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Probabilities of hitting a convex hull

Probabilités d’atteinte d’une envelopple convexe

Zhenxia Liu∗ Xiangfeng Yang†

August 27, 2014

Abstract

In this note, we consider the non-negative least square method with a random matrix. This
problem has connections with the probability that the origin is not in the convex hull of many
random points. As related problems, suitable estimates are obtained as well on the probability
that a small ball does not hit the convex hull.

Abstract

Dans cette Note nous appliquons la méthode des moindres carrés non-négatifs avec une
matrice aléatoire. Ce problème est connecté à la probabilité que l’enveloppe convexe de points
aléatoires ne contienne pas l’origine. En relation avec ce problème nous obtenons aussi des
estimations de la probabilité qu’une petite boule ne rencontre pas une enveloppe convexe.

Keywords and phrases: Convex hull, uniform distribution, non-negative least square method
AMS 2010 subject classifications: 60D05, 52A22

1 Introduction

Let n and m be two positive integers with n ≤ m. Suppose that A is a n ×m matrix and b is a
vector in Rn. In mathematical optimization and other research fields, it is frequent to consider the
non-negative least square solution to a linear system AX = b with X = (x1, x2, . . . , xm)T ∈ Rm
under the constraint min1≤i≤m xi ≥ 0. The non-negativity constraints occur naturally in various
models involving non-negative data; see [1], [3] and [7]. More generally for non-negative random
designs, the matrix A is assumed to be random; see [4] and references therein for this aspect.

The first topic of this note is to investigate the probability P {AX = b, min1≤i≤m xi ≥ 0} when
A is a random matrix with suitable restrictions; see Theorem 2.1. The idea of the proof is to change
this probability to the one involving the event that the origin is not in the convex hull of many
random points, and then apply a well-known result by Wendel [11]. However, instead of applying
Wendel’s result directly, we propose a new probabilistic proof of it. This probabilistic proof allows
us to work on a more general probability of hitting a convex hull by a small ball (instead of the
origin) in Rn; see Theorem 4.1.

∗zhenxia.liu@hotmail.com, Bl̊aeldsvägen 12B, Sturefors, Sweden
†xiangfeng.yang@liu.se, Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
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The study on random convex hulls dates back to 1960s from various perspectives. For instance,
in [10] and [2] the expected perimeter of a random convex hull was derived. The expected number
of edges of a random convex hull was obtained in [8]. For expected area or volume of a random
convex hull, we refer to [5]. As mentioned earlier, in [11] the probability that the origin does not
belong to a random convex hull was perfectly established. In Section 3, we derive an explicit form
for the probability that a ball with a small radius δ in R2 does not belong to the convex hull of
many i.i.d. random points; see Theorem 3.1. This type of probability was considered in [6] together
with circle coverage problems. Because of addition assumptions there, unfortunately the results
(Corollary 4.2 and Example 4.1) in [6] cannot recover our result Theorem 3.1 in this note. A more
detailed survey on random convex hulls is included in [9].

2 A linear system with a random matrix

Since the one-dimension n = 1 is trivial, we consider higher dimensions n ≥ 2. In the proof of the
next result, a connection is established between the probabilities of hitting a convex hull and the
non-negative solutions to a linear system.

Theorem 2.1. Let A be an n×m, 2 ≤ n ≤ m, matrix such that the entries are independent non-
negative continuous random variables. Suppose that these random variables have the same mean µ,
and are symmetric about the mean. Then the linear system AX = (1, 1, . . . , 1)T has a non-negative
solution with probability

1− 2−m+1
n−2∑
k=0

(
m− 1
k

)
.

When m = n, it simplifies to 2−n+1.

Proof. We set the entries of A as {aij}, then
∑m

j=1 aijxj = 1 for 1 ≤ i ≤ n. Summing on i, we

obtain
∑m

j=1(
∑n

i=1 aij)xj = n. Let cj = 1
n

∑n
i=1 aij , then

∑m
j=1 cjxj = 1. Thus, we can rewrite the

linear system
∑m

j=1 aijxj = 1 as
∑m

j=1(aij − cj)xj = 0. Let a1, . . . ,am be the column vectors of

A, and v = (1, 1, . . . , 1)T . If we denote wj = aj − cjv, Then the linear system
∑m

j=1 aijxj = 1
for 1 ≤ i ≤ n has a non-negative solution if and only if there exist x1, x2, . . . , xm ≥ 0 with
x1 +x2 + . . .+xm > 0 such that

∑m
j=1 xjwj = 0. In other words, the origin 0 belongs to the convex

hull of {w1,w2, . . . ,wm}. We show that {wj} are symmetric. Indeed,

P{wj > (t1, t2, . . . , tn)T }

= P

{
aij −

1

n

n∑
k=1

akj > ti, 1 ≤ i ≤ n

}

= P

{
1

n

n∑
k=1

(aij − akj) > ti, 1 ≤ i ≤ n

}

= P

{
1

n

n∑
k=1

[(µ− aij)− (µ− akj)] > ti, 1 ≤ i ≤ n

}

= P

{
− 1

n

n∑
k=1

(aij − akj) > ti, 1 ≤ i ≤ n

}
= P

{
−wj > (t1, t2, . . . , tn)T

}
.
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Clearly, {wj} are random vectors in Rn that lie on the hyperplane L = {(y1, y2, . . . , yn) ∈ Rn :
y1 + y2 + . . .+ yn = 0}. Let p(k,m) be the probability that 0 does not belong to the convex hull of
m symmetric random vectors in Rn that lie on a k-dimensional subspace of Rn. We now compute
the probability p(n − 1,m). The method below is a probability version of a geometric argument
of Wendel [11]. Let h be the indicator function of the event 0 /∈ conv(w1,w2, . . . ,wm). That is,
h(w1,w2, . . . ,wm) = 1 if there exists a non-zero vector b such that 〈wi,b〉 ≥ 0 for all 1 ≤ i ≤ m,
and h(w1,w2, . . . ,wm) = 0 otherwise. Then,

p(n− 1,m) = P {0 /∈ conv(w1,w2, . . . ,wm)} = Ewh(w1,w2, . . . ,wm).

Because {wi} are symmetric, if we let {εi} be i.i.d. Bernoulli random variables, then

p(n− 1,m) = EεEwh(ε1w1, ε2w2, . . . , εmwm).

Noticing that conditioning on ε′ = (ε1, ε2, . . . , εm−1), we have

p(n− 1,m) = Eε′EwEεmh(ε1w1, ε2w2, . . . , εmwm)

=
1

2
Eε′EwEεmh(ε1w1, ε2w2, . . . , εm−1wm−1)

+
1

2
Eε′Ew[2Eεmh(ε1w1, ε2w2, . . . , εmwm)− h(ε1w1, ε2w2, . . . , εm−1wm−1)]

=
1

2
p(n− 1,m− 1) +

1

2
Eε′EwR

where

R :=h(ε1w1, ε2w2, . . . ,wm) + h(ε1w1, ε2w2, . . . ,−wm)− h(ε1w1, ε2w2, . . . , εm−1wm−1).

We see that R ∈ {0, 1}, and R = 1 if and only if

h(ε1w1, ε2w2, . . . ,wm) = h(ε1w1, ε2w2, . . . ,−wm) = 1.

That is, there exists vectors b1,b2 such that 〈εiwi,b1〉 ≥ 0, 〈εiwi,b2〉 ≥ 0 for 1 ≤ i ≤ m− 1 and
〈wm,b1〉 ≥ 0, 〈wm,b2〉 ≤ 0. Thus we can find α, β > 0 such that for c = αb1 + βb2, we have
〈εiwi, c〉 ≥ 0 for 1 ≤ i ≤ m− 1, and 〈wm, c〉 = 0. On the other hand, if we can find such a vector
c, then of course h(ε1w1, ε2w2, . . . ,wm) = h(ε1w1, ε2w2, . . . ,−wm) = 1. Therefore, R = 1 if and
only if there exists a vector c such that c⊥wm such that 〈εiwi, c〉 ≥ 0 for 1 ≤ i ≤ m − 1. If we
let ui be the orthogonal projection of wi on to w⊥m for 1 ≤ i ≤ m − 1, then R = 1 if and only
if h(ε1u1, ε2u2, . . . , εm−1um−1) = 1. From the fact that {ui} are vectors in Rn that lies on the
(n− 2)−dimensional subspace w⊥m ∩ L, it follows that

Eε′EwR = Eε′Euh(ε1u1, ε2u2, . . . , εm−1um−1) = p(n− 2,m− 1).

Hence, we obtain the identity

p(n− 1,m) =
1

2
p(n− 1,m− 1) +

1

2
p(n− 2,m− 1)

for all m ≥ n ≥ 2. Note that p(1, k) = 2−k+1 and p(k, 1) = 1 for k ≥ 1. By using induction and the
combinatorial identity (

m− 2
k

)
+

(
m− 2
k + 1

)
=

(
m− 1
k + 1

)
,
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it is straightforward to check that

p(n− 1,m) = 2−m+1
n−2∑
k=0

(
m− 1
k

)
for all m ≥ n ≥ 2.

3 Probability of avoiding a small disk in R2

Let random vectors {Xi}i=1,2,...,m be independently and uniformly distributed in the unit ball of
R2. The result in Section 2 states that the probability that the origin is not in the convex hull
of {Xi}i=1,2,...,m is p(2,m) = m · 2−m+1. In this section, our goal is to find a more general result,
namely, the probability that a ball with a small radius in R2 does not belong to the convex hull of
{Xi}i=1,2,...,m. We will prove the following result.

Theorem 3.1. Suppose that {Xi}i=1,2,...,m are independently and uniformly distributed random
vectors in the unit ball of R2. Let pδ(2,m) denote the probability that a ball with a small radius δ
in R2 does not belong to the convex hull of {Xi}i=1,2,...,m. Then

pδ(2,m) =
m

2m−1
(1− δ2)

[
1− 2δ

√
1− δ2
π

− 2

π
sin−1(δ)

]m−1
. (3.1)

Proof. There are two different cases: the closest point on the convex hull of {Xi}i=1,2,...,m to the
origin is a vertex (see Case 2), and the closest point on the convex hull of {Xi}i=1,2,...,m to the origin
is not a vertex but a point on an edge (see Case 1). For each case, we compute the probability
respectively.

Case 1 Case 2

Step 1. Let P and Q be two independently and uniformly distributed random points in the unit
ball. We calculate the probability of the event E(r) that the distance between the origin and the
line segment PQ is less than or equal to r, and the closest point to the origin is not P or Q. Let
(λ, θ) be the polar coordinates of P. Let L be the line passing through P and being perpendicular
to OP. Then the line L divides the unit disk into two parts, say R1 and R2, where R2 is the larger
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region that contains the origin. Further, we let D be the disk with OP as its diameter. Then it is
obvious that D ⊂ R2.

If Q ∈ R1, then P is the closest point to the origin. If Q ∈ D, then Q is the closest point to the
origin. If Q ∈ R2 \D, then the closest point of the line segment PQ to the origin is not P or Q.

If λ ≤ r, then for all Q ∈ R2 \D, the distance between the origin and the line segment PQ is
less than or equal to r; if λ > r, then to ensure that the distance between the origin and the line
segment PQ is less than or equal to r, the point Q must land in the region S which is between the
two tangent lines from P to the circle centers at the origin with radius r.

In conclusion, we have the following: if λ ≤ r, then Q ∈ R2 \D; if λ > r, then Q ∈ S ∩ (R2 \D).

The set R2 has area π/2 +
∫ λ
0 2
√

1− x2dx, and D has area πλ2/4. Thus R2 \D has area

π/2 +

∫ λ

0
2
√

1− x2dx− πλ2/4.

To calculate the area F := S ∩ (R2 \D), we let T1 and T2 be the two tangent points. The angle
between the two tangent lines is 2 sin−1(r/λ). We draw two lines through the origin which are
parallel to the two tangent lines. The region G that lies between these two lines and inside F has
area sin−1(r/λ). To calculate the area of the region F \G, we connect O with T1 and T2. Let A be
the area between the line segment OT1 and the small arc OT1 on D. Then the area of F \G is

2

∫ r

0

√
1− x2dx− 2A.

To calculate A, we let M be the center of D. Then ∠OMT1 = 2 sin−1(r/λ), the fan OMT1 has
area (λ/2)2 sin−1(r/λ), and the 4OMT1 has area r

√
λ2 − r2/4. Hence, the area of F is

sin−1(r/λ) + 2

∫ r

0

√
1− x2dx− λ2

2
sin−1(r/λ) +

1

2
r
√
λ2 − r2.

Therefore, given P at (λ, θ), if λ ≤ r, then the event E(r) occurs with probability

1

2
+

2

π

∫ λ

0

√
1− x2dx− λ2/4.

If λ > r, then the event E(r) occurs with probability

1

π
sin−1(r/λ) +

2

π

∫ r

0

√
1− x2dx− λ2

2π
sin−1(r/λ) +

1

2π
r
√
λ2 − r2.

Thus, the event E(r) occurs with probability

P {E(r)} =

∫ r

0

(
1

2
+

2

π

∫ λ

0

√
1− x2dx− λ2/4

)
2λdλ

+

∫ 1

r

(
1

π
sin−1(r/λ) +

2

π

∫ r

0

√
1− x2dx− λ2

2π
sin−1(r/λ) +

1

2π
r
√
λ2 − r2

)
2λdλ.
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This implies that

dP {E(r)}
d r

=

(
1

2
+

2

π

∫ r

0

√
1− x2dx− r2/4

)
2r −

(
1

2
+

2

π

∫ r

0

√
1− x2dx− r2/4

)
2r

+

∫ 1

r

(
1

π
√
λ2 − r2

+
2

π

√
1− r2 − λ2

2π
√
λ2 − r2

+
1

2π

√
λ2 − r2 − r2

2π
√
λ2 − r2

)
2λdλ

=

∫ 1

r

(
1− r2

π
√
λ2 − r2

+
2

π

√
1− r2

)
2λdλ

=
4

π
(1− r2)3/2.

We note that here a particular case is P {E(1)} =
∫ 1
0

4
π (1 − r2)3/2dr = 3

4 , which is the probability
that the closest point is not reached at a vertex point.

Step 2. Now we calculate the probability P (δ) that the distance between the origin and the
convex hull is at least δ. If the closest point is a vertex of the convex hull, then it could be any of the
m points. Thus we need to first choose a point, say P (r, θ), and we have m different choices. Let L
be the line passing through P which is perpendicular to OP. Then all the other points must land
on the outer side of the line L. The area of that region is

∫ 1
r 2
√

1− x2dx. Thus, the corresponding
probability is

P1 {δ} = m

∫ 1

δ

[
1

π

∫ 1

r
2
√

1− x2dx
]m−1

2rdr.

In particular, if δ = 1, then we have P (1) = 1/2. In other words, with probability 1/4, the closest
point is a vertex.

If the closest point is not a vertex, then it is on the line segment between two vertices. Since
any two vertices are equally likely, we have m(m − 1)/2 different choices. The probability in this
case is

P2 {δ} =
m(m− 1)

2

∫ 1

δ

[
1

π

∫ 1

r
2
√

1− x2dx
]m−2

4

π
(1− r2)3/2dr.

Hence, the total probability is

P (δ) = m

∫ 1

δ

[
1

π

∫ 1

r
2
√

1− x2dx
]m−1

2rdr

+
m(m− 1)

2

∫ 1

δ

[
1

π

∫ 1

r
2
√

1− x2dx
]m−2

4

π
(1− r2)3/2dr

= m(1− δ2)
[

2

π

∫ 1

δ

√
1− x2dx

]m−1
=

m

2m−1
· (1− δ2)

[
1− 2δ

√
1− δ2
π

− 2

π
sin−1 δ

]m−1
,

where the second equality is from integration by parts.
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4 Probability of avoiding a small ball in Rn (n ≥ 3)

Let i.i.d. random vectors {Xi}i=1,2,...,m be uniformly distributed in the unit ball of Rn, n ≥ 3.
In this section we study the probability that a ball with a small radius in Rn does not belong to
the convex hull of {Xi}i=1,2,...,m. If we use a similar method as in Section 3, then new difficulties
arise on taking into account too many different cases, and computing several complicated volumes,
multiple integrals, etc. Instead of computing the exact value of the probability, we give non-trivial
upper estimates of it in this section based on the idea used in Section 2. To this end, let pδ(k,m) be
the probability that the ball in Rn with radius δ does not belong to the convex hull of {Xi}i=1,2,...,m

which lie on a k-dimensional subspace of Rn.

Theorem 4.1. Let {Xi}i=1,2,...,m be independently and uniformly distributed random vectors in the
unit ball of Rn, n ≥ 3, and pδ(n,m) be the probability that a ball with a small radius δ in Rn does
not belong to the convex hull of {Xi}i=1,2,...,m. It holds that pδ(n,m) ≤ pδ∗(n,m) where pδ∗(n,m)
solves {

pδ∗(n,m) = 1
2p
δ
∗(n,m− 1) + 1

2p
δ
∗(n− 1,m− 1),

pδ∗(k, 1) = 1− δk and pδ∗(1, k) = (1−δ)k
2k−1 , for k ≥ 1.

(4.1)

In particular,

pδ(n,m) ≤ 1− δn+1−m
(

1 + δ

2

)m−1
, for m ≤ n; (4.2)

pδ(n, n+ 1) ≤ 1− 1

2n
[
(1 + δ)n + δ − δ2

]
. (4.3)

Remark 4.1. We recall the probabilities p(n,m) that the origin does not belong to the convex hull
of m random vectors in Rn discussed in Section 2. The probabilities are

p(n,m) = 2−m+1
n−1∑
k=0

(
m− 1
k

)
for n < m,

and p(n,m) = 1 for n ≥ m. It is then obvious that a trivial upper bound of pδ(n,m) is p(n,m),
that is pδ(n,m) ≤ p(n,m). This gives pδ(n,m) ≤ 1 for m ≤ n, and pδ(n, n+ 1) ≤ 1− 1

2n . Thus the
upper bounds in (4.2) and (4.3) are slightly better than these.

Proof of Theorem 4.1. Following the idea in the proof of Theorem 2.1 in Section 2, we will show

pδ(n,m) ≤ 1

2
pδ(n,m− 1) +

1

2
pδ(n− 1,m− 1). (4.4)

To this end, let h be the indicator function of the event that the ball with radius δ is not in the
convex hull of {Xi}i=1,2,...,m, and {εi} be i.i.d. Bernoulli random variables. Then by the same
reasoning in Section 2, we have, with ε′ = (ε1, . . . , εm−1),

pδ(n,m) = Eε′EXEεmh(ε1X1, . . . , εmXm)

=
1

2
Eε′EXEεmh(ε1X1, . . . , εm−1Xm−1)

+
1

2
Eε′EX [2Eεmh(ε1X1, . . . , εmXm)− h(ε1X1, . . . , εm−1Xm−1)]

=
1

2
pδ(n,m− 1) +

1

2
Eε′EXR
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where the random variable R ∈ {0, 1} is

R = h(ε1X1, . . . , Xm) + h(ε1X1, . . . ,−Xm)− h(ε1X1, . . . , εm−1Xm−1).

In Section 2, an equivalent statement of the event R = 1 was found. But here we can only show

{R = 1} ⊆ {h(ε1X1, . . . , εm−1Xm−1) = 1} (4.5)

To see (4.5), we notice that when h(ε1X1, . . . , Xm) = h(ε1X1, . . . ,−Xm) = 1, then the orthogonal
projection ui of Xi onto X⊥m, 1 ≤ i ≤ m − 1, should satisfy h(ε1u1, . . . , εm−1um−1) = 1. This is
(4.5). Thus the probabilities pδ(n,m) satisfy (4.4) with known boundary values pδ(k, 1) = 1−δk and

pδ(1, k) = (1−δ)k
2k−1 for k ≥ 1. Now we solve the corresponding difference equation (4.1). Obviously

pδ(n,m) ≤ pδ∗(n,m) from comparisons. What is more, the equation (4.1) can be solved as

pδ∗(n,m) = 1− δn+1−m
(

1 + δ

2

)m−1
, for m ≤ n;

pδ∗(n, n+ 1) = 1− 1

2n
[
(1 + δ)n + δ − δ2

]
.

(4.6)

Thus (4.2) and (4.3) are directly from (4.6). By inductions, it is also feasible to find general
pδ∗(n,m), which have more complicated expressions.
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