radiation therapy, Contemporary Mathemat-

ics, accepted for publication. http://math.haifa.ac.il/yair/con-math-

DCSGX-final-300114.pdf

[22] E. Garduño, and G.T. Herman, Superiorization of the ML-EM algo-

rithm, IEEE Transactions on Nuclear Science 61 (2014), 162—172.

[23] D. Gordon and R. Gordon, Component-averaged row projections: A

robust, block-parallel scheme for sparse linear systems, SIAM Journal

on Scientific Computing 27 (2005), 1092—1117.

14

[24] G.T. Herman, Fundamentals of Computerized Tomography: Image Re-

construction from Projections, Springer-Verlag, London, UK, 2nd Edi-

tion, 2009.

[25] G.T. Herman, Superiorization for image analysis, in: Combinatorial Im-

age Analysis, Lecture Notes in Computer Science Vol. 8466, Springer,

2014, pp. 1—7. DOI: 10.1007/978-3-319-07148-0_1.

[26] G.T. Herman and R. Davidi, Image reconstruction from a small number

of projections, Inverse Problems 24 (2008), 045011 (17pp).

[27] G.T. Herman, E. Garduño, R. Davidi and Y. Censor, Superioriza-

tion: An optimization heuristic for medical physics, Medical Physics

39 (2012), 5532—5546.

[28] W. Jin, Y. Censor and M. Jiang, A heuristic superiorization-like ap-

proach to bioluminescence, International Federation for Medical and Bi-

ological Engineering (IFMBE) Proceedings 39 (2013), 1026—1029.

[29] S. Luo and T. Zhou, Superiorization of EM algorithm and its applica-

tion in single-photon emission computed tomography (SPECT), Inverse

Problems and Imaging 8 (2014), 223—246.

[30] T. Nikazad, R. Davidi and G.T. Herman, Accelerated perturbation-

resilient block-iterative projection methods with application to image

reconstruction, Inverse Problems 28 (2012), 035005 (19pp).

[31] S.N. Penfold, R.W. Schulte, Y. Censor, V. Bashkirov, S. McAllister,

K.E. Schubert and A.B. Rosenfeld, Block-iterative and string-averaging

projection algorithms in proton computed tomography image recon-

struction. In: Y. Censor, M. Jiang and G. Wang (editors), Biomedical

Mathematics: Promising Directions in Imaging, Therapy Planning and

Inverse Problems, Medical Physics Publishing, Madison, WI, USA, 2010,

pp. 347—367.

[32] S.N. Penfold, R.W. Schulte, Y. Censor and A.B. Rosenfeld, Total vari-

ation superiorization schemes in proton computed tomography image

reconstruction, Medical Physics 37 (2010), 5887—5895.

15

[33] H. Rhee, An application of the string averaging method to one-sided best

simultaneous approximation, Journal of the Korean Society of Mathe-

matical Education, Series B, Pure and Applied Mathematics 10 (2003),

49—56.

[34] M.J. Schrapp and G.T. Herman, Data fusion in X-ray computed tomog-

raphy using a superiorization approach, Review of Scientific Instruments

85 (2014), 053701 (9pp).

16

