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ABSTRACT 
 
Ductile fracture process involves the typical stages of 
nucleation, growth and coalescence of voids in the 
micro-scale. In order to take the effects of these voids 
on the stress carrying capability of a mechanical 
continuum during simulation, damage mechanics 
models, such as those of Rousselier and Gurson-
Tvergaard-Needleman (GTN) are widely used. These 
have been highly successful in simulating the fracture 
resistance behaviour of different specimens and 
components made of a wide spectrum of engineering 
steels. However, apart from the material parameters, a 
characteristic length parameter has to be used as a 
measure of the size of the discretisation in the zone of 
crack propagation. 

This inherent limitation of these local 
damage models prevents them from simulating the 
stress distribution near the sharp stress gradients 
satisfactorily, especially at transition temperature 
regime. There have been efforts in literature to 
overcome the effect of mesh-dependency by 
development of nonlocal and gradient damage 
models. A nonlocal measure (weighted average of a 
quantity over a characteristics volume) of damage is 
usually used in the material constitutive equation. 

In this paper, the authors have extended the 
GTN model to its nonlocal form using damage 
parameter ‘ d ’ as a degree of freedom in the finite 
element (FE) formulation. The evolution of the 
nonlocal damage is related to the actual void volume 
faction ‘ ’ in ductile fracture using a diffusion type 
equation. The coupled mechanical equilibrium and 
damage diffusion equations have been discretised 
using FE method. In order to demonstrate the mesh 
independent nature of the new formulation, a standard 
fracture mechanics specimen (i.e., 1T compact 
tension) has been analysed using different mesh sizes 
near the crack tip and the results have been compared 
with those of experiment. The results of the nonlocal 
model have also been compared with those of the 
local model. The effect of different GTN parameters 
on the fracture resistance behaviour of this specimen 
has been studied for the nonlocal model and these 
results have been compared with those of experiment. 
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1. INTRODUCTION 
 
The ductile damage models such as Rousselier (1987) 
and Gurson-Tvergaard-Neeedleman’s [Gurson 1977, 
Needleman and Tvergaard 1984, Tvergaard and 
Needleman 1984] models have been widely used for 
predicting load-deformation and fracture resistance 
behaviour of specimens and components in literature 
[Xia and Shih 1995; Ruggieri et al. 1996; Seidenfuss 
1992; Seidenfuss and Roos 2004; Pavankumar et. al. 
2005; Gullerud et al. 2000]. These so-called coupled 
models for ductile fracture of materials include the 
micro-mechanical effects of void nucleation, growth 
and coalescence of micro-voids in the constitutive 
equation used for description of the mechanical 
continuum. These models where the evolution of 
material damage at a point is a function of stress and 
strain field at the same point are called local models. 
The disadvantage of these local models lies in use of a 
constant finite element size in the fracture zone to 
simulate the crack initiation and crack growth process 
when using the finite element method for solving the 
boundary value problems. 

There have been efforts by researchers to 
remove this problem by development of so-called 
“nonlocal” damage models [Svendsen 1999, Reusch 
et. el. 2003a,b]. In this work, the authors have 
developed a nonlocal form of the GTN damage model 
and its finite element (FE) formulation using material 
damage ‘ ’ as a degree of freedom. The evolution of 
nonlocal damage ‘ ’ is related to the local void 
volume fraction ‘ ’ through a characteristic length 

‘ ’and the equation governing this is written as 
[Reusch et. al. 2003a] 

d
d

f

lengthC

2 0lengthd f C d− − ∇ =                           (1) 

When  is zero, the nonlocal formulation 
reduces to the local formulation. The derivation of Eq. 
(1) is briefly described here. The nonlocal variable in 
a material point

lengthC

x , i.e. the nonlocal void volume 
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fraction , is mathematically defined as a weighted 
average of the local void volume fraction in a 
domain Ω , i.e., 

d
f

( ) ( ) ( ) ( ) ( )1 ;d x y x f y d y
x Ω

= Ψ Ω
Ψ ∫

)

        (2) 

where is the position vector of the infinitesimally 

small volume and  is the Gaussian 
weight function given by 
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             (3) 

The length parameter l  determines the size of the 
volume, which effectively contributes to the nonlocal 
quantity and is related to the scale of the 
microstructure. The above integral nonlocal kernel 
holds the property that the local continuum is 
retrieved if . By expanding 0l → ( )f y in Taylor’s 
series and substituting in Eq. (2) and doing some 
algebra, we obtain Eq. (1) [Reusch et. al. 2003a]. The 
above new formulation has been used to predict the 
load-deformation and fracture resistance behaviour of 
a standard 1T CT (compact tension) specimen using 
different mesh sizes near the crack tip. The results of 
nonlocal FE damage analysis have been compared 
with the corresponding results of the local model. The 
results have also been compared with the 
experimental data. 
 
2. DEVELOPMENT OF A NONLOCAL GTN 
DAMAGE MODEL 
 
The yield potential of the local Gurson-Tvergaard-
Neeedleman’s (GTN) damage model is written as 
[Gurson 1977, Needleman and Tvergaard 1984, 
Tvergaard and Needleman 1984] 

2

2
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1 22
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32. cosh
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σ σ
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where eqσ is the von-Mises equivalent stress, *f is 

the modified ductile void volume fraction, hydroσ is 

the mean hydrostatic stress and mσ is the true stress 
in the matrix material which is a function of 
equivalent plastic strain eqε  in the matrix material 

(i.e., the material stress-strain curve),  
are the constants introduced by Tvergaard and 
Needleman (1984) in order to simulate the observed 
experimental fracture behaviour in many different 
materials more accurately. The function

1 2,   and q q q3

*f was 
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introduced by Tvergaard and Needleman (1984) and 
the modified void volume fraction *f is related to the 
actual void volume fraction through the 
relationship 

f

( )
* *

if     

if    

c

u c
c c

f c
c

f f f
f f ff f f f f

f f

≤⎧
⎪= −⎨ + − >⎪ −⎩
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where cf  is the critical void volume fraction 

(signifying void coalescence) and ff  is the actual 

void volume fraction at final fracture and  is the 
modified void volume fraction at fracture (usually 

*
uf

*

1

1
uf q
= ). 

The void growth rate is obtained using the plastic 
incompressibility condition of the matrix material as 

( )1 p
growth kkf f ε= −  (6) 

The voids quantified by are either initially present 
or nucleated by the deformation process. In the latter 
case, some void nucleation law has to be specified.  

f

Chu and Needleman (1980) proposed the 
following law for calculating increment of void 
volume fraction due to nucleation, which tells that the 
increase in void volume fraction  is due to void 
growth and void nucleation processes. Hence, the 
increment of void volume fraction includes the 
growth law, i.e., Eq. (6) and a strain controlled void 
nucleation mechanism (also a stress-controlled 
mechanism if it is favourable in the material) which is 
described as 

f
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where the constants  for strain-controlled 
nucleation are written as 
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and for stress-controlled nucleation 
2

10,  B exp
22

for 0

eq hydro nn

nn

eq hydro

fA
ss

σ

σσ

σ σ σ

π

σ σ

⎛ ⎞+ −⎛ ⎞
⎜ ⎟= = − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

+ >

 (9) 

where nf
ε  and nf

σ are the values of void volume 
fractions of void nucleating particles at mean 
nucleation strain and stresses nε  and nσ  

respectively. and ns nsε σ  are the standard deviations 
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of equivalent plastic strain and sum of equivalent and 
hydrostatic stress respectively, which are responsible 
for void nucleation (assuming a Gaussian distribution 
for the void nucleation process). The superscripts 

 and ε σ  denote the strain- and stress-controlled 
nucleation respectively. 

In the nonlocal model, the local void volume 
fraction ‘ ’ at any material point is replaced with the 
nonlocal damage parameter ‘ ’ in order to take the 
effect of surrounding material points (over a region 
characterized by the characteristics length) and hence 
the modified nonlocal yield function of the GTN 
model can be written as 

f
d

2

1 22
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q d q

q d

σ σ
φ

σ
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⎝ ⎠
− − =

σ

bf

   (10) 

The weak form of the governing mechanical 
equilibrium equation (i.e., . 0σ∇ + = b; f  being 
body force per unit volume; σ  being Cauchy’s stress 
tensor) and the damage equilibrium equation (1) can 
be defined for the mechanical continuum Ω  as 
[Samal et. al. 2007] 
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∫

∫
                  (11) 

Using the standard displacement based finite element 
(FE) method of discretisation of the mechanical 
continuum and using the standard shape functions for 
an element, we can derive the FE equations of a single 
element as 

int

int

ˆ
ˆ

ext
uu ud m m

du dd d

uK K R R
K K Rd

∆⎧ ⎫ ⎧ ⎫−⎡ ⎤ ⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥ −∆⎪ ⎪⎣ ⎦ ⎩ ⎭⎩ ⎭
                (12) 

The element level equations derived so, can be 
assembled and solved for the global degrees of 
freedom when we specify the required boundary and 
loading conditions. It may be noted that the stiffness 
terms in the element stiffness 
matrix are contributions of the nonlocal model. 

,   and ud du ddK K K

int int,  and ext
m m dR R R are the externally applied 

mechanical force vector, internal mechanical force 
vector and internal equivalent damage force vectors 
respectively. The details of the procedure for 
derivation of the finite element equations are given in 
[Samal et. al. 2007]. 
 
The void volume fraction evolves from the initial void 
volume fraction 0f  in the material (volume fraction 
of relevant inclusions or void nucleation sites) and 
with straining; it increases to the critical void volume 
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fraction for coalescence cf . After cf , the increase in 
void volume fraction gets accelerated and final 
fracture of the material point occurs at final void 
volume fraction ff . In the continuum damage 
mechanics models, these parameters are determined 
from combined numerical simulation and 
metallurgical observations of microscopic voids as 
described in Seidenfuss (1992). 

Usually, a fracture mechanics specimen such 
as compact tension specimen is numerically simulated 
and by comparing the experimentally obtained J-
integral value at crack initiation ( ) with the 

numerically simulated value, the value of 
ICJ

cf is fixed. 
Many times, the notched tensile specimens are also 
used. The critical void volume fraction for 
coalescence cf  is determined by comparing the true 
fracture strain from experiment with that of numerical 
simulation. It may be noted that the void volume 
fractions such as 0 and cf f etc. are material 
properties and hence they can be used for simulation 
in all types of specimens and components of the same 
material. In nonlocal models, the characteristics 
length parameter is determined by comparing 
the experimentally measured J-resistance curve of a 
standard fracture mechanics specimen with the 
numerical simulation curve. Analysis is done with 
various values of and the result of analysis, 
which describes the experiment more closely, is 
selected. It was also shown by Reusch et al. (2003a) 

that 

lengthC

lengthC

2

4
c

length
lC ≈ . The characteristics length of the 

material  represents the mean distance between 
relevant inclusions of the material (Seidenfuss 1992). 

cl

 
3. RESULTS AND DISCUSSION 
 
To demonstrate that the finite element results 
converge as the mesh size is reduced in case of the 
nonlocal formulation, a standard fracture mechanics 
(i.e., CT) specimen has been analysed. The CT 
specimen has the following dimensions, i.e., 25mm 
thickness ( B ), 50mm width (W ), 60mm height 
( H ). The specimen has a 20% side-groove in order 
to ensure plane strain conditions during the test. 

In this work, a 2-D plane strain finite 
element analysis (with 8-noded iso-parametric 
quadrilateral elements) has been used to determine the 
load-CMOD (crack mouth opening displacement) and 
fracture resistance behaviour of the specimen. The 
geometry of the specimen is shown in Fig. 1. The 
initial crack to width ratio ( 0a W ) of the CT 
Copyright © 2008 by ASME  
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specimen is 0.522. Due to symmetry, only half of the 
specimen has been analysed with imposition of 
symmetric boundary conditions. Experiments on the 
CT specimen have been carried out at MPA, 
University of Stuttgart, Germany. The material of the 
CT specimen is a low alloy German pressure vessel 
steel. The material stress-strain curve used in the 
analysis is shown in Fig. 2. The initial and critical 
void volume fractions used in the analysis 
are: . The initial void 
volume fraction has been obtained from quantification 
(measurement of area fraction) of relevant inclusions 
in the initial microstructure of the material. For this 
purpose, initial microstructure of the material (along 
different planes or orientations) has been studied 
under SEM and the initial void volume fraction 
determined. The critical void volume fraction has 
chosen from literature as the typical value of void 
volume fraction at coalescence (used in the continuum 
damage mechanics analysis) for these types of 

0 0.0003,  0.05cf f= =
 4
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materials. The characteristic length parameter value 
has been used as 0.01 for lengthC ( )2 4cl≈  where 

0.2cl =  for this material (  represents mean 
distance between relevant inclusions distributed in the 
material matrix those are responsible for nucleation 
and growth of voids). The other material properties 
used in the analysis are: , 

cl

0.3ff = 0nf = , 

0.3nε = , 0.1ns = , , 1 1.5q = 2 1.1q = , 

3 2.25q = . The parameters ,  nf nε and  are 
known as void nucleation parameters. Strain-
controlled void nucleation mechanism has been 
assumed for this material. In the subsequent analyses, 
the effect of variation of material or GTN parameters 
on the results of the nonlocal model has been studied. 
The parameters and 

ns

2q nf have been varied for the 
above purpose. 
 
Fig. 1: Standard 1T CT specimen  
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Fig. 2:True stress-strain curve used in the analysis of CT specimen  
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Fig. 3(a): Finite Element mesh for the CT 
specimen 

Fig. 3(b): Enlarged view of FE mesh of the CT specimen 
(near the crack tip, 0.2mm mesh) 
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Fig. 3(c): Enlarged view of FE mesh of the CT specimen 
(near the crack tip, 0.1mm mesh) 

Fig. 3(d): Enlarged view of FE mesh of the CT 
specimen (near the crack tip, 0.05mm mesh) 
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Fig. 4: Load-CMOD response of CT specimen (local 
model vs. experiment) 

Fig. 5: J-resistance curve of the CT specimen (local 
model vs. experiment) 
 
The finite element (FE) mesh of the CT specimen is 
shown in Fig. 3(a) along with the enlarged view near 
the crack tip for 0.2 mm mesh (Fig. 3b), 0.1 mm mesh 
(Fig. 3c) and 0.05 mm mesh (Fig. 3d) respectively. 
The above three different mesh sizes (i.e., 0.2, 0.1 and 
0.05 mm) have been used near the crack tip to study 
the mesh dependent behaviour of both local and 
nonlocal models. Fig. 4 shows the load-CMOD 
results of local model for three different mesh sizes. 
When the mesh size is refined, the local model 
predicts faster crack growth and hence lower load-
CMOD response. 

The results of local GTN model are also 
compared with those of experiment and it may be 
observed from Fig. 4 that the local model is unable to 
predict the load-CMOD behaviour of the CT 
specimen even for the mesh size of 0.2mm which is 
usually used as the characteristics mesh size for these 
types of materials in the local damage mechanics 
analysis. The reason lies in the value of initial void 
volume fraction that has been used in this analysis 
(i.e., 0.0003). This type of problem is usually faced in 
the analysis with GTN model and is widely reported 
in literature. In order to avoid such problem, many 
researchers use an artificial low value of initial void 
volume fraction (i.e., 0 or of the order 1e-6) and use a 
 5
 

 https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of U
non-zero value of the void nucleation parameter nf  
(of the order 0.005). However, such an approach is 
many times difficult to explain from the physical 
point of view. The same trend is also observed in the 
J-resistance (J-integral vs. crack growth) behaviour 
(Fig. 5), i.e., the crack growth is faster when the mesh 
size is decreased. The J-integral has been evaluated 
using the area under the load-displacement diagram 
with suitable η andγ factors for the CT specimen as 
used in the experiment according to relevant ASTM 
standard. 

It may be noted from Fig. 5 that the local 
model is also not able to predict the experimental J-
resistance behaviour even for the FE mesh with 
0.2mm mesh near the crack tip. However, in case of 
the nonlocal GTN model, the load-CMOD and the J-
resistance curves compare very well with those of 
experiment for the three different mesh sizes (Figs. 6 
and 7) and there is also very little difference among 
the results of different mesh sizes. Hence, the mesh 
independent nature of the nonlocal model is 
demonstrated. 

The effect of variation of GTN parameters 
on the results of the nonlocal GTN model is 
considered next. Here, the two parameters (i.e., 
Copyright © 2008 by ASME  
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2q and nf ) has been varied. For the FE analysis, the 
mesh with square elements of 0.1mm side near the 
crack tip has been used. Two values of  (i.e., 1 and 

1.1) and two values of 
2q

nf (0 and 0.005) have been 
used in the FE analysis. The other parameters are 
same as those used in the previous analyses. The 
fracture resistance behaviours of the CT specimen as 
predicted by the nonlocal GTN model for equal to 
1 and 1.1 are shown in Fig. 8 along with the 
comparison with the experimental result. According 
to the yield criterion in Eq. (10), the effect of is to 
accelerate shrinking of the yield surface when the 
stress triaxility is present and hence, the growth of 
void volume fraction become faster for increased 
values of . The same trend is observed in Fig. 8 
and it can be noted that the predicted result compares 

2q

2q

2q
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very well with that of experiment when is chosen 

as 1.1. The effect of void nucleation parameter
2q

nf on 
the predictions of the nonlocal model is shown in Fig. 
9. It can be observed that there is very little difference 
between the two results of the nonlocal model (i.e., 
with 0nf =  and 0.005nf = ). This is because of 
the fact that the results become insensitive to variation 
of nf (within small ranges which are typical for these 

types of materials) when 0f values are dominant. The 
nonlocal model could successfully predict the 
experimentally observed behaviour with a value of 
initial void volume fraction which was obtained from 
direct physical measurements and hence is more 
appealing. This is in contrast to the behaviour of the 
local GTN damage model. 
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Fig. 6: Load-CMOD response of CT specimen (nonlocal 
model vs. experiment) 

Fig. 7: J-resistance curve of the CT specimen (nonlocal 
model vs. experiment) 
 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

200

400

600

800

1000

1200

1400

J-
in

te
gr

al
(N

/m
m

)

crack growth (mm)

 exp.
 q2=1.0
 q2=1.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

300

600

900

1200

1500

J-
in

te
gr

al
 (N

/m
m

)

crack growth (mm)

 exp.
 fn=0
 fn=0.005

Fig. 8: J-resistance behaviour of the CT specimen 
with 0.1mm mesh using nonlocal model (effect of 
GTN parameter ) 2q

Fig. 9: J-resistance behaviour of the CT specimen with 
0.1mm mesh using nonlocal model (effect of GTN 
parameter nf ) 
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4. CONCLUSIONS 
 
In this work, a nonlocal form of the Gurson-
Tvergaard-Neeedleman’s damage mechanics model 
have been developed and is implemented in a finite 
element framework to solve the boundary value 
problems. Analysis has been carried out for a standard 
1T CT specimen using both local and nonlocal 
damage theories. It was observed that the results of 
nonlocal model are mesh-independent and hence they 
can be used to predict ductile fracture behaviour of 
components without using a FE mesh of particular 
size. This important property is very useful to 
simulate fracture behaviour of components having 
large stress gradients, which otherwise is more 
difficult to realize with local damage models. The 
other important aspect of the nonlocal GTN model is 
its ability to use an initial void volume fraction which 
can be obtained from a direct physical measurement 
in the metallographic microstructure of the material. 
In case of the local GTN models, one has to resort to 
artificially low values of initial void volume fraction 
and use suitable values of the void nucleation 
parameters in order to obtain a satisfactory prediction 
of experimental data. 
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