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Abstract. Component-based systems (including distributed programsand multia-
gent systems) involve a lot of coordination. This coordination is done in the back-
ground, and is transparent to the operation of the system. The reason for this over-
head is the interplay between concurrency and non-deterministic choice: processes
alternate between progressing independently and coordinating with other processes,
where coordination can involve multiple choices of the participating components.
This kind of interactions appeared as early as some of the main communication-
based programming languages, where overhead effort often causes a restriction on the
possible coordination. With the goal of enhancing the efficiency of coordination for
component-based systems, we propose here a method for coordination-based on the
precalculation of the knowledge of processes and coordination agents. This knowl-
edge can be used to lift part of the communication or synchronization that appears
in the background of the execution to support the interaction. Our knowledge-based
method is orthogonal to the actual algorithms or kind of primitives that are used to
guarantee the synchronization: it only removes messages conveying information that
knowledge can infer.

1 Introduction

Component-based systems are a generalization of distributed systems. In concurrent lan-
guages like CSP and ADA processes allow binary interactionsbetween processes, often
with the choice between outgoing communication restrictedto be deterministic. Modern
distributed systems may involve more general multi-party coordination, e.g., robots that
need to coordinate temporarily on a certain task. While sucha system may reveal a behav-
ioral model that is based on interaction primitives, often in the back, there are algorithms
that are based on more basic primitives such as asynchronousmessage passing or shared
variables. Algorithms for obtaining synchronization primitives are complicated and require
nontrivial overhead. Theoretical results also show some inherent restrictions: a well known
result on the dinning philosophers [13] shows that a completely symmetric nonprobabilistic
solution cannot exist.

We present here a method for improving the behavior of synchronous interactions by
removing some of the overhead for guaranteeing the correct synchronization of compo-
nents based on knowledge calculation. The main principle isbased on the observation that
such algorithms need to allow for a very general interaction, but can provide a much more
efficient behavior for more limited cases. Analyzing the system before its execution based
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Fig. 1. Example of Cellular Automaton
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Fig. 2. Global Behavior

on model checking of knowledge properties allows us to utilize the particular behavior that
is actually needed for the implementation of the synchronization. Knowledge, basically,
refers to the facts that hold in all the global states that areconsistent with the current lo-
cal state of some process. A precalculated knowledge, embedded in the processes, allows
exploiting the easier cases of behavior, when relevant.

Our method is general, independent of the actual synchronization algorithm or primi-
tives used to obtain it. However, the actual implementationof the method depends on the
specific details of the algorithm. We present its implementation on a well known generic
synchronization algorithm calledα-core [15].

The paper is organized as follows. Section 2 recalls cellular automata, as the under-
lying semantic model for synchronizing systems, and theα-core protocol, as one possi-
ble solution for distributed implementation of such systems. Section 3 presents the key
results on exploiting knowledge to reduce the communication overhead for distributed im-
plementation. We provide techniques for using knowledge independently for components
and coordinators as well as for combining them. Section 4 reports experimental results
and measurements obtained using a prototype implementation realized on top of the BIP
framework [2]. Finally, Section 5 provides conclusions andfuture work directions.

2 Preliminaries

2.1 Cellular Automata

The model of execution that we want to obtain is that of synchronizing systems. To de-
scribe such systems we are using asynchronous cellular automata [7]. This model involves
several processes, represented as automata with transitions labeled by action names, where
the execution of all the actions that share the same name has to be synchronized by all
processes. Formally, the cellular automata model is definedas follows:

Definition 1. An automaton is a tuple〈S,A,δ,s0〉 where S is the set ofstates, A is the set of
actions, δ : S×A→ S is the transition relation, s0 ∈ S is theinitial state.

Definition 2. The execution of an automaton is a maximal sequence of statess0 s1s2 . . .

such that for each i≥ 0, there exists a∈ A such thatδ(si ,a) = si+1.

Definition 3. A cellular automaton is a set of n automataA i = 〈Si , Ai ,δi , si
0〉, i ∈

{1, . . . ,n}, such that the sets of states are mutually disjoint, and the sets of actions may
have common occurrences (corresponding to interactions).



Example 1.Figure 1 shows a cellular automaton made of three automata. Each automaton
A i represents theith bit of a binary counter (here modulo 8). Note that the most significant
bit is represented by the rightmost automaton. Interactions are named after the higher bit
that changes during the interaction (e.g.,s1 corresponds to the setting of bit 1 and synchro-
nizesA1 andA0, r2 corresponds to the reset of bit 2 and synchronizesA2, A1 andA0).
Each interaction involves either one (s0), two (s1) or three (s2, r2) automata.

We denote byS= S1× . . .×Sn the set of global states of a cellular automaton. A global
stateg∈ S is defined by the state of each automatonA i from the cellular automaton. The
state of the automatonA i at global stateg is denotedg[i].

Definition 4. An execution of a cellular automaton is a maximal sequence ofglobal states
g0g1 . . . such that:

– g0 is the tuple made of initial states:∀i ∈ {1..n},g0[i] = si
0 .

– For adjacent tuples gj and gj+1 there is an action a∈ ∪i∈{1..n}A
i such that for each

i ∈ {1..n}, either gj+1[i] = δi(g j [i],a) or a 6∈ Ai and gj+1[i] = g j [i].

It is easy to see that the projection of an execution into a single automaton is a prefix of
an execution of that automaton.

We denote byg
a

−→ g′ if the actiona can be executed from global stateg and leads to
global stateg′. This notation is trivially extended to sequences of interactions, that is for
σ = a1a2 · · ·ak we denote byg

σ
−→ g′ if there exists global statesg1,g2, · · ·gk−1 such that

g
a1−→ g1

a2−→ g2 · · ·gk−1
ak−→ g′. We denote byσ|Ai , the sequence of interactions obtained

by removing fromσ all occurrences of interactions that are not inAi .
The set of executions, i.e. global behavior, of the cellularautomaton can be represented

as a labeled transition systemA = (S,A,T,g0), whereS is the set of global states,A =
⋃

i∈{1..n}Ai is the set of actions (or labels),T ⊆ S×A×S is the set of valid transitions (as
defined by Definition 4) andg0 is the initial global state.

Example 2.The global behavior of the cellular automaton depicted in Figure 1 is shown
in Figure 2. Any global stateg∈ {0, ...,7} denotes the tuple of local states(g[2]g[1]g[0])
obtained from the representation ofg as a binary number.

Cellular automata are perhaps the simplest model to describe synchronizing systems.
Nonetheless, this model is expressive enough to underlie higher-level frameworks with sim-
ilar synchronization-based communication. In particular, we focus hereafter on the relation
between cellular automata and the BIP framework [2], which will be used later in section 4
for concrete experiments. BIP (Behavior-Interaction-Priority) is a component-based frame-
work which allows the construction of hierarchically structured component-based systems.
In BIP, atomic components are characterized by their interface, that is, a set of ports (sim-
ilar to action names) and their behavior, that is, an automaton with transitions labeled by
ports. Components are composed by layered application of interactions and priorities. In-
teractions express synchronization constraints between ports of the composed components.
An interaction is a set of ports, every one belonging to a different component, that has to
be jointly executed. BIP provides (hierarchical) connectors as a mean to structure and ex-
press sets of interactions in a compact manner. Finally, priorities are used in BIP to filter



amongst the set of enabled interactions. Priorities provide an additional coordination mech-
anism to control the system evolution. A significant part of BIP systems can be structurally
represented as cellular automata. That is, any BIP system without priorities can be equally
represented as a cellular automaton by mapping BIP interactions into cellular automata in-
teractions. Since a port may be involved in several interactions, BIP atomic components
can be transformed into automata by duplicating transitions labeled by a port into a set of
transitions labeled by the corresponding interactions.

2.2 Theα-core protocol

Theα-core protocol [15] was developed to schedule multiprocessinteraction. It generalizes
protocols for handshake communication between pairs of processes. For each multiprocess
interaction, there is a dedicated coordinator on a separateprocess. To appreciate the dif-
ficulty of designing such a protocol, recall for example the fact that the language CSP of
Hoare [9] included initially an asymmetric construct for synchronous communication; a
process could choose between various incoming messages, but had to commit on a partic-
ular send. This constraint was useful for achieving a simpleimplementation. Otherwise,
one needs to consider the situation in which a communicationis possible between pro-
cesses, but one of them may have performed an alternative choice. Later Hoare removed
this constraint from CSP. The same constraint appears in theasymmetric communication
construct of the programming language ADA. The Buckley and Silberschatz protocol [5]
solves this problem for the case of synchronous communication between pairs of processes,
where both sends and receives may have choices. Their protocol uses asynchronous mes-
sage passing between the processes to implement the synchronous message passing con-
struct. Theα-core protocol solves the more general problem of synchronizing any number
of processes, using only asynchronous message passing. Alternative solutions for this prob-
lem have been proposed, using managers [6, 1], a circulatingtoken [12], or a randomized
algorithm without managers [10]. Contrarily to other manager-based solutions,α-core does
not need unbounded counters. The version presented below includes corrections from [11].

In α-core, the following messages are sent from a participant toa coordinator:

PARTICIPATE A participant is interested in a single particular interaction (hence it can
commit on it), and notifies the related coordinator.

OFFER A participant is interested in one out of several potentially available interactions
(a non-deterministic choice).

OK Sent as a response to aLOCK message from a coordinator (described below) to notify
that the participant is willing to commit on the interaction.

REFUSENotify the coordinator that the previousOFFER is not valid anymore. This mes-
sage can respond to aLOCK message from the coordinator.

Messages from coordinators are as follows:

LOCK A message sent from a coordinator to a participant that has sent anOFFER, re-
questing the participant to commit on the interaction.

UNLOCK A message sent from a coordinator to a locked participant, indicating that the
current interaction is canceled.

START Notifying a participant that it can start the interaction.
ACKREF Acknowledging a participant about the receipt of aREFUSEmessage.
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Fig. 3. State machines

Fig. 3(a) describes the extended state machine of a participant. Each participant process
keeps some local variables and constants:

IS: a set of coordinators for the interactions the participant is interested in.
locks: a set of coordinators that have sent a pendingLOCK message.
unlocks: a set of coordinators from which a pendingUNLOCK message was received.
locker: the coordinator that is currently considered.
n: the number ofACKREF messages required to be received from coordinators until a new

coordination can start.
α: the coordinators that asked for interactions and subsequently refused.

The actions according to the transitions are written as a pair en→ action, whereen
is the condition to execute the transition, which may include a test of the local variables,
a message that arrives, or both of them (then the test should hold and the message must
arrive). We denote the reception of a messageMSG from processp by p?MSG. The action
is a sequence of statements, executed when the condition holds. The statementp!MSG
means “send messageMSG to processp”. In addition, each transition is enabled from
some state, and upon execution changes the state according to the related extended finite
state machine. The participant’s transitions, according to the numbering of Fig. 3(a) are:

1. |IS> 1| → { foreachp∈ ISdo p!OFFER}
2. |IS= 1| → { locker:=p, whereIS= {p}; locker!PARTICIPATE ; locks, unlocks:= /0}
3. p?LOCK →{locker:=p; locks, unlocks:= /0; p!OK }
4. p?LOCK →{locks:=locks∪{p}}
5. locks 6= /0 ∧ p?UNLOCK → {locker:=q for some q ∈ locks; q!OK ; locks:=locks\ {q};

unlocks:=unlocks∪{p}}
6. locks= /0∧ p?UNLOCK →{ foreachq∈ unlocks∪{p} doq!OFFER}
7. p?START →{α:=IS\(unlocks∪{locker}); foreachq∈ α doq!REFUSE; n := |α|; start partic-

ipating in the joint action managed bylocker}
8. p?LOCK →{} 9. p?UNLOCK →{} 10. p?ACKREF →{n:=n−1}

11. n= 0→{ Let IS be the new set of interactions required from the current state.}

For a coordinator, whose extended finite state machine appears in Fig. 3(b), we have the
variableswaiting, locked, sharedandα, holding each a set of processes, andn is a counter
for the number of processes that indicated their wish to participate in the interaction. The
constantC holds the number of processes that need to participate in theinteraction (called,
thecardinalityof the interaction), and the variablecurrentis the participant the coordinator
is trying to lock. The transitions, according to their numbering from Fig. 3(b) are as follows:



1. n<C∧ p?OFFER →{n:=n+1; shared:= shared∪{p} }

2. n<C∧ p?PARTICIPATE → {n:=n+1; locked:= locked∪{p} }

3. p?REFUSE→ { if p∈ sharedthenn:=n−1; p!ACKREF ; shared:=shared\{p}}
4. n=C∧shared= /0 →{ foreachq∈ lockeddoq!START; locked, shared:= /0; n:=0}
5. n=C∧shared6= /0 →{current:= min(shared); waiting:=shared\{current}; current!LOCK }

6. waiting 6= /0∧ p?OK →{locked:=locked∪{current}; current:=min(waiting); waiting:=waiting\
{current}; current!LOCK }

7. waiting = /0 ∧ p?OK → {locked:=locked∪ {current}; foreach q in locked do q!START;
locked, waiting, shared:= /0; n:=0}

8. p?REFUSE → {α:=(locked∩ shared) ∪ {current, p}; foreachq ∈ α \ {p} do q!UNLOCK ;
p!ACKREF ; shared:=shared\α; locked:=locked\α; n:=n−|α|}

9. p?OK →{}

We propose to characterize the correctness of the implementation by using execution
trace equivalence. We assume that the network is reliable and that there is no message
loss. We say that the interactiona occurs in a distributed execution ofα-core whenever the
transition 7 in the coordinator fora is executed. The correctness ofα-core guarantees that
the executions of the original cellular automaton and the executions of its implementation
are the same.

3 Knowledge-Based Optimization

Synchronization algorithms such asα-core impose a lot of overhead in order to guaran-
tee correct interaction. We want to utilize knowledge in order to reduce the overhead in
coordination messages. Knowledge appears naturally in distributed systems, as it repre-
sents what a process knows from its obseravtions. Halpern and Moses [8] defined a logic
to reason about knowledge. Van der Meyden [14] introduced knowledge with perfect re-
call. Knowledge has been applied to control distributed discrete event systems [16] and to
implement priorities between multiparty interactions [3,4]. However, the previous works
assume a conflict resolution mechanism. We propose here a knowledge-based optimization
of such a mechanism, which has not been done, at least to our knowledge. Based on [3], we
construct a support automaton, which is a controller that either supports or blocks actions,
based on precalculated knowledge. There are two kinds of controllers here. The first type
is for each process of the system, and the second is per eachα-core synchronizing process.
The support automaton for a system automaton can reduce overhead by calculating when
a component can actually commit to an interaction (offer aPARTICIPATE call to α-core),
which requires less confirmation messages than simply declaring its participation (by the
alternativeOFFER call). In this case, the knowledge gathered in the precalculated stage
can distinguish between the cases when one has an alternative possibility of coordination
or does not. While we could benefit from syntactically distinguishing between these cases
based on the code of the system, the use of knowledge, and in particular, knowledge of
perfect recall [14], can distinguish the cases where syntactically there can be alternative
collaborations, but at this stage of the executions, the alternatives are not available.

Let 〈A1,A2, ...,An〉 be a cellular automaton andA = (S,A,T,g0) its associated global
behavior as defined in section 2.1.
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3.1 Knowledge for participants

LetA i = 〈Si,Ai ,δi ,si
0〉 be a participant. As in [14, 3], we define theknowledge with perfect

recall of this participant as the facts it can infer based on its local history. Recall that we
denote byσ|Ai the sequence of interactions obtained by removing from the sequenceσ all
occurrences of interactions that are not inAi .

Definition 5 (Indistinguishability of execution sequencesfor A i). Two sequences of in-
teractionsσ andσ′ are indistinguishable byA i , denotedσ ≡i σ′, iff σ|Ai = σ′|Ai .

Definition 6 (Knowledge with perfect recall). Let σ be a sequence of interactions ,A i

be a participant andϕ be a predicate. After executingσ, A i knowsϕ if ϕ holds after any
executionσ′ that is indistinguishable byA i from σ. Formally,A i knowsϕ after executing

σ if ϕ(g) holds for every state g in{g∈ S|∃σ′, σ′ ≡i σ∧g0
σ′

−→ g}.

In order to compute the knowledge with perfect recall of the participantA i , we build
its support automatonKi as in [3]. The support automatonKi will follow the execution of
observable interactions forA i , that is, all interactions inAi . The remaining interactions in
U i = A\Ai are not observable byKi . Informally, the state reached inKi after any sequence
σ ∈ A∗ summarizes all the global states that can be reached inA after any sequenceσ′ ∈A∗

such thatσ andσ′ are indistinguishable byA i . Formally,Ki is defined as the deterministic
automaton〈Si ,Ai ,δi ,s0i〉 where:

– The set of statesSi = 2S correspond to subsets of the global statesS.

– The transition functionδi is defined asδi(s,a) = {g′ | ∃g ∈ s, ∃σ ∈ A∗, g
σ

−→
g′ andσ|Ai = a}. Informally, for any states, its successors′ through interactiona con-
tains the set of global statesg′ that are reached inA from global statesg in s by
executing any sequence of unobservable interactions and exactly onea.

– The initial states0i = {g∈ S|∃σ ∈ (U i)∗, g0
σ

−→ g}. Informally,s0i contains all global
states reachable inA by executing any sequence of unobservable interactions starting
from the initial global stateg0.

Example 3.We illustrate the construction above on each automaton of the binary counter
example from Figure 1. ForA0, we haveK0 = A , sinceA0 observes all interactions. The
support automata obtained forA1 andA2 are depicted in Figure 4. Even if by construction,
the state/0 might be reachable, we do not consider it. Note thatK2 is the same asA2 up to
the name of the states.



The support automaton is used to reduce coordination overhead in α-core as follows.
For everyA i , the support automatonKi = 〈Si ,Ai ,δi ,s0i〉 is embeddedin the corresponding
participant behavior. For our application, there is no needto explicitly keep track of the
set of global states corresponding to the states ofKi . Therefore, once the automatonKi is
constructed, states inSi can be replaced by elements of any arbitrary finite domain. The
participant uses one extra local variables to record the state of the support automaton. This
variable is initialized ass0i . Then, this variable is updated when the participant executes
an interaction (transition 7) and is used to filter the setIS before entering theactivestate
(transition 11). The original transitions 7 and 11 are therefore modified into transition 7′

and 11′ as follows:

7′. p?START → {α:=IS\unlocks\{locker}; foreachq∈ α do q!REFUSE; n := |α|; start partici-

pating in the joint actiona managed bylocker; s := δi(s,a) }

11′. n= 0→{ Let IS be the required interactions;IS := IS∩{a∈ A|δi(s,a) 6= /0} }

That is, the optimization restricts the sending of offer messages for interactions that are
enabled according to the support automaton. Clearly, this restricts the number of exchanged
messages. Moreover, in cases where no conflict exists in the filtered behavior (such as in
the binary counter example, the size of theISset is always reduced to 1),OFFER messages
are replaced byPARTICIPATE messages, thus removing the need for further locking by
coordinators.

Example 4.As an example, from the state 1 inA1, two interactions (s2 andr2) are possible.
InK1 this state is split in two states that separate the case wheres2 is possible from the case
wherer2 is possible.

Proposition 1. The executions of the distributed implementation with knowledge-
optimized participants are the same as the executions of theoriginal cellular automaton.
1

3.2 Knowledge for coordinators

Coordinators of theα-core can also gain information about the global context by recording
the offers received from different components. That is, newoffers are issued by participants
only at the initial state and after every successful participation in an interaction. Therefore,
offer reception provides to coordinators some (indirect and definitely incomplete) informa-
tion about the evolution of the system. Nonetheless, this information can be exploited in
order to avoid some useless coordination of theα-core protocol. For example, a coordinator
may detect that some offers are obsolete (their locking willalways be refused) or stable (on
the contrary, their locking will always be accepted by the corresponding participant).

The construction of the support automata for coordinators is a bit more intricate than for
participants. We want to benefit from the same knowledge approach by constructing a con-
troller that is based on the precalculation of knowledge. However, such calculation can be
quite intricate if it takes into account the complicated structure of theα-core algorithm. The
complication is due to the above mentioned difference in observation, that is, offersvs. in-
teractions. The starting point of the construction is the global behaviorA . Clearly,A does

1 For space reasons, proofs are not provided here but in the Appendix A.



not mention explicitly the sending/reception of offers by participants/coordinators. But,
communication of offers can still be inferred fromA knowing the behavior of theα-core
protocol. We present hereafter a systematic construction that allows to progressivelyrefine
A such that to make visible (relevant) offers communication for any selected coordinator.
The construction involves (1) offer generation, as response to execution of some (conflict-
ing) interaction, (2) asynchronous offer reception by the coordinator, (3) determinization
into a support automaton to be used by the coordinator.

Let a be a fixed interaction. We construct the support automatonKa by applying a
sequence of transformations on the global behaviorA = (S,A,T,g0) as follows:

Offer generation: We construct the labelled transition systemA ′ = (S,2{a,1..n},T ′,g0)
by replacing labels of each transition, so that they containinformation about the offers
concerninga. For an interactiona′ and a global stateg′, we denote byI(a′,g′) = {i | a,a′ ∈
Ai ∧∃s′′ ∈ Si, δi(g′[i],a) = s′′} the set of indices of automata that can participate ina after
executinga′. Intuitively, this corresponds to set of offers that the coordinator fora will

receive after execution ofa′. We relabel the transitiong
a′

−→ g′ by g
{a}∪I(a,g′)

−→ g′ if a′ = a

and byg
I(a′,g′)
−→ g′ otherwise. It might be the case that some transitions have/0 as label after

this step, which means that they have no observable effect onthe a-coordinator and thus
are unobservable.

Asynchronous offer reception: We construct the labelled transition systemA ′′ =
(S′′,{a, /0,1, ...,n},T′′,g′′0) obtained by breaking transitions inA ′ such that there is at most
one action (eithera or offer receptioni) per transition. Formally, we takeS′′=S×{0,1,2}n,
that is, a state ofA ′′ is defined by a global stateg of the cellular automaton and a vector
v of n integers in{0,1,2}. For any participanti, the valuevi gives the number ofpending
offers, that is, potentially sent byi and not yet received by the coordinator. Given the spe-
cific behavior of theα-core, the number of pending offers is always between 0 and 2.For
a given set of indicesI ⊆ {1, ...,n}, we denote by1I the characteristic vector ofI that is 1
if i ∈ I and 0 otherwise. We define the initial stateg′′0 = (g0,1I(a,g0)). Transitions inT ′′ are
constructed from the following rules, whereI denotes an arbitrary index set:

g
{a}∪I
−→ g′ ∈ T ′

(g,0)
a

−→ (g′,1I )

g
I

−→ g′ ∈ T ′ ∀i ∈ I , vi ≤ 1

(g,v)
/0

−→ (g′,v+1I)

vi > 0

(g,v)
i

−→ (g,v−1{i})

Projection and determinization: Finally, we construct the support automatonKa =
(Sa,{a,1, ...,n},δa,ga0) as the deterministic automaton constructed fromA ′′ by eliminat-
ing /0 actions which are unobservable. The construction is essentially the same as the one
introduced in section 3.1 for participants and is not repeated here.

The previous construction guarantees that whenever an offer from participantA i is
received by the coordinator, the actioni is possible from the current state of the support
automata. This is stated in Lemma 1.

Lemma 1. For any distributed executionσ, its restrictionσ|{a,1,..,n} to actions observable
byKa is the trace of an execution ofKa.

Example 5.In Figure 5, we present the different steps leading to the construction ofKs1.
To obtain the automatonA ′, we relabel the transitions inA . For instance, the transition
0

s0−→ 1 inA bringsA0 in a state where it can take part ins1. From thes1-coordinator point
of view, this corresponds to receiving an offer fromA0. Thus, the transition is relabelled by



{0} in A ′. In the non-deterministic automatonA ′′, each state is labelled by a couple(g,v),
whereg is a global state fromA , andv= v0v1 is a vector wherevi is the number of offers
to receive fromA i . The dotted transitions correspond to unobservable actions. Note that
we depicted only the half ofA ′′, the other half (corresponding to states 3,4,5,6) shows the
same pattern between states(3,10) to (6,00) as between states(7,10) and(2,00). Finally,
the determinized and minimized version ofA ′′ is the automatonKs1. It states that between
two executions ofs1, two offers fromA0 and one offer fromA1 are to be received, in any
order.

The coordinator for interactiona observes the offers sent from all participants ina
and computes the set of known stable and obsolete components(or offers). We say that
a component (offer)A i is stableat states in Ka iff for all paths starting ats, a transition
labelled byi cannot be reached without going through a transition labelled bya. Whenever
an offer fromA i is stable, the coordinatorknowsthatA i can not send a new offer until the
interactiona takes place. More precisely,A i can only participate ina and the information
received fromA i is up to date. If stable,A i can be considered as if it were locked. In a
dual manner, we say that a component (offer)A i is obsoleteat states in Ka iff for all paths
starting ats, a transition labelled bya cannot by reached without going through a transition
labelled byi. In this case, the coordinatorknowsthat it has to receive a new offer fromA i

before starting the interaction. This information can be used to avoid tentative executions
based on obsolete offers.

Example 6.Let us consider the support automaton for the coordinator ofs1 in the binary
counter. At stateC, the coordinator may have received two offers fromA0 andA1 and the
default behavior is to attempt execution for interactions1. However, the offer fromA0 is
obsolete. Using the support automaton, the coordinator cantherefore detect this situation
and silently remove that offer, which avoids the execution attempt. At stateD, bothA0 and
A1 are stable and there is no need to lock them before executings1.

The above optimizations are implemented as follows. The coordinator fora follows the
automatonKa when receiving offers2 (transitions 1 and 2) and executinga (transitions 4 or

2 Here we consider onlynewoffers that we need to distinguish from offers sent when participant
executes transition 6. This can be done by using a new messagename for offers that are re-sent.
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7, from Figure 3(b)). Formally, the coordinator uses an extra variables tracking the state
of the support automaton. The transitions 1,2,4 and 7 of the coordinator are modified into
transitions 1’,2’,4’ and 7’ as follows:

1′. n<C∧ p?OFFER →{n:=n+1; shared:= shared∪{p}; s := δa(s, p); update() }

2′. n<C∧ p?PARTICIPATE → {n:=n+1; locked:= locked∪{p}; s := δa(s, p); update() }

4′. n=C∧shared= /0→{ foreachq∈ lockeddoq!START; locked, shared:= /0; n:=0; s := δa(s,a)

}
7′. waiting = /0 ∧ p?OK → {locked:=locked∪ {current}; foreach q in locked do q!START;

locked, waiting, shared:= /0; n:=0; s := δa(s,a); }

Theupdatefunction above is used to modify thesharedandlockedsets, given the current
support automaton statesas follows:
foreachp∈ shared

if p∈ stablea(s) { shared:= shared\ {p }; locked:= locked∪ { p } }

if p∈ obsoletea(s) { shared:= shared\ {p}; n = n -1; p!LOCK ; p!UNLOCK }
Since a component can now be considered as locked even if it sent anOFFER message,

it may receive aSTART message while waiting to be locked. Therefore, we add a transition
12 from the waiting to the sync state, as depicted in Figure 3(a). We also modify transition
7 into transition 7′ as follows:

7′. p?START →{α:=IS\unlocks\{ p }; foreachq∈ α doq!REFUSE; n := |α|; start participating

in the joint action managed by p}

12. p?START → {α:=IS\unlocks\{p}; foreachq∈ α do q!REFUSE; n := |α|; start participating
in the joint action managed byp}

Proposition 2. The executions of the distributed implementation with knowledge-
optimized coordinators are included in the executions of the original cellular automaton.

3.3 Combining knowledge for participants and coordinators

Optimization for participants and coordinator can be combined. In this case, the construc-
tion of the support automata for coordinators has to be done on the system obtained using
the support automata for participants. In particular, the relabelling step depends on the ac-
tual offers sent by participants and thus on their support automata.

4 Experimental Results

We present experimental results for computing and using thesupport automata for partici-
pants as presented in Section 3.1.

ExamplesOur first example is presented in Figure 6. It consists in a variation of the
classical dining philosophers problem. Each philosopher Philoi may eat during the inter-
actioneati involving its two neighbor forks. Then Philoi clean first the fork to its left then
the fork to its right through interactionclnLi andclnRi respectively. We denote philoN an
instance withN philosophers.
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Our second example is called Master/Slave. We assume a set ofN masters andM slaves.
Each master wants to perform a task for which it needs two slaves that it can chose amongst
a pool of sizeK. We denote msNMK such an instance. If the slavej is in the pool of the
masteri, then the interactionacqi

j allows masteri to acquire slavej, which brings the slave
in statei so that it remembers thati acquired it. On completion on the task, the masteri
releases simultaneously the two acquired slavesj1 and j2 through therelij1, j2 interaction.
Figure 8 shows the generic behavior of a master and the generic behavior of a slave.

Our third example models a transmission protocol that propagates some values amongst
a chain of memories. Each memory correspond to an automaton whose state indicates the
current value stored in the memory. A fragment of this example is shown in Figure 9.
The rule is to propagate the new value (from the left) only if the memory on the right has
already copied it. Such propagation steps are implemented as ternary interactions denoted
by mvi,v1,v2, which correspond to the case where memoryi changes its value fromv1 to v2.
As an example, consider the interactionmvi,1,0 in the Figure 9. This interaction changes the
value in Nodei from 1 to 0 if Nodei+1 already changed its value to 1 and the next value (in
Nodei−1) is 0. For our experiment, the memories form a circular chain, thus the sequence
of values seen by each memory depends only on the initial state of the system. Note that
one propagation is possible at places where the circle contains two consecutive nodes with
the same value. We denote by tpN an example withN nodes and one propagation possible
and by tpN′ an example withN nodes and two parallel propagations.

Building support automata for participants.We implemented the support automaton
computation for each participant by using analysis tools ofthe BIP framework. In Table
1, we present the results of this analysis by giving the average number of states in the
original automata and in the support automata. This gives anindication on the size needed
to store the knowledge, and the memory needed for execution of the support automata. For
the philoN instances, the support automaton of philosophers is the same as the original
automaton. For the forks, there is only one additional state, as shown in Figure 7. The
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Table 1. Results: average size of original and support automaton andperformance of the obtained
implementation, for each test instance.

Average number of states Number of interactions during
60s

Name Components in A i in Ki Standard Optimized
philo3 6 2.5 3 1129 2251
philo4 8 2.5 3 1811 2499
philo5 10 2.5 3 2261 4448
philo6 12 2.5 3 2624 4542
philo7 14 2.5 3 3093 4603
ms232 5 2.6 3 1491 1504
ms233 5 3 4.6 1128 1129
ms342 7 2.7 3.1 642 1885
ms343 7 3.1 4.9 1278 1265
ms344 7 3.6 7 1256 1251

tp3 3 3 6 750 1499
tp6 6 3 15 750 1500
tp6’ 6 3 16 1498 1557
tp9 9 3 24 750 1509
tp9’ 9 3 28 1497 3725
tp12 12 3 33 749 1513
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Fig. 11. Dining philosophers: Number of messages per
interaction, optimized version.

added state allows to distinguish who acquired the fork (left or right) and to send only one
offer accordingly, thus avoiding unneeded conflict resolution. In the Master/Slave example,
the automaton describing a master is very generic. The corresponding support automaton
contains all the possible sequences for acquiring two slaves and then releasing them. In
particular, after having acquired two slaves, there is onlyone possible release interaction,
thus only one offer is sent. Finally, in the transmission protocol example, the size of each
support automaton is much larger since it depends on the number of nodes in the chain, that
is on the sequence of values seen by each node. If two propagations are possible, then the
size of the support automaton is slightly increased, since the two propagations may conflict.

Performance of distributed implementation.Using the BIP component framework, we
built a transformation that replaces multiparty interactions by theα-core protocol. We ob-
tain a distributed BIP model representing participants andcoordinators communicating
through asynchronous message passing. From this model, we generate a set of C++ pro-
grams communicating through Unix sockets. We ran the obtained code for both standard
α-core and knowledge-optimizedα-core on a UltraSparcT1 allowing parallel execution of
24 processes. In Table 1, we provide the number of interactions executed during 60 sec-



onds of execution (not including initialization) for both standard and optimized version
of each test instance. On the dining philosopher instances,the optimized version is up to
twice faster than the standard version. On the Master/Slaveinstances, except for one, the
performance is the same for both versions. On the transmission protocol instances, we have
a speedup of at least two, except for the tp6′ example.

In order to analyze the distributed executions of standard and optimized versions, we
now provide the average number of messages needed to performan interaction for each
example. For the dining philosophers example, the average number of messages needed
to execute one interaction in the standard (resp. optimized) version is shown in Figure 10
(resp. 11). The number of messages is reduced by approximatively 25%, mainly because
someOFFER messages from the fork are transformed inPARTICIPATE messages. In turn
this reduces the number of participants to lock, and thus thenumber of messages. For the
Master/Slave example, we provide the average number of messages needed to complete
one interaction for standard and optimizedα-core in Figures 12 and 13. Here the number
of conflicts depends on the size of the pool of slaves assignedto each master. Since there
are many conflicts, the number of offers sent to execute an interaction is quite big. Recall
that on this example, performance of both versions is comparable. However, the number
of exchanged message is smaller in the optimized version, because less offers are sent.
For the transmission protocol example, the average number of messages exchanged to ex-
ecute one interaction for standard and optimized executions is shown in Figures 14 and
15. For the non-primed versions, since there is no dynamic conflict, each participant sends
only PARTICIPATE messages and each coordinator can directly answer aSTART message.
This reduces drastically the number of exchanged messages (6 per interaction, since they
are ternary interactions). For the primed version, in some cases a node may participate in
two interactions and thus send twoOFFER messages, which is still much less than in the
original version.

5 Discussion

An architecture for component-based system can provide a very powerful tool for dis-
tributed software development. It assumes some underlyingmechanism that provides sup-
port for the components to interact and to choose from several alternative actions. It is
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highly beneficial to develop code at this level, rather than to consider the lower level ar-
chitecture that uses message passing, or shared variables.On the other hand, obtaining this
level of abstraction is expensive: the overhead needed to allow both multiparty interac-
tion and non-deterministic choice requires some nontrivial amount of lower level message
exchange.

In this paper we looked at a technique to optimize the amount of overhead needed for
supporting high level architecture for component-based systems, such as the BIP systems.
Observing a typical popular algorithm for interaction coordination, theα-core protocol, we
remarked that additional information about the amount of overhead makes a lot of differ-
ence. The coordination protocol distinguishes the case where there is no non-determinitic
choice; then, there are fewer messages sent, as an intent to participate in an interaction is a
committed intention. It is often not known in advance how many conflicting choices there
are: syntactically, there can be several, but at runtime, there are quite fewer cases available
(enabled) at each particular instance. Our method is based on performing a preliminary
model checking analysis of the system for detecting such situations. When we find that the
local situation admits no non-deterministic choice at any possible global situation, we can
employ the more efficient case of committing to an interaction.

This analysis is based on the knowledge of a process, regarding all the possible global
states consistent with its local situation. We apply this optimization in two cases: locally
at the process level, where the knowledge of the process may be used to transfer a seam-
ingly non-deterministic case into a committing case, and atthe level of a process of the
coordination algorithm. The latter case is very powerful, as a coordinator process has, to
some extent, a more global view, having received requests from different processes. Ex-
periments show that rather than using simple memoryless knowledge, we are required to
use history-based knowledge. The reason is that it is the cases where different instances
of non-deterministic choice during runtime, rather than a history independent case, are the
interesting ones. This can be explained intuitively by the fact that the history independent
case actually hides a coding error, where not committing to an interaction although there
are no alternatives should have been replaced by a commitment to the single possible inter-
action.

We performed experiments on three different examples. Our experiments show a con-
siderable improvement in the number of messages needed to beexchanged. It is important



to note that due to the use of history-based knowledge, additional memory is needed to
encode the possible histories. In the worst case, the amountof added memory is quite non-
trivial, exponential in the size of the system, for each process. However, our experiments
show a much better and balanced memory consumption. We intend to conduct further ex-
periments and to apply the knowledge-based technique for reducing message passing in a
more aggressive way.
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15. J. A. Pérez, R. Corchuelo, and M. Toro. An order-based algorithm for implementing multiparty
synchronization.Concurrency and Computation: Practice and Experience, 16(12):1173–1206,
2004.

16. S.L. Ricker and K. Rudie. Know means no: Incorporating knowledge into discrete-event control
systems.Automatic Control, IEEE Transactions on, 45(9):1656 –1668, sep 2000.



A Proofs

In order to prove the correctness of our constructions we need to define what is a distributed
execution of the cellular automaton〈A1, ..,An〉. For an automatonA i , we denoteP (A i) the
process implementing theα-core participant forA i . Similarly, for an interactiona j , we de-
note byC (a j) theα-core coordinator fora j . The obtained distributed system is denoted by
P (A1)| . . . |P (An)|C (a1)| . . . |C (am). We formally represent an execution of the distributed
system as a trace consisting in interactions of the cellularautomaton, emission of messages
and reception of messages. An interactiona from the original cellular automaton appears
in the trace whenever transition 4 or 7 in the coordinatorC (a) is executed. We say that a
trace is a distributed execution if it is maximal and:

– for any two distinct processesp andq, the ith message received byq from p is theith
message sent byp to q, and the reception occurs after the emission in the trace.

– the projection of the trace on one process (participant or coordinator) is a valid execu-
tion of the corresponding extended state machine.

We assume that theα-core protocol is correct, which is stated formally in Lemma2.

Lemma 2 (Correctness ofα-core). Let 〈A1, ..,An〉 be a cellular automaton, A the set
of its interactions, andA its global behavior. Any executionσ of the distributed sys-
temP (A1)| . . . |P (An)|C (a j)| . . . |C (am) restricted to A is a correct execution µ= σ|A of

〈A1, ..,An〉, that is for any prefix µ′ of µ, we have g0
µ′

−→ g′.

A.1 Knowledge for participants

Proposition 1. The executions of the distributed implementation with knowledge-
optimized participants are the same than the executions of the original cellular automaton.

Proof. We denote byPKi (A
i) the optimized implementation of participant forA i using

support automataKi . The modifications of theα-core participant as presented in 3.1 restrict
the offer sent to interactions that simultaneously possible inA i andKi , that is to interactions
of 〈A i

,Ki〉, thusPKi (A
i) = P (〈A i

,Ki〉).
Since by construction, the cellular automaton obtained by composing theKi has the

same global behavior than the original cellular automaton,composing the〈A i
,Ki〉 yields

the same behavior. Then, the Lemma 2 allows us to conclude. ⊓⊔

A.2 Knowledge for coordinators

In our construction, the support automatonKa moves each time an offer (OFFER or PAR-
TICIPATE ) is received or the interactiona is executed by the coordinator fora. The Lemma
1 states that for any distributed execution, such a move is allowed inKa.

Lemma 1. For any distributed executionσ, its restrictionσ|{a,1,..,n} to actions observable
byKa is the trace of an execution ofKa.



Proof. Let σ be a distributed execution ofP (A1)| . . . |P (An)|C (a1)| . . . |C (am). Lemma 2
ensures thatσ restricted to the original actions of the cellular automaton is an valid se-
quence of actionsµ of the cellular automaton, that is there exists an executiong0,g1, . . . of
the global behaviorA such that∀k≥ 1, gk−1

µk−→ gk.
We show by induction that the prefixσk of σ such thatσ = σk.µk.σ′ yields a valid

path inA ′′ when restricted to observable actions. More precisely, we show thatg′′0
σk|{a,1,..,n}
−→

(gk−1,v) with for each participanti involved inµk, eithervi = 1 and there is a pending offer
sent byi to the coordinator ofa that has been used byµk, or vi = 0 and there is no pending
offer.

With k= 1, i.e. before the first interaction happens, the initial state ofA ′′ is (g0,v) with
vi = 1 for any participanti that can initially executea. Therefore, for each participanti
involved inµ1, either the offer is received by the coordinator fora beforeµ1 takes place and
vi is set to 0 orvi remains set to 1 and there is a pending offer fromi that has been used by
µ1.

Now, we assume that for anyk′ < k, the induction hypothesis holds. In particular, we
know that the execution ofσ until µk−1 bringsA ′′ in the state(gk−1,v′′) such that for alli
involved inµk−1, v′′i ≤ 1. If µk−1 6= a, the unobservable transition/0 corresponding toµk−1

is possible from that state. Ifµk−1 = a, all offers from participants ina have been received
and thereforev′′ = 0 and the transition labeled bya is possible. We denote(gk,v′) the state
reached after executing the step corresponding toµk−1 in A ′′.

We shall now show that all offers received before the occurrence ofµk are accepted. Let
i in {1, ..,n} be a participant ina, by induction hypothesis, before the last interactionµki

involving i,A ′′ is at state(gki ,v
ki ), wherevki is either 1 and there is a pending offer used by

µki has not been received by the coordinator fora or 0 otherwise. Executing the transition

corresponding toµki will bring A ′′ in state(gki ,v) wherevi = vki
i +1 only if i can participate

in a after executingµki . Note that between the execution of two interactions, the participant
i sends at most one new offer to the coordinator ofa (excluding offers that are re-sent) since
it needs to receive anACKREF message from the coordinator before sending the new offer.
Thus, at state(gki ,vi), vi correspond to the maximum number of offer possibly received
from i. It can be 2 if there is both a pending offer and a new offer, 1 ifthere is only one of
them, or 0 otherwise. Furthermore, ifi is also involved inµk any a pending offer used by
the last interaction involvingi, µki has been received by the coordinator fora, otherwise,
no ACKREF message could have been sent toi and i would not have been able to doµk.
This implies that ifv′i = 1, then there is a pending offer that was used byµk and shows the
induction hypothesis. ⊓⊔

Proposition 2. The executions of the distributed implementation with knowledge-
optimized coordinators are included in the executions of the original cellular automaton.

Proof. We denote byCKa(a) the modified coordinator fora, and byP ′(A i) the modi-
fied participant forA i , as presented in Section 3.2. We have to show that an execution
of P ′(A1)| . . . |P ′(An)|CKa1

(a1)| . . . |CKam
(am) is non-blocking and correct in the sense of

Lemma 2.
We have shown in Lemma 1 that the support automatonKa can always perform one of

its observable action when it occurs. This property still holds in the optimized version since
the modifications toα-core presented in Section 3.2 do not modify the emission of offers,
nor the need to receive all offers before executinga.



We focus on theupdatefunction, which modifies the behavior ofα-core as follows:

– If an offer fromA i is stable, it is treated as aPARTICIPATE message. This induces
a new behavior: directly replyingSTART to anOFFER message, which is accepted
by the modified participantP ′(A i). Furthermore, stability ensures that the participant
cannot receive more that oneSTART message. Thus this modification is non-blocking.
By reordering receptions of theLOCK messages, (i.e. adding transmission delays),
we can build an execution of the standardα-core with the same visible actions, thus
execution of the modified version is correct.

– If an offer from i is obsolete, then it is discarded using theα-core mechanisms, that
is by removing it from thesharedset and by sending aLOCK, UNLOCK sequence
to avoid the participant to wait for aLOCK . Obsolescence ensures that the participant
will take part in an other interaction. Thus this modification is non-blocking.
By reordering arrival ofOFFER andREFUSE messages, we can build an execution
of the standardα-core with the same visible actions, thus execution of the modified
version is correct. ⊓⊔


