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Abstract. Component-based systems (including distributed progranesmultia-
gent systems) involve a lot of coordination. This coordumatis done in the back-
ground, and is transparent to the operation of the system.r&son for this over-
head is the interplay between concurrency and non-detgstigithoice: processes
alternate between progressing independently and codiminaith other processes,
where coordination can involve multiple choices of the ipgrating components.
This kind of interactions appeared as early as some of the g@hmunication-
based programming languages, where overhead effort cdteses a restriction on the
possible coordination. With the goal of enhancing the efficy of coordination for
component-based systems, we propose here a method foirat@d-based on the
precalculation of the knowledge of processes and coolidmagents. This knowl-
edge can be used to lift part of the communication or synéhabion that appears
in the background of the execution to support the interact@ur knowledge-based
method is orthogonal to the actual algorithms or kind of [ifiies that are used to
guarantee the synchronization: it only removes message®ying information that
knowledge can infer.

1 Introduction

Component-based systems are a generalization of digdksytstems. In concurrent lan-
guages like CSP and ADA processes allow binary interactimt@een processes, often
with the choice between outgoing communication restrit¢tede deterministic. Modern
distributed systems may involve more general multi-paggrdination, e.g., robots that
need to coordinate temporarily on a certain task. While susyistem may reveal a behav-
ioral model that is based on interaction primitives, oftethe back, there are algorithms
that are based on more basic primitives such as asynchromessage passing or shared
variables. Algorithms for obtaining synchronization pitiwres are complicated and require
nontrivial overhead. Theoretical results also show sorherient restrictions: a well known
result on the dinning philosophers [13] shows that a completymmetric nonprobabilistic
solution cannot exist.

We present here a method for improving the behavior of syorabus interactions by
removing some of the overhead for guaranteeing the coryacthsonization of compo-
nents based on knowledge calculation. The main princigd@$®d on the observation that
such algorithms need to allow for a very general interactiorh can provide a much more
efficient behavior for more limited cases. Analyzing theteysbefore its execution based
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Fig. 2. Global Behavior

Fig. 1. Example of Cellular Automaton

on model checking of knowledge properties allows us toagtithe particular behavior that
is actually needed for the implementation of the synchration. Knowledge, basically,

refers to the facts that hold in all the global states thatcaresistent with the current lo-

cal state of some process. A precalculated knowledge, etelddd the processes, allows
exploiting the easier cases of behavior, when relevant.

Our method is general, independent of the actual synchatiaizalgorithm or primi-
tives used to obtain it. However, the actual implementatibthe method depends on the
specific details of the algorithm. We present its implemtorteon a well known generic
synchronization algorithm calleal-core [15].

The paper is organized as follows. Section 2 recalls cellam#omata, as the under-
lying semantic model for synchronizing systems, anddheore protocol, as one possi-
ble solution for distributed implementation of such sysierf@ection 3 presents the key
results on exploiting knowledge to reduce the communioaticerhead for distributed im-
plementation. We provide techniques for using knowledgefrendently for components
and coordinators as well as for combining them. Section #ntsExperimental results
and measurements obtained using a prototype implememtaadized on top of the BIP
framework [2]. Finally, Section 5 provides conclusions &utdire work directions.

2 Preliminaries

2.1 Cellular Automata

The model of execution that we want to obtain is that of syantning systems. To de-
scribe such systems we are using asynchronous cellulanatad7]. This model involves
several processes, represented as automata with trasdéloeled by action names, where
the execution of all the actions that share the same nameohaes $ynchronized by all
processes. Formally, the cellular automata model is defisddllows:

Definition 1. An automaton is a tupléS A, 3,5) where S is the set efatesA is the set of
actions 0: Sx A— S is the transition relation,gsc S is thenitial state

Definition 2. The execution of an automaton is a maximal sequence of Sges ...
such that for each ¥ 0, there exists & A such thad(s,a) = S+1.

Definition 3. A cellular automaton is a set of n automatd’ = (S,A&, ), i€
{1,...,n}, such that the sets of states are mutually disjoint, and #ie sf actions may
have common occurrences (corresponding to interactions).



Example 1.Figure 1 shows a cellular automaton made of three automatd &itomaton
4' represents thigh bit of a binary counter (here modulo 8). Note that the miggtificant

bit is represented by the rightmost automaton. Interasta®e named after the higher bit
that changes during the interaction (esg.¢orresponds to the setting of bit 1 and synchro-
nizes 4! and 4°, r, corresponds to the reset of bit 2 and synchronizés4® and.2°).
Each interaction involves either ong), two (s;) or three &, r,) automata.

We denote b= S! x ... x S the set of global states of a cellular automaton. A global
stateg € Sis defined by the state of each automat@rfrom the cellular automaton. The
state of the automatofl' at global statey is denotedy[i].

Definition 4. An execution of a cellular automaton is a maximal sequengéotfal states
0001 - .. such that:

— go is the tuple made of initial statesi € {1..n},goli] = &, - _
— For adjacent tuples gand g1 there is an action & Ujc; nyA' such that for each

i € {1..n}, either g1[i] = &' (gj[i],a) orag¢ A and g 1]i] = g;]il.

Itis easy to see that the projection of an execution into glsiautomaton is a prefix of
an execution of that automaton.

We denote by 2, g if the actiona can be executed from global stg@nd leads to
global statey’. This notation is trivially extended to sequences of intdoms, that is for
0 = aay---ax we denote byg 2, d if there exists global stateg, gz, - - gk_1 such that
g A, o1 22, 02 - Ok-1 B, g. We denote by, the sequence of interactions obtained
by removing fromo all occurrences of interactions that are nofin

The set of executions, i.e. global behavior, of the cellalaomaton can be represented
as a labeled transition systefh= (S A, T,go), whereS is the set of global stateg, =
Uiegz..n} Al is the set of actions (or labels),C Sx A x Sis the set of valid transitions (as
defined by Definition 4) andp is the initial global state.

Example 2.The global behavior of the cellular automaton depicted guFé 1 is shown
in Figure 2. Any global statg € {0, ..., 7} denotes the tuple of local stat&g{2]g[1]g[0])
obtained from the representationgés a binary number.

Cellular automata are perhaps the simplest model to dessyibbchronizing systems.
Nonetheless, this model is expressive enough to undegkehilevel frameworks with sim-
ilar synchronization-based communication. In particuhar focus hereafter on the relation
between cellular automata and the BIP framework [2], whidhbe used later in section 4
for concrete experiments. BIP (Behavior-InteractiorsRty) is a component-based frame-
work which allows the construction of hierarchically stued component-based systems.
In BIP, atomic components are characterized by their iaterfthat is, a set of ports (sim-
ilar to action names) and their behavior, that is, an automaiith transitions labeled by
ports. Components are composed by layered applicatiornt@raictions and priorities. In-
teractions express synchronization constraints betwers of the composed components.
An interaction is a set of ports, every one belonging to sed#fit component, that has to
be jointly executed. BIP provides (hierarchical) connexts a mean to structure and ex-
press sets of interactions in a compact manner. Finallgyiggs are used in BIP to filter



amongst the set of enabled interactions. Priorities peaidadditional coordination mech-
anism to control the system evolution. A significant part & Bystems can be structurally
represented as cellular automata. That is, any BIP systémowtipriorities can be equally

represented as a cellular automaton by mapping BIP interexcinto cellular automata in-

teractions. Since a port may be involved in several interast BIP atomic components
can be transformed into automata by duplicating transstiabeled by a port into a set of
transitions labeled by the corresponding interactions.

2.2 Thea-core protocol

Thea-core protocol [15] was developed to schedule multiproc#ssaction. It generalizes
protocols for handshake communication between pairs agases. For each multiprocess
interaction, there is a dedicated coordinator on a separatess. To appreciate the dif-
ficulty of designing such a protocol, recall for example thetfthat the language CSP of
Hoare [9] included initially an asymmetric construct fomshironous communication; a
process could choose between various incoming messagdsdto commit on a partic-
ular send. This constraint was useful for achieving a sinipl@ementation. Otherwise,
one needs to consider the situation in which a communicasigpossible between pro-
cesses, but one of them may have performed an alternativeech@ter Hoare removed
this constraint from CSP. The same constraint appears inghi@mmetric communication
construct of the programming language ADA. The Buckley aititeBschatz protocol [5]
solves this problem for the case of synchronous communpicatween pairs of processes,
where both sends and receives may have choices. Their ptatees asynchronous mes-
sage passing between the processes to implement the sypakrmessage passing con-
struct. Thea-core protocol solves the more general problem of synchnogiany number
of processes, using only asynchronous message passiamatlve solutions for this prob-
lem have been proposed, using managers [6, 1], a circultaikem [12], or a randomized
algorithm without managers [10]. Contrarily to other magialgased solutionsi-core does
not need unbounded counters. The version presented betbwdés corrections from [11].
In a-core, the following messages are sent from a participaatimordinator:

PARTICIPATE A participant is interested in a single particular intei@et(hence it can
commit on it), and notifies the related coordinator.

OFFER A participant is interested in one out of several potentiallailable interactions
(a non-deterministic choice).

OK Sent as aresponse th@CK message from a coordinator (described below) to notify
that the participant is willing to commit on the interaction

REFUSE Notify the coordinator that the previo@s=FER is not valid anymore. This mes-
sage can respond tA.®CK message from the coordinator.

Messages from coordinators are as follows:

LOCK A message sent from a coordinator to a participant that hasaseOFFER, re-
questing the participant to commit on the interaction.

UNLOCK A message sent from a coordinator to a locked participadicating that the
current interaction is canceled.

START Notifying a participant that it can start the interaction.

ACKREF Acknowledging a participant about the receipt ®BFUSE message.
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Fig. 3. State machines

Fig. 3(a) describes the extended state machine of a panticifach participant process
keeps some local variables and constants:

IS: a set of coordinators for the interactions the participaimterested in.

locks a set of coordinators that have sent a pendibgK message.

unlocks a set of coordinators from which a pendidlyLOCK message was received.

locker. the coordinator that is currently considered.

n: the number oACKREF messages required to be received from coordinators urgiha n
coordination can start.

a: the coordinators that asked for interactions and subsdiguefused.

The actions according to the transitions are written as agrai~ action whereen
is the condition to execute the transition, which may ineladtest of the local variables,
a message that arrives, or both of them (then the test sholddahd the message must
arrive). We denote the reception of a mesgsigss from procesp by p?MSG. The action
is a sequence of statements, executed when the conditios.hbhe statemem!MSG
means “send messa@dSG to processp’. In addition, each transition is enabled from
some state, and upon execution changes the state accardimg telated extended finite
state machine. The participant’s transitions, accordirté numbering of Fig. 3(a) are:

. |IS> 1] — { foreachp € ISdo plOFFER }
. |IS= 1] — {locker.=p, wherelS = { p}; locker! PARTICIPATE ; locks unlocks=0}
. pLOCK — {locker.=p; locks unlocks=0; p!OK }
. p2LOCK — {locks=locksu {p}}
. locks # 0 A pUNLOCK — {locker=q for some g € locks qg'OK; locks=locks\ {q};
unlocks=unlocksJ { p}}
. locks=0A pPUNLOCK — { foreachq € unlocksJ {p} doq!OFFER}
7. p?START — {a:=IS\ (unlocksJ {locker}); foreachq € a doq!REFUSE; n:= |a|; start partic-
ipating in the joint action managed kycker}
8. p?LOCK — {} 9. pUNLOCK — {} 10. p?ACKREF — {n:i=n—1}
11. n=0— { LetISbe the new set of interactions required from the curreng¢sat

b wWNBEF

(]

For a coordinator, whose extended finite state machine apjpelaig. 3(b), we have the
variableswaiting, locked sharedanda, holding each a set of processes, arisla counter
for the number of processes that indicated their wish tdgpate in the interaction. The
constant holds the number of processes that need to participate intér@ction (called,
thecardinality of the interaction), and the variabterrentis the participant the coordinator
is trying to lock. The transitions, according to their numbg from Fig. 3(b) are as follows:



n < CA p?0FFER — {n:=n+1; shared= sharedJ {p} }

. N<CAPp?PARTICIPATE — {n:=n+1; locked=lockedU {p} }

. pPPREFUSE — { if p € sharedthenn:=n—1; plACKREF ; shared=shared\ {p}}

n = CAshared= 0 — { foreachq € lockeddo q!START; locked shared=0; n:=0}

n= C Ashared# 0 — {current= min(shared; waiting:=shared\ {current}; current LOCK }

. waiting# 0 p?0K — {locked=lockedJ {current}; current=min(waiting); waiting:=waiting\,

{current }; current LOCK }

7. waiting = 0 A p?2OK — {locked=lockedU {current}; foreach q in locked do g!START;
locked waiting, shared=0; n:=0}

8. p?REFUSE — {a:=(lockedn shared U {current, p}; foreachq € a\ {p} do qUNLOCK;
p'ACKREF ; shared=shared\ a; locked=locked\ a; n:=n—|a|}

9. p?OK — {}

B

We propose to characterize the correctness of the implatientby using execution
trace equivalence. We assume that the network is reliatdettzat there is no message
loss. We say that the interactiaroccurs in a distributed execution @fcore whenever the
transition 7 in the coordinator fa is executed. The correctnessotore guarantees that
the executions of the original cellular automaton and thecations of its implementation
are the same.

3 Knowledge-Based Optimization

Synchronization algorithms such ascore impose a lot of overhead in order to guaran-
tee correct interaction. We want to utilize knowledge inesrtb reduce the overhead in
coordination messages. Knowledge appears naturally triliised systems, as it repre-
sents what a process knows from its obseravtions. HalpetiMarses [8] defined a logic
to reason about knowledge. Van der Meyden [14] introduceshkedge with perfect re-
call. Knowledge has been applied to control distributedrdite event systems [16] and to
implement priorities between multiparty interactions4B,However, the previous works
assume a conflict resolution mechanism. We propose herenddaige-based optimization
of such a mechanism, which has not been done, at least to owtéaige. Based on [3], we
construct a support automaton, which is a controller thtaeeisupports or blocks actions,
based on precalculated knowledge. There are two kinds dfaltars here. The first type
is for each process of the system, and the second is peoeagte synchronizing process.
The support automaton for a system automaton can reduckeaatby calculating when
a component can actually commit to an interaction (offeARTICIPATE call to a-core),
which requires less confirmation messages than simply idieglés participation (by the
alternativeOFFER call). In this case, the knowledge gathered in the precaledlstage
can distinguish between the cases when one has an alterpasgibility of coordination
or does not. While we could benefit from syntactically digtirshing between these cases
based on the code of the system, the use of knowledge, andtioutar, knowledge of
perfect recall [14], can distinguish the cases where syiotdly there can be alternative
collaborations, but at this stage of the executions, tlegradtives are not available.

Let (4, 42,...,4") be a cellular automaton am@ = (S, A, T,go) its associated global
behavior as defined in section 2.1.



Fig. 4. Support automata for participan' and 42 of Figure 1.

3.1 Knowledge for participants

Let4' = (S,A,8,4,) be a participant. As in [14, 3], we define tkeowledge with perfect
recall of this participant as the facts it can infer based on itsllbgstory. Recall that we
denote byo|, the sequence of interactions obtained by removing fromeesnce all
occurrences of interactions that are nofin

Definition 5 (Indistinguishability of execution sequencegor 4'). Two sequences of in-
teractionso ando’ are indistinguishable bya', denoteds =; ¢, iff 0|5 = 0’| 5.

Definition 6 (Knowledge with perfect recall). Let o be a sequence of interactions?!
be a participant andp be a predicate. After executirgy A4' knowsg if ¢ holds after any
executiono’ that is indistinguishable bya' from 0. Formally, 2' knows¢ after executing

o if §(g) holds for every state g ifig € §30’, o' = 0 A Qo LN g}

In order to compute the knowledge with perfect recall of thetipipanta', we build
its support automatof] as in [3]. The support automatakj will follow the execution of
observable interactions fot', that is, all interactions ii. The remaining interactions in
U'" = A\ A’ are not observable bsG. Informally, the state reached if§ after any sequence
o € A* summarizes all the global states that can be reachddifter any sequena® € A*
such thao ando’ are indistinguishable byl'. Formally, %; is defined as the deterministic
automaton(S, A, &;, s;) where:

— The set of state§ = 25 correspond to subsets of the global st&es

— The transition functiond; is defined asdi(sa) = {¢' | g €s, Jo € A", g -
g andoj, = a}. Informally, for any states, its successas’ through interactior con-
tains the set of global stateg that are reached it? from global stateg in s by
executing any sequence of unobservable interactions adlgxnea.

— The initial statesp; = {g € 30 € (U")*, go — g}. Informally, so; contains all global
states reachable id by executing any sequence of unobservable interactiortingta
from the initial global statey.

Example 3.We illustrate the construction above on each automatoneobihary counter
example from Figure 1. Fofi®, we havekp = 4, since4° observes all interactions. The
support automata obtained f@r and.42 are depicted in Figure 4. Even if by construction,
the stateh might be reachable, we do not consider it. Note thats the same agi? up to
the name of the states.



The support automaton is used to reduce coordination osdrime-core as follows.
For every4', the support automatoff = (S, A, &, so;) is embeddeih the corresponding
participant behavior. For our application, there is no needxplicitly keep track of the
set of global states corresponding to the state&jofherefore, once the automatdgg is
constructed, states i§ can be replaced by elements of any arbitrary finite domaie. Th
participant uses one extra local variable record the state of the support automaton. This
variable is initialized asg;. Then, this variable is updated when the participant exescut
an interaction (transition 7) and is used to filter thelSabefore entering thactive state
(transition 11). The original transitions 7 and 11 are tfamemodified into transition’7
and 11 as follows:

7. p?START — {a:=IS\ unlocks\ {locker}; foreachq € o do q!REFUSE; n:= |a|; start partici-
pating in the joint actiom managed byocker, | s:= gi(s,a) | }

17. n=0— { LetISbe the required interactior*sls =1Sn{ac Aldi(s a) # 0} ‘ }

That is, the optimization restricts the sending of offer saggs for interactions that are
enabled according to the support automaton. Clearly, éisisicts the number of exchanged
messages. Moreover, in cases where no conflict exists inltaeefl behavior (such as in
the binary counter example, the size of tBeset is always reduced to )FFER messages
are replaced byARTICIPATE messages, thus removing the need for further locking by
coordinators.

Example 4.As an example, from the state 14, two interactions$ andr») are possible.
In K3 this state is split in two states that separate the case wwherpossible from the case
wherer is possible.

Proposition 1. The executions of the distributed implementation with kedge-
optimized participants are the same as the executions dfriilgenal cellular automaton.
1

3.2 Knowledge for coordinators

Coordinators of the-core can also gain information about the global contexgaprding
the offers received from different components. That is, offers are issued by participants
only at the initial state and after every successful pauditton in an interaction. Therefore,
offer reception provides to coordinators some (indirect@gfinitely incomplete) informa-
tion about the evolution of the system. Nonetheless, thrimation can be exploited in
order to avoid some useless coordination oftthepre protocol. For example, a coordinator
may detect that some offers are obsolete (their lockingakithys be refused) or stable (on
the contrary, their locking will always be accepted by theresponding participant).

The construction of the support automata for coordinasoadiit more intricate than for
participants. We want to benefit from the same knowledgeagmbr by constructing a con-
troller that is based on the precalculation of knowledgeweleer, such calculation can be
quite intricate if it takes into account the complicatedisture of then-core algorithm. The
complication is due to the above mentioned difference ireoladion, that is, offerss.in-
teractions. The starting point of the construction is thabgl behavior4. Clearly, 4 does

1 For space reasons, proofs are not provided here but in ther&ipA.



not mention explicitly the sending/reception of offers tgriripants/coordinators. But,
communication of offers can still be inferred frathknowing the behavior of tha-core
protocol. We present hereafter a systematic construdtiatrallows to progressivelgfine
A such that to make visible (relevant) offers communicatmmahny selected coordinator.
The construction involves (1) offer generation, as respaagxecution of some (conflict-
ing) interaction, (2) asynchronous offer reception by therdinator, (3) determinization
into a support automaton to be used by the coordinator.

Let a be a fixed interaction. We construct the support autom&gry applying a
sequence of transformations on the global behagtier (S A, T,go) as follows:

Offer generationWe construct the labelled transition systeth= (S, 2{&1-1} T/, go)
by replacing labels of each transition, so that they conitafiormation about the offers
concerning. For an interactio@’ and a global statg/, we denote by(a’,g') = {i | a,a €
A A3 e S, 8(di],a) =<'} the set of indices of automata that can participate after
executinga'. Intuitively, this corresponds to set of offers that the rtioator fora will

(e gifa =a

receive after execution @&. We relabel the transitiog i/> g byg
and byg I%> g otherwise. It might be the case that some transitions Bagelabel after
this step, which means that they have no observable effettieom-coordinator and thus
are unobservable.

Asynchronous offer receptiotWe construct the labelled transition systefif =
(S8.{a,0,1,...,n},T”,g3) obtained by breaking transitions &l such that there is at most
one action (eithea or offer reception) per transition. Formally, we tak®’ = Sx {0,1,2}",
that is, a state off” is defined by a global stagof the cellular automaton and a vector
v of nintegers in{0,1,2}. For any participant, the valuev; gives the number gbending
offers, that is, potentially sent byand not yet received by the coordinator. Given the spe-
cific behavior of then-core, the number of pending offers is always between 0 af®?2.

a given set of indicesC {1,...,n}, we denote byl the characteristic vector ¢fthat is 1
if i €1 and 0 otherwise. We define the initial state= (o, 1;(ag,))- Transitions int” are
constructed from the following rules, whdrelenotes an arbitrary index set:

9@ yger  gdeT viel,u<i vi>0
(g,O) i> (g/a ]]-|) (g,V) i> (g/,V—i- ]]-I) (g,V) —I> (g,V— ]]-{I})

Projection and determinizatiorFinally, we construct the support automatég =
(S5, {a,1,...,n},0a,0a20) as the deterministic automaton constructed fr@fnby eliminat-
ing 0 actions which are unobservable. The construction is eisdigrthe same as the one
introduced in section 3.1 for participants and is not repeaere.

The previous construction guarantees that whenever an foffe participant4' is
received by the coordinator, the actibis possible from the current state of the support
automata. This is stated in Lemma 1.

Lemma 1. For any distributed executioa, its restrictiono|a 1, n) to actions observable
by % is the trace of an execution &.

Example 5.In Figure 5, we present the different steps leading to thesttootion of X, .
To obtain the automatod’, we relabel the transitions iA. For instance, the transition
0->21in4 brings4° in a state where it can take partin From thes;-coordinator point
of view, this corresponds to receiving an offer frotfl. Thus, the transition is relabelled by



{0} in 4. In the non-deterministic automatct’, each state is labelled by a couptgv),
whereg is a global state frorn#, andv = vpv is a vector where; is the number of offers
to receive from4'. The dotted transitions correspond to unobservable atidote that
we depicted only the half ofl”, the other half (corresponding to state4.,%, 6) shows the
same pattern between sta{8s10) to (6,00) as between stat€g, 10) and(2,00). Finally,
the determinized and minimized version®f is the automatorxs, . It states that between
two executions of;, two offers from4° and one offer fron¥! are to be received, in any
order.

The coordinator for interaction observes the offers sent from all participantsain
and computes the set of known stable and obsolete compofwerdffers). We say that
a component (offerd' is stableat states in % iff for all paths starting as, a transition
labelled byi cannot be reached without going through a transition labdddya. Whenever
an offer from4' is stable, the coordinatémnowsthat 4' can not send a new offer until the
interactiona takes place. More precisel§i’ can only participate im and the information
received from4' is up to date. If stable@' can be considered as if it were locked. In a
dual manner, we say that a component (offér)s obsoleteat statesin % iff for all paths
starting afs, a transition labelled bg cannot by reached without going through a transition
labelled byi. In this case, the coordinatknowsthat it has to receive a new offer froat
before starting the interaction. This information can bedu® avoid tentative executions
based on obsolete offers.

Example 6.Let us consider the support automaton for the coordinater of the binary
counter. At stat€, the coordinator may have received two offers fra@thand.4* and the
default behavior is to attempt execution for interactipnHowever, the offer fron° is
obsolete. Using the support automaton, the coordinatotlenefore detect this situation
and silently remove that offer, which avoids the executiterapt. At stateD, both.2° and
41 are stable and there is no need to lock them before execsiting

The above optimizations are implemented as follows. Thedioator fora follows the
automatorkz when receiving offers(transitions 1 and 2) and executiagtransitions 4 or

2 Here we consider onlpewoffers that we need to distinguish from offers sent whenigigent
executes transition 6. This can be done by using a new message for offers that are re-sent.
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Fig. 5. Construction of the support automaton for the coordinatei o



7, from Figure 3(b)). Formally, the coordinator uses anaxariables tracking the state
of the support automaton. The transitions 1,2,4 and 7 of doedinator are modified into
transitions 1',2",4’ and 7’ as follows:

1. n< CAp?0FFER — {n:=n+ 1; shared= sharedJ { p}; ‘ s:=d,(s, p); update) ‘ }
2. n< CApP?PARTICIPATE — {n:=n+1; locked=lockedJ{p}; ‘ s:=d,(s, p); update) ‘ }

4'. n=CAshared=0— { foreachq € lockeddoq! START; locked shared=0; n:=0;| s:= d4(s,a)

}
7. waiting = 0 A p?OK — {locked=lockedU {current}; foreach g in locked do g'START;

locked waiting, shared=0; n:=0; }

The updatefunction above is used to modify tlharedandlockedsets, given the current
support automaton stasaas follows:
foreachp € shared

if p € stabley(s) { shared:= shared\ {p }; locked:=lockedu { p} }

if p € obsoletg(s) { shared:= shared\ {p}; n=n-1; pILOCK ; p]lUNLOCK }

Since a component can now be considered as locked evenrit is®FFER message,
it may receive &TART message while waiting to be locked. Therefore, we add aitiams
12 from the waiting to the sync state, as depicted in Figuag. 3{e also modify transition
7 into transition 7as follows:

7. p?START — {a:=IS\ unlocks\ {@}; foreachq € a doq!REFUSE; n:= |a|; start participating
in the joint action managed }3

12. p?START — {a:=IS\ unlocks\ { p}; foreachqg € a do q!REFUSE; n:= |a; start participating
in the joint action managed hy}

Proposition 2. The executions of the distributed implementation with kedge-
optimized coordinators are included in the executions efdtiginal cellular automaton.

3.3 Combining knowledge for participants and coordinators

Optimization for participants and coordinator can be corati In this case, the construc-
tion of the support automata for coordinators has to be dorte@system obtained using
the support automata for participants. In particular, #labrelling step depends on the ac-
tual offers sent by participants and thus on their suppdadraata.

4 Experimental Results

We present experimental results for computing and usingdpeort automata for partici-
pants as presented in Section 3.1.

ExampleOur first example is presented in Figure 6. It consists in &tian of the
classical dining philosophers problem. Each philosopliioPmay eat during the inter-
actioneat involving its two neighbor forks. Then Phjlalean first the fork to its left then
the fork to its right through interactiotinL; andcInR respectively. We denote phNban
instance withN philosophers.
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Fig.7. Support automata
Fig. 6. A fragment of the dining philosophers example for participant Forl

Our second example is called Master/Slave. We assume alsehaéters an¥ slaves.
Each master wants to perform a task for which it needs tweslthat it can chose amongst
a pool of sizeK. We denote mdMK such an instance. If the slayds in the pool of the
masteli, then the interactioacd; allows master to acquire slave, which brings the slave
in statei so that it remembers thatacquired it. On completion on the task, the master
releases simultaneously the two acquired slgyesnd j» through therel' , interaction.
Figure 8 shows the generic behavior of a master and the gdrehiavior of a slave.

Our third example models a transmission protocol that pyafes some values amongst
a chain of memories. Each memory correspond to an automdtosenstate indicates the
current value stored in the memory. A fragment of this examglshown in Figure 9.
The rule is to propagate the new value (from the left) onlhé tmemory on the right has
already copied it. Such propagation steps are implemestéetaary interactions denoted
by mvi v, v,, Which correspond to the case where meniariyanges its value fromy to vo.

As an example, consider the interactiom 1 in the Figure 9. This interaction changes the
value in Nodefrom 1 to O if Nodg, 1 already changed its value to 1 and the next value (in
Nodg_;) is 0. For our experiment, the memories form a circular chitans the sequence
of values seen by each memory depends only on the initia sfahe system. Note that
one propagation is possible at places where the circle it@it®o consecutive nodes with
the same value. We denote by\tan example witiN hodes and one propagation possible
and by tN’ an example wittN nodes and two parallel propagations.

Building support automata for participantsVe implemented the support automaton
computation for each participant by using analysis toolthefBIP framework. In Table
1, we present the results of this analysis by giving the @ersumber of states in the
original automata and in the support automata. This givésdination on the size needed
to store the knowledge, and the memory needed for executithie support automata. For
the phildN instances, the support automaton of philosophers is the senthe original
automaton. For the forks, there is only one additional stateshown in Figure 7. The

i
\(:>acq*5: ) muv; 1,0
)&(9_ ;&* mv; 1,0
ENON Ci@ia
Master; Slave; Nodel L Nodei 1 mv; 1,0

Fig. 8. Master Slave example  Fig. 9. Three consecutive nodes of the transmission protocol.



Table 1. Results: average size of original and support automatorparfdrmance of the obtained
implementation, for each test instance.

Average number of states [Number of interactions durin
60s
Name Componenfs in 4" in % Standard Optimized
philo3 6 25 3 1129 2251
philo4 8 25 3 1811 2499
philo5 10 25 3 2261 4448
philo6 12 25 3 2624 4542
philo7 14 25 3 3093 4603
ms232 5 2.6 3 1491 1504
ms233 5 3 4.6 1128 1129
ms342 7 2.7 3.1 642 1885
ms343 7 3.1 4.9 1278 1265
ms344 7 3.6 7 1256 1251
tp3 3 3 6 750 1499
tp6 6 3 15 750 1500
tp6’ 6 3 16 1498 1557
tp9 9 3 24 750 1509
tp9y’ 9 3 28 1497 3725
tpl2 12 3 33 749 1513
2 12 e OK
g 2 — PARTICIPATE
o5 3 wl | ©rEm REFUS
<3 gg mmme ACKREF
o5 e . START
g3 158 s UNLOCK
=
ES ge
=5 £S5
o= So
23 k]
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<
<

Number of philosophers
Number of philosophers

Fig. 10. Dining p_hllosophers: Number OfFig. 11. Dining philosophers: Number of messages per
messages per interaction, standard v

. ﬁ{feraction, optimized version.
sion.

added state allows to distinguish who acquired the fork @efight) and to send only one
offer accordingly, thus avoiding unneeded conflict resotutin the Master/Slave example,
the automaton describing a master is very generic. The gmoraling support automaton
contains all the possible sequences for acquiring two slavnel then releasing them. In
particular, after having acquired two slaves, there is amg possible release interaction,
thus only one offer is sent. Finally, in the transmissiontpcol example, the size of each
support automaton is much larger since it depends on the euofihodes in the chain, that
is on the sequence of values seen by each node. If two prapagate possible, then the
size of the support automaton is slightly increased, sineéwo propagations may conflict.
Performance of distributed implementatidssing the BIP component framework, we
built a transformation that replaces multiparty interact by thea-core protocol. We ob-
tain a distributed BIP model representing participants eodrdinators communicating
through asynchronous message passing. From this modelkemeraje a set of C++ pro-
grams communicating through Unix sockets. We ran the obthgode for both standard
a-core and knowledge-optimizedcore on a UltraSparcT1 allowing parallel execution of
24 processes. In Table 1, we provide the number of interestixecuted during 60 sec-



onds of execution (not including initialization) for bottaadard and optimized version
of each test instance. On the dining philosopher instarthespptimized version is up to
twice faster than the standard version. On the Master/Sifetances, except for one, the
performance is the same for both versions. On the transmigsotocol instances, we have
a speedup of at least two, except for the gp&ample.

In order to analyze the distributed executions of standacaptimized versions, we
now provide the average number of messages needed to pafomteraction for each
example. For the dining philosophers example, the averagear of messages needed
to execute one interaction in the standard (resp. optimizeision is shown in Figure 10
(resp. 11). The number of messages is reduced by approxetya®5%, mainly because
SOomeOFFER messages from the fork are transforme@ARTICIPATE messages. In turn
this reduces the number of participants to lock, and thusitimeber of messages. For the
Master/Slave example, we provide the average number ofagesseeded to complete
one interaction for standard and optimizegtore in Figures 12 and 13. Here the number
of conflicts depends on the size of the pool of slaves assigmedch master. Since there
are many conflicts, the number of offers sent to execute @naation is quite big. Recall
that on this example, performance of both versions is coaipar However, the number
of exchanged message is smaller in the optimized versiarguse less offers are sent.
For the transmission protocol example, the average nunfbeessages exchanged to ex-
ecute one interaction for standard and optimized execsititoishown in Figures 14 and
15. For the non-primed versions, since there is no dynanmflich each participant sends
only PARTICIPATE messages and each coordinator can directly ans&®ART message.
This reduces drastically the number of exchanged mességesr (nteraction, since they
are ternary interactions). For the primed version, in soases a node may patrticipate in
two interactions and thus send t@&FER messages, which is still much less than in the
original version.

5 Discussion

An architecture for component-based system can providena p@verful tool for dis-
tributed software development. It assumes some underigEchanism that provides sup-
port for the components to interact and to choose from skedtexnative actions. It is
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25
20
15

10

5

Average number of messages needed
for executing one interaction.
Average number of messages needed
for executing one interaction.

ms232 ms233 ms342 ms343 ms344 ms232 ms233 ms342 ms343 ms344
Model Model

Fig. 12. Master/Slave: Number of mes-Fig. 13. Master/Slave: Number of messages per interac-
sages per interaction, standard version. tion, optimized version.



- 60 T T T T T T w—— OK
3 3 e PARTICIPATE
B = mnsi REFUS
cg og SOr 7 =mms ACKREF
38 ] mmasn START
g8 Qs s UNLOCK
25 o 40 7 mwsm LOCK
2o 2c = OFFER
s 2o
°g ES5 s ]
35 =2
EQ 835
23 ES 20} q

3 Eg
] £3
£ 85
g g= 10 - ] 1
< g |—— ———

.11 1.1 1. .u
tp3 tp6 tp6’ tp9 tp9'  tpl2 0

Model tp3 tp6  tp6’  tp9  tp9  tpl2
Model

Fig. 14. Transmission protocol: Number
of messages per interaction, standard ve
sion.

F_ig. 15.Transmission protocol: Number of messages per
Interaction, optimized version.

highly beneficial to develop code at this level, rather thmednsider the lower level ar-
chitecture that uses message passing, or shared vari@bléise other hand, obtaining this
level of abstraction is expensive: the overhead neededdw &loth multiparty interac-
tion and non-deterministic choice requires some nonfranaount of lower level message
exchange.

In this paper we looked at a technique to optimize the amofioverhead needed for
supporting high level architecture for component-basetesys, such as the BIP systems.
Observing a typical popular algorithm for interaction adioation, thea-core protocol, we
remarked that additional information about the amount @rbead makes a lot of differ-
ence. The coordination protocol distinguishes the caseeniere is no non-determinitic
choice; then, there are fewer messages sent, as an inteatitgate in an interaction is a
committed intention. It is often not known in advance how gnaanflicting choices there
are: syntactically, there can be several, but at runtimeetare quite fewer cases available
(enabled) at each particular instance. Our method is basqgedorming a preliminary
model checking analysis of the system for detecting sudasitns. When we find that the
local situation admits no non-deterministic choice at anggible global situation, we can
employ the more efficient case of committing to an interaxctio

This analysis is based on the knowledge of a process, regpatlithe possible global
states consistent with its local situation. We apply thirmation in two cases: locally
at the process level, where the knowledge of the process magdd to transfer a seam-
ingly non-deterministic case into a committing case, anthatlevel of a process of the
coordination algorithm. The latter case is very powerfalaacoordinator process has, to
some extent, a more global view, having received requesis flifferent processes. Ex-
periments show that rather than using simple memoryleswlenige, we are required to
use history-based knowledge. The reason is that it is thescakere different instances
of non-deterministic choice during runtime, rather thansadny independent case, are the
interesting ones. This can be explained intuitively by thet that the history independent
case actually hides a coding error, where not committingntteraction although there
are no alternatives should have been replaced by a comntitméne single possible inter-
action.

We performed experiments on three different examples. @perdments show a con-
siderable improvement in the number of messages neededetachanged. It is important



to note that due to the use of history-based knowledge, iadditmemory is needed to
encode the possible histories. In the worst case, the anobadded memory is quite non-
trivial, exponential in the size of the system, for each pssc However, our experiments
show a much better and balanced memory consumption. Weditberonduct further ex-
periments and to apply the knowledge-based technique fioicieg message passing in a
more aggressive way.
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A Proofs

In order to prove the correctness of our constructions we teedefine what s a distributed
execution of the cellular automatdA?, .., 4"). For an automatoA', we denoteP(4') the
process implementing thee-core participant fora'. Similarly, for an interactiom;, we de-
note by((a;j) thea-core coordinator foa;. The obtained distributed system is denoted by
P(AY)|...|P(A")|C(a)]...|C(am). We formally represent an execution of the distributed
system as a trace consisting in interactions of the celiwgsmaton, emission of messages
and reception of messages. An interactioinom the original cellular automaton appears
in the trace whenever transition 4 or 7 in the coordinat(a) is executed. We say that a
trace is a distributed execution if it is maximal and:

— for any two distinct processgsandq, theith message received loyfrom p is theith
message sent yto g, and the reception occurs after the emission in the trace.

— the projection of the trace on one process (participant ordinator) is a valid execu-
tion of the corresponding extended state machine.

We assume that thee-core protocol is correct, which is stated formally in Lemfha

Lemma 2 (Correctness ofa-core). Let (4%,..,4") be a cellular automaton, A the set
of its interactions, andZ its global behavior. Any execution of the distributed sys-
tem?(4Y)|...|P(4")|C(a;)]...|C(am) restricted to A is a correct execution=a|a of

(41,..,4"), thatis for any prefix jiof 4, we have @L/) g.

A.1 Knowledge for participants

Proposition 1. The executions of the distributed implementation with kedge-
optimized participants are the same than the executiortseodtiginal cellular automaton.

Proof. We denote by, (4') the optimized implementation of participant fa' using
support automat&j. The modifications of tha-core participant as presented in 3.1 restrict
the offer sent to interactions that simultaneously poesinid' and%;, that is to interactions
of (4', %), thus®, (4') = P((4', K)).

Since by construction, the cellular automaton obtained dmposing thek; has the
same global behavior than the original cellular automatomposing the 4, %;) yields
the same behavior. Then, the Lemma 2 allows us to conclude. O

A.2 Knowledge for coordinators

In our construction, the support automaté&i moves each time an offeOFFER or PAR-
TICIPATE ) is received or the interactianis executed by the coordinator farThe Lemma
1 states that for any distributed execution, such a movéawat in %4G.

Lemma 1. For any distributed executioa, its restrictiono|a 1, n) to actions observable
by % is the trace of an execution &,.



Proof. Let o be a distributed execution e#(4%)]|...|P(4")|C(a1)]...|C(am). Lemma 2
ensures that restricted to the original actions of the cellular automaito an valid se-
guence of actionp of the cellular automaton, that is there exists an execujogy, ... of

the global behavioA such thattk > 1, gk-1 Hey Ok-
We show by induction that the prefix of o such thato = oy.lk.0’ yields a valid

. . . . Okl{az, .,
path in4” when restricted to observable actions. More precisely,ogvghatgy gy

(gk—1,V) with for each participantinvolved inp, eitherv; = 1 and there is a pending offer
sent byi to the coordinator oé that has been used Ipy, orv; = 0 and there is no pending
offer.

With k= 1, i.e. before the first interaction happens, the initiaestd 4" is (go, v) with
v; = 1 for any participant that can initially executa. Therefore, for each participant
involved inyy, either the offer is received by the coordinatorddreforey; takes place and
v, is set to 0 own; remains set to 1 and there is a pending offer fidhmat has been used by
M.

Now, we assume that for ary < k, the induction hypothesis holds. In particular, we
know that the execution af until p_1 brings.2” in the statg(gg_1,V’) such that for all
involved inpy_1, Vi’ < 1. If i_1 # &, the unobservable transitidhcorresponding tey_1
is possible from that state. li_1 = a, all offers from participants ia have been received
and therefore’’ = 0 and the transition labeled lais possible. We denof@y, V') the state
reached after executing the step correspondingt@in 2".

We shall now show that all offers received before the ocoureefly are accepted. Let
i in {1,..,n} be a participant ira, by induction hypothesis, before the last interactign
involvingi, 4" is at stategy V), whereV is either 1 and there is a pending offer used by
L has not been received by the coordinatordar 0 otherwise. Executing the transition
corresponding tpy, will bring 4" in state(gy, v) wherev; = \}f -+ 1 only if i can participate
in a after executingy, . Note that between the execution of two interactions, thiégigant
i sends at most one new offer to the coordinata @xcluding offers that are re-sent) since
it needs to receive aiCKREF message from the coordinator before sending the new offer.
Thus, at statégy, Vi), vi correspond to the maximum number of offer possibly received
fromi. It can be 2 if there is both a pending offer and a new offer,thefe is only one of
them, or O otherwise. Furthermore|ifs also involved inu any a pending offer used by
the last interaction involving, L, has been received by the coordinator #potherwise,
no ACKREF message could have been sent émdi would not have been able to ¢g.
This implies that if; = 1, then there is a pending offer that was usegibgnd shows the
induction hypothesis. O

Proposition 2. The executions of the distributed implementation with kedge-
optimized coordinators are included in the executions efdtiginal cellular automaton.

Proof. We denote by(k,(a) the modified coordinator foa, and by #'(4") the modi-
fied participant for4', as presented in Section 3.2. We have to show that an exacutio
of P'(aY)|... |2"(A")| Gk, (81)] - - - [ Ciay (@m) s NON-blocking and correct in the sense of
Lemma 2.

We have shown in Lemma 1 that the support autom&goan always perform one of
its observable action when it occurs. This property stiltsan the optimized version since
the modifications tax-core presented in Section 3.2 do not modify the emissiorffefg
nor the need to receive all offers before executing



We focus on theipdatefunction, which modifies the behavior atcore as follows:

— If an offer from 4' is stable, it is treated asRARTICIPATE message. This induces
a new behavior: directly replyin§TART to an OFFER message, which is accepted
by the modified participan®’(4'). Furthermore, stability ensures that the participant
cannot receive more that o88ART message. Thus this modification is non-blocking.
By reordering receptions of theOCK messages, (i.e. adding transmission delays),
we can build an execution of the standaraore with the same visible actions, thus
execution of the modified version is correct.

— If an offer fromi is obsolete, then it is discarded using tkeore mechanisms, that
is by removing it from thesharedset and by sending BOCK, UNLOCK sequence
to avoid the participant to wait fori@0CK . Obsolescence ensures that the participant
will take part in an other interaction. Thus this modificatis non-blocking.

By reordering arrival ofOFFER and REFUSE messages, we can build an execution
of the standardi-core with the same visible actions, thus execution of thelifreal
version is correct. O



