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Monte Carlo simulations are performed for a system of hard Gaussian- 
overlap molecules with embedded permanent quadrupole moment. Two shapes 
of the hard bodies are considered, with characteristic parameter ~c = 1-792 and 
2.2 and three values of the quadrupole moment. The results obtained for the 
residual internal energy, Helmholtz function and compressibility factor at three 
densities for g = 1.792 and one density for g = 2-2 are used to test the recently 
proposed perturbation theory of polar non-spherical-molecule fluids. 

1. Introduction 

Description of the equilibrium behaviour of pure fluids and their mixtures is of 
great importance both for theoretical and chemical engineering practice. Following 
progress in the understanding and description of the behaviour of non-polar fluids 
composed of molecules of spherical or non-spherical shape [1-3] and fluids of spheri- 
cal molecules with different electrostatic interactions [4, 5], current interest is focused 
upon studies of systems of non-spherical polar molecules [4, 6, 7]. The non-spherical 
shape of molecules has usually been modelled by a two-centre interaction-site poten- 
tial, such as, for example, hard dumbbells, and dipolar or quadrupolar moments have 
been considered. Simulations in pure fluids and mixtures of quadrupolar molecules, 
differing in shape [8], have yielded basic pseudo-experimental data on structure and 
thermodynamic functions. Perturbation theories (of non-spherical molecules), based 
either on spherical or non-spherical reference systems, however, have not proved 
satisfactory [8], and their extensions to models with more interaction sites or nonlinear 

shapes is difficult. 
For non-polar fluids convex-molecule perturbation theory has proved [2, 9] to be 

accurate and simple in application. Inclusion of electrostatic interactions, however, 
has encountered the problem of the different (central) character of electrostatic 
interactions in comparison with the non-central character of the Kihara-like poten- 
tial. To overcome this difficulty, we recently proposed for fluids of ellipsoidal mol- 
ecules a version of perturbation theory in which the contribution of electrostatic 
inter.actions is evaluated via that of a hard Gaussian-overlap (HGO) model with 
embedded permanent multipole moment(s) [10]. In the absence of any pseudo- 
experimental data for fluids of convex molecules with electrostatic interactions, the 
theory was applied to characterize the behaviour of quadrupolar hard dumbbells [6]. 
A fair prediction of thermodynamic functions of this system was obtained. However, 
in order to subject the theory to a severe test, pseudo-experimental data on the HGO 
fluid with electrostatic interactions are desired. To this end, we have performed Monte 
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Carlo (MC) simulations in the quadrupolar HGO fluid (HGOQ). The shape parameter 
x (which corresponds to the length-to-breadth ratio of  hard ellipsoids of  revolution 
(HER)) and values of  the reduced quadrupole moment Q were chosen in such a way 
that they correspond to the values of the previously studied fluid of  quadrupolar hard 
dumbbells [6, 7]. Three values of  the packing fraction were chosen, covering the 
important density region. In addition to this, the H G O Q  fluid with x = 2-2 was 
studied at one density. The previously proposed perturbation theory of  H G O Q  
systems was applied to predict thermodynamic functions, the residual internal energy, 
Helmholtz function and the compressibility factor of  the studied systems, and an 
attempt was made to estimate the previously neglected part of  the third-order term. 

2. Theory 

In the recently proposed perturbation theory [ I 0] of  polar hard Gaussian-overlap 
fluids (characterized by the shape parameter r [11]) the pair potential is given by a sum 
of two terms 

u(rco~o~2) = u.c.o(roJ~o~2) + uQ(ro~.~02), 

where the H G O  pair potential [12] is 

UHC, O(rto, O92) = {i < tr(o'O)2) '> tr(to,092), 

with 

(a) ~ ( c ~ 1 7 6 1 7 6 1 7 6 1 7 6  -~, 
~00 = 1 - X 1 - 12cos2~bl2 

(1) 

(2) 

where a0 is a 'width', r is the centre-to-centre distance, toi represents the orientational 
coordinates (0i, qb~) and Z = (x 2 - l)/(x 2 + 1). The only electrostatic interaction 
considered here is that of  permanent quadrupolar moments Q; for uQ [4] 

3Q2 [1 - 5(cos 2 0~ + cos 2 02 + 3 cos 2 0~ cos 2 02) uQ(r~o, coO= 

+ 2(sin 0~ sin 02 cos ~b~2 - 4 cos 0~ cos 02)2]. (3) 

The basis of  the method [10, 13], which stems from the results of  the study of  Kabadi 
and Steele [14], is the assumption made regarding the molecular distribution function 
g~ of  an H G O  fluid, i.e. 

g~ = gaY(x) = gin(x) (4) 

where 

f gV(x) = jg(xtolco2) 

Here x = r/a, and ghs is the radial distribution function of  hard spheres, taken at the 
same packing fraction t/as that of  the H G O  fluid. Within the above approximation, 
the first-order term in the perturbation expansion of the Helmholtz function 
A - A HG~ (due to the quadrupolar moment) vanishes (as found by numerical 
integration for ~c = 1-2.5 and conjectured from the behaviour at x = 1 and the 
general dependence of  the J, K , . . .  integrals on r). The second-order term is [10] 

A2 = - n p * X * 2 j ( x )  g~(x)x -~+2dx, (6) 
N k T  
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where p* = ptr 3 is the reduced density, X* = �88 and Q* = Q/(kTa~) '12 is the 
reduced quadrupole moment. The factor J, which depends only on the shape parameter 
x,  is given by 

J(x) = (4n) -~ f [a(~ co:~)d~,dco~. (7) 
J L a0 J 

For HGOQ fluids n = 5 a n d  �9 is for the angle-dependent part of the potential u o.  

The third-order contribution to the Helmholtz function consists of two terms A~ ~ 
and A~3 2). The former has the form 

A<3 ~ 1 f ~  
N k T  = 3 nP*X*~K(x) gh~(x)x-~"+~dx' (8) 

where 

M(x,  oq o~ 2) 

where 

K(x) = (4n) -2 c i -  q|/a(~__,o~)]-~,+3 t/~(tOltO2)dco, doh. (9) 
d L a0 J 

The latter term is (within the superposition approximation) 

A<3 2) 4 ~( 
N k T  = -3 ~2P*zX*3 M(x,  a,cq)g~(q)g~(s)ghs(t)q-"+'S-'+~t -"+l dqdsdt .  (10) 

a) 

Here (A) denotes integration over q, s a n d  t, which form a triangle with angles ~,, ~2 

and ~3, and 

= (4n) -3 f ~(co, oh)tP(oJioh)~(ohoh)dw, dohdoh, (11) 
J 

L ~0 J 

The integrals J(x) and K(x) were evaluated by numerical integration for x = 1-2.5; 
they are given in [10]. The calculation of the integral in (11) is more demanding 
because of the dependence of M on the angles of the triangle formed by q, s and t. 
In the case r = 1 (i.e. for hard spheres), an analytical expression is available for M 
as a function of the angles ~t,, ~t 2 and cq [5]: 

M(I,  ct t ~2) = ~ { -- 27 + 220 cos ~t, cos ct 2 cos 0t 3 + 490 cos 2~t, cos 2~t 2 cos 2ct3 

+ 175[cos2(0q - ~t2) + cos2(~q - ct3) + cos2(ct2 - ct3)]}. (13) 

Numerical integration for general x is prohibitively time-consuming. In [10] we 
neglected the A~ 2) term completely after finding the value of M(x,  ~, ~t2) for x = 1.792 
at several chosen values of Ctl, u2 and 0q considerably smaller than those for x = 1. 
Here we have employed the idea of an effective quadrupole moment embedded on the 
hard spheres to estimate the value of  the A~ 2) term (see section 3). To this end, we 
evaluated the integral in (10) for x = 1 and several densities and fitted the resulting 
values to the formula Iu  = 0"01555e 43~5s'. 

Knowledge of A2 and A 3 allows us to determine the contribution due to the 
quadrupolemoment A - A HG~ either from the perturbation expansion 

A - -  A HGO _ __A2 + A~ ~ + Ar 2), (14) 
Nk T Nk  T Nk  T 
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or from the Pad6 approximant 

A - Aa~176 = ~A2 (1 A(3" + A~2)) - ' . A s  (15) 

To obtain the contribution of the internal energy, U - U ac~, which is equal to the 
residual internal energy, one can differentiate (14) or (15) (with respect to X*, 
followed by multiplication by X*), eventually just writing the Pad6 approximant for 
the internal energy; however, we avoid this method as being less consistent. 

The compressibility factor Z = [3Pip is given by the sum of two terms: the 
compressibility factor of the HGO fluid and the contribution of the quadrupole 
moment. The latter term follows from the derivative of (14) or (15) with respect t o  
density; the former can be determined from the hard-convex-body equation of state 
applied to hard ellipsoids of revolution (HER) corresponding to the HGO fluid under 
consideration. There are two methods of assigning HER to the given HGO, one due 
to Rigby [15] and the other to one of the present authors [13]; the methods differ in 
the criterion used to define the corresponding HER fluid; in the former case the 
volume V HER = V He'~ while in the latter ~HER = ~r~O0; the remaining quantity is 
determined from the expression for the second virial coefficient. As the latter method 
yields slightly better agreement with recent MC data on HGO systems, we employed 
it here too. Thus the parameter of non-sphericity, 0t, of the corresponding HER is 
determined for the given value of x (of HGO) and the corresponding volume from the 
expression 

2 nag , (16) V "ER(1 + 3 ~ )  = ~ ~ 

where ( )8,~- denotes the average over all orientations of two HGO particles; 
((a/a0)3)g~om can be calculated either from the expansion in terms of X [16] or from 
the Pad6 approximant [13]. The equation of state of hard convex bodies [17] then 
yields a fair prediction of the HGO compressibility factor. 

3. Simulations 

The standard Monte Carlo simulation technique with the Metropolis sampling 
and periodic conditions [18, 19] was used in this study. We considered N = 256 
particles interacting via the potential (1) in a cubic box. At the start the molecules 
filled the volume of the box completely; by changing the molecular size, the densities 
corresponding to packing fractions r/ = 0.3, 0.4 and 0-425 were obtain&t. In accordance 
with the form of the pair potential (which consists of a hard part and a continuous 
quadrupolar contribution), one has to determine the contribution of the quadrupolar 
moment to internal energy and pressure, U ~ and pO, i.e. 

NkT = .~. u~(ro%coj) , (17) 
#<1 

PQ 5 U Q 
z o = = ( 1 8 )  

pkT 3 NkT'  

(where ( ) now denotes the canonical average), and then the contribution to the 
compressibility factor due to the discontinuous HGO part of the potential; this 
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follows from the pressure equation of state 

Z nc'~ = 1 + ~ ~p~gJ ' ( l )  gcom" (19) 

The average distribution function at contact, g~'(1), can be obtained during the 
simulation from 

2(r (20) 
= N p [ V ( x  + � 8 9  - V ( x  - �89 

where 

V(x) = ~l t  x 3 (21) 
m 

and X is the number of pairs with the given distance. 
The form of (19) resembles the pressure equation of state of hard spheres and 

reduces to it in the case x = I. Equation (19), together with (20), is only another 
variant of the expression employed by Rigby [15]; the present form is slightly simpler 
in simulation applications. To check the consistency of both variants, we considered 
the case Q = 0 and r/ = 0-4 and used the above prescriptions; we obtained fair 
agreement with Rigby's value. 

In the process of simulation the quadrupolar interaction was truncated at 2-5a0; 
in the case of  the highest density we also performed a run with a cut-off length 3"0a0; 
we found only insubstantial differences in internal energy and pressure. A typical run 
consisted of 2000-3000 trial moves per particle in the initial period, followed by 
3000-4000 in the equilibrium part. For the highest density and highest Q value 6000 
trial moves were necessary in order to reach equilibrium. During this equilibrium part 
of each run the residual internal energy, pressure and structural characteristics 
(spherical-harmonic coefficients and average distribution function) were determined 
for every 10th trial move per particle. The acceptance ratio was kept in the range of 
30-50%. 

In order to check the basic assumptions (4), we performed simulations in the pure 
HGO system and determined the distribution function g,V from the average number 
of particles with the given distance x, as well as the corresponding higher moments. 
We found the first-order term to be zero within statistical uncertainty. The second- 
order MC term agreed well with the theoretical value of the perturbation term; 
because of large statistical errors, it was impossible to determine the third-order term. 
The properties of the A~ and A2 terms provide some evidence in favour of the first part 
of (4). The behaviour of the average distribution function of HGO fluids with 
x = 1.792 and 2.2 at packing fraction r/ = 0-4 is compared in figures 1 and 2 with 
the radial distribution function of hard spheres at the same r/. It is obvious that the 
gay curves for x = 1.792 and 2.2 differ only slightly; they agree well with the pair 
distribution function of hard spheres. This testifies to the correctness of the second 
part of (4). The agreement is very good for x = l- l .5,  i.e. in the most important 
distance interval for the determination of  the integrals in (6) and (8) in the case of the 
quadrupolar moment. For  the interval x = 1-5-2.5 the differences increased with 
increasing coefficient x. For x = 2.2 we evaluated the integrals in (6) and (8) on the 
basis of the MC values of g,V, and obtained 0.3223 and 0.2252 compared with 0.3159 
and 0.2188 respectively based on g,S. (In passing, we note that in [10] slightly higher 
values of integrals were employed, resulting from the use of a coarser integration 
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Figure 1. Comparison between the average distribution function of the HGO fluid with 
x = 1.792 (0) and the pair correlation function of hard spheres ( ..... ) for ~ = 0.4. 

grid.) Values of  the compressibility factor (for Q = 0) 7-96 and 8.79 were found, 
compared with theoretical values 8.07 and 9.13 respectively. The good agreemeht 
between theoretical and experimental compressibility factors at lower x is obvious, as 
is the poor  agreement at higher value x. 

Next, simulations were performed in the H G O Q  system with x = 1.792. This was 
used in [10] as a model corresponding to hard dumbbells of  I = 0-6tr 0, considered in 
the work of  Wojcik and Gubbins (WG) [6] as well as in that of  Lombardero  et al. 

(LLA) [7]. (The MC data of  W G  were obtained by considering point charges, and thus 
correspond to quadrupole + higher moments,  whereas those of  LLA correspond to 
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Comparison between the average distribution function of  the HGO fluid with 
) for r/ = 0.4. 
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Figure 3. 
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an ideal quadrupole moment.) Three values of  Q* were chosen, namely 1.1497, 1.6260 
and 1.9914, which correspond to values of  the effective quadrupole moment of  WG 
Q~vG = 0.5, 1.0 and 1.5 and approximately to Q~LLA = 1, 2 and 3. Figure 3 shows the 
contribution to the internal energy at a given Q2 following from [6, 7] and from this 
study of  an HGOQ fluid. Surprisingly good agreement is found between the H G O Q  
values of  energy and those of  WG for quadrupolar hard dumbbells, whereas the LLA 
results are systematically more negative. From the dependence of  the residual internal 
energy on X*, the values of  the Helmholtz function were determined using the method 
proposed by Patey and Valleau [5]. They considered the form of the Pad6 approxi- 
mant as a useful fitting function and evaluated its two parameters from the MC values 
of  the residual energy. The accuracy of  the residual internal energy obtained and the 
contribution to the Helmholtz function is 0.01 or 1%, whichever is higher; the error 
bars of  the compressibility factor obtained as a difference of  two large terms are 
larger. The absolute value of  the quadrupolar-moment contribution to the com- 
pressibility factor increases with increasing X* in the same way as the residual energy; 
the increase in the H G O  term is due to the increase in the contact value of  the average 
distribution function g~V. The behaviour of  the function g~V for three values of  X* at 
r/ = 0.4 is shown in figure 4. The dependence of  g~ on the value of  the quadrupole 
moment is similar to that found for quadrupolar hard spheres [5]. The resulting data 
for (A - AHC~ ( U -  UH~~ and flP/p of  the HGOQ system with 
~: = 1.792 are listed in tables 1-3 as functions of the packing fraction r/and reduced 
quadrupole moment X*. 

In table 4 Monte Carlo data are given for the HGOQ fluid with x = 2-2 at the 
reduced density 0.3472 corresponding to the packing fraction ~/ = 0.4. It is evident 
that with increasing r at the same packing fraction and reduced quadrupole moment 
the absolute values of  all contributions to the thermodynamic functions decrease. 

4. Calculations 

Theoretical values of  the residual internal energy and Helmholtz functions were 
determined from third-order perturbation theory, employing (6)-(10). The values of  
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Figure 4. 
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The average distribution function of HGOQ fluids with X* = 0.9914 (. . .) ,  
1.9828 ( - - - )  and 2.9743 ( ). 

the integrals JQ(X) and KQ(x) for values of  x = 1.792 and 2-2 were taken from [10]; 
their values were 1-0405 and 0-472, and/or 0.7284 and 0.4363. To determine the 
integrals with respect to x in the terms A2 and A~ ~), the Pad6 approximants given by 
Rasaiah e t  a l .  [20] can be used. However, to yield better accuracy, we evaluated them 
by numerical integration. First, we neglected the term A~ 2) completely and obtained 
A - A HG~ either as the sum of A2 and A~ 2) or from the Pad6 approximant. The 
theoretical values obtained in this way are given in the left-hand columns of  tables 1-4 
for three values of X*. Next, we tried to estimate A~ 2) with the help of  the expression 
for a special case of  the polar HGO fluid: quadrupolar hard spheres (HS). The aefr 
parameter of the effective HS was taken as that giving the same volume as the HGO 

3 = x t r  3. Thus, to obtain an estimate of  A~32) at given x, we took in (10) body, i.e. treer 
die value of the integral for quadrupolar hard spheres at the same value of  ~/and 
divided it by x 15/~. A similar approach for Az at x = 1.792 yielded approximately 

Table 1. Contribution to the Helmholtz energy, -Ao/NkT, of quadrupolar HGO fluids 
(X* = 3Q2]4kT~). 

X* = 0-9914 X* = 1.9828 X* = 2-9743 

t/ = 0.30 
Theory sum 0-24 0.23 
Pad6 approximant 0.24 0-24 
Monte Carlo 0-24 + 0.01 

~/ = 0.40 
Theory sum 0.39 0.38 
Pad6 approximant 0.39 0.38 
Monte Carlo 0.39 _ 0.01 

r/ = 0"425 
Theory sum 0.43 0-42 
Pad6 approximant 0.44 0.43 
Monte Carlo 0.44 _ 0.03 

0"85 0"82 1"68 1-57 
0"88 0"86 1"84 1"78 
0"88 +_ 0"01 1"85 _ 0"01 

1"37 1"28 2"68 2"38 
1.43 1"38 2"97 2"81 
1-36 +__ 0"01 2-70 _ 0"01 

1-53 1"42 2"98 2"60 
1.60 1"53 3-31 3"11 
1"49 _ 0"05 2"96 __ 0-08 
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Contribution to the internal energy, - UQ/NkT, of the quadrupolar HGO fluid 
(X* = 3Q214kT~). 

X* = 0.9914 X* = !.9828 X* = 2"9743 

r/ = 0.30 
Theory sum 0-45 0.44 1.49 1.40 2-66 2.34 
Pad6 approximant 0.46 0.45 1.62 1.57 3.26 3.10 
Monte Carlo 0.46 + 0.01 2.62 +__ 0-01 3-31 ___ 0.01 

~/ = 0.4O 
Theory sum 0-73 0-70 2.38 2.12 4-15 3.26 
Pads approximant 0.75 0-70 2.62 2.47 5.23 4.83 
Monte Carlo 0.73 __ 0.01 2.36 _+ 0.01 4-47 _+ 0.01 

r/ = 0-425 
Theory sum 0"82 0.77 2"65 2-32 4-58 3"46 
Pads approximant 0.83 0.80 2.92 2.73 5-82 5.32 
Monte Carlo 0.79 + 0.01 2"57 + 0.01 4.88 + 0"05 

three-quarters o f  the correct  value o f  J(x);  this ratio gives rough informat ion about  
the quality o f  the approximation used. Results o f  the calculation o f  (A -- A"c'~ 
(U - U " c ~  and flP/p with the A~ 2~ term included are given in the r ight-hand 
columns o f  tables 1--4. 

F r o m  compar ison with the M C  data  it can be seen that  in the case o f  the neglected 
A~ 2~ term the equilibrium behaviour  o f  the H G O Q  fluid is similar to that  found 
previously [13] for quadrupola r  hard dumbbells.  When  the estimates o f  the At32~ or  U~ 2~ 
terms are included in the expressions for the Helmhol tz  function or  internal energy, 
their theoretical values became less negative, both  in the series expansion and the Pad6 
approximant .  Whereas  (14) and the corresponding expression for internal energy give 
better results when the A~ 2~ term is neglected, in the case o f  the Pad6 approx imant  the 
inclusion o f  this term improves agreement  with the Monte  Carlo data.  At  higher 
densities the Pad6 values are slightly more  negative than the M C  values, indicating 
that the approximat ion  employed yields a lower bond  on the A~32~ term and that  its 
exact evaluation would yield generally better agreement o f  theory with the present 
M C  data. Similar conclusions can also be drawn for  the compressibility factor, where 
the inclusion of  the A(32~ term leads to an increase in the theoretical value, and where 

Table 3. Compressibility factor pP[p of  the quadrupolar HGO fluid (X* = 3Q~[4kT~r~). 

X* = 0.9914 X* = 1.9828 .u = 2-9743 

~/ = 0"30 
Theory sum 4.12 4-13 
Pad6 approximant 4.12 4-13 
Monte Carlo 4-11 ___ 0-04 

r/ = 0"40 
Theory sum 7"37 7.42 
Pad6 approximant 7.37 7-40 
Monte Carlo 7-30 _+ 0.10 

~/ = 0"425 
Theory sum 8-63 8.68 
Pad6 approximant 8.62 8.66 
Monte Carlo 8-62 + 0.12 

3-16 3"27 1"91 2"26 
3-10 3"17 1"61 1"80 
3"12 _____ 0-06 1-92 + 0-08 

5"66 5"99 3"49 4"59 
5-52 5-73 2-83 3-40 
5"99 __ 0-15 4"02 __ 0"20 

6"67 7-10 4-22 5"65 
6"50 6"77 3"43 4"16 
7"05 _+ 0"17 4"68 _ 0"30 
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Table 4. Contribution due to the permanent quadrupole moment to 
functions and the compressibility factor of the HGOQ fluid with x = 
(X* = 3Q2/4kTa~). 

thermodynamic 
2.2 and r/ -- 0.4 

X* = 0.9914 X* = 1.9828 X* = 2"9743 

- A / N k T  
Theory sum 0.21 0-21 0-72 0-70 1-31 1.24 
Pad6 approximant 0-22 0-21 0-77 0-76 1.57 1-54 
Monte Carlo 0-24 ___ 0-02 0.87 + 0.04 1.76 + 0.06 

- U[NkT  
Theory sum 0.39 0.38 1-16 1-10 1.70 1.49 
Pad6 approximant 0-41 0-40 1-38 1-35 2.69 2-60 
Monte Carlo 0.46 + 0.01 1.59 + 0-02 2-95 + 0.04 

~t' lp 
Theory sum 8-76 8-77 7.90 7.98 6.98 7.25 
Pad6 approximant 8-75 8-76 7-77 7-81 6-38 6-51 
Monte Carlo 8-56 + 0.10 7"35 ___ 0.15 5"97 + 0"30 

neglect of  this term leads to Padr-approximant  predictions of  Z that are too low. All 
of  the above conclusions hold true for the H G O Q  system with x = 1.792. For  the 
system with x = 2.2 the agreement between theoretical and pseudo-experimental 
data at higher values of  Q is worse. As is obvious from figure 2, the approximation 
of the average distribution function (5) in the case r = 2-2 is less good than in the case 
r = 1"792. As a result, both the A2 and A~ z) terms are underestimated, and this leads 
to an underestimate of  the theoretical values of  the Helmholtz function and internal 
energy. In the case of  the compressibility factor of  the H G O Q  system the main source 
of error is inaccuracy of  the evaluation of the compressibility factor of  the H G O  
system, which is about  one-third higher than the experimental value. Improvement  in 
the knowledge of  the H G O  equation of state would probably improve the overall 
agreement of  the theory with the MC data obtained. 

5. Conclusion 

In this paper the results of  Monte Carlo simulations in a system of quadrupolar  
hard Gaussian-overlap fluids are reported at several densities and values of  the 
reduced quadrupole moment.  Two values of  the shape parameter  have been con- 
sidered, 1.792 and 2-2. The former corresponds to the previously studied systems of 
quadrupolar  hard dumbbells with length l* = 0-6. On comparing the pseudo- 
experimental data of  these two systems, differing in the shape of  the hard body (one 
is the simplest fused hard-sphere model, the other a convex-like body), the similarity 
of  the results for the thermodynamic functions is striking. This is further evidence in 
favour of  the idea of only moderate  differences between the equilibrium behaviour of  
fluids with the interaction-site form of  potential and those with the convex-molecule 
form, in spite of  considerable formal differences. Comparison of the calculated 
residual thermodynamic functions with the simulation results reveals good agreement 
over the whole range of  densities for values of  the reduced quadrupole moment  X* 
not exceeding = 2. For higher X* the estimate of  the A~32~ term is not sufficiently 
accurate; also, the limitations of  the use of  the Pad6 approximant  for thermodynamic 
functions of  polar fluids manifest themselves more seriously [5]. 
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The study of the HGO system with x = 2-2 was made with the aim of checking 
the capability of the theory to deal with more elongated molecules. In spite of poorer 
accord of theoretical and simulation data (from reasons discussed in the previous 
paragraph), the theory still yields a very useful description of the equilibrium 
behaviour of considerably non-spherical molecule systems. 

In conclusion, one can say that the proposed method of describing systems of 
polar non-spherical (convex) molecules proves to be both simple and fairly accurate. 
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