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Adaptive Sinusoidal Disturbance 
Rejection in Linear 
Discrete-Time Systems— 
Part I: Theory 
An adaptive regulation approach against disturbances consisting of linear combinations 
of sinusoids with unknown and/or time varying amplitudes, frequencies, and phases for 
SISO LTI discrete-time systems is considered. The new regulation approach proposed is 
based on constructing a set of stabilizing controllers using the Youla parametrization of 
stabilizing controllers and adjusting the Youla parameter to achieve asymptotic distur­
bance rejection. Three adaptive regulator design algorithms are presented and their 
convergence properties analyzed. Conditions under which the on-line algorithms yield an 
asymptotic controller that achieves regulation are presented. Conditions both for the case 
where the disturbance input properties are constant but unknown and for the case where 
they are unknown and time varying are given. In the case of error feedback, the on-line 
controller comtruction amounts to an adaptive implementation of the Internal Model 
Principle. The performance of the adaptation algorithms is illustrated through a simula­
tion example. A companion paper [4] describes the implementation and evaluation of the 
algorithms for the problem of noise cancellation in an acoustic duct. 

1 Introduction and Motivation 
fVlany engineering systems are subject to periodic disturbances 

which could adversely affect performance. Examples of such sys­
tems include flexible structures subject to periodic excitations [34], 
motion control systems with position dependent disturbances [21] 
or with friction [31], disk drive systems with repeatable runout 
error [25], manufacturing processes such milling operations [16, 
26], and steel casting processes [19]. Since mechanical systems 
behave like low pass filters, the effects of only few of the periodic 
disturbance harmonics are visible at the system output. Moreover, 
a digital controller is typically required for the implementation of 
a controller to reject the periodic disturbance input. Since the 
digital control system includes an anti-aliasing filter, the effects of 
only the first few harmonics of the disturbance input are fed back 
to the controller. This makes it practical to consider disturbance 
models which include only the first few harmonics of the periodic 
disturbance signal. The disturbance would then be represented as 
a linear combination of sinusoids where the frequencies of the 
sinusoids are integer multiples of the disturbance frequency. It 
turns out that in some situations, such as in vibration control 
problems, the disturbance period may not be known a priori and 
may be slowly time-varying, which prompts the consideration of 
disturbance representations with time-varying frequencies. Finally, 
in order to make the disturbance rejection problem even more 
general, arbitrary (i.e., not rationally related) frequencies are con­
sidered and the disturbance would then be represented as 

v{k) = 2) c„{k) cos {(r>„{k)k + 4>„{k)), (1) 

where c„{k), ()i„{k), and 4>„{k) represent, respectively, the ampU-
tudes, frequencies, and phase of the sinusoids, all assumed un­
known and time-varying. Given a linear time-invariant plant sub­
ject to a disturbance of the form (1), it is desired to design a 
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controller that yields internal stability and asymptotic disturbance 
rejection which is robust in the face of variations in the disturbance 
amplitudes, frequencies, and phases. The disturbance model in (1) 
represents a class of almost periodic signals [9]. 

When the disturbance is as in (1) and is partially known, certain 
approaches for regulation such as Adaptive Feedforward Control 
(AFC) algorithms [20, 5], LQG methods for controller design [7], 
and disturbance accommodating control approach [15] have been 
proposed in the literature. When the disturbance model parameters 
in (1) are completely unknown, adaptive techniques can be used to 
achieve regulation. Adaptive regulation consists mainly of esti­
mating the disturbance model on-line and using the estimated 
model in the controller design. Different approaches were pro­
posed in the literature, and include adaptive versions of the Internal 
Model Principle [10, 11], an adaptive version of the External 
Model Principle [8, 35], augmenting a stabilizing controller with 
an adaptation mechanism to improve the overall system tracking 
and disturbance rejection performance [33], and using a special 
adaptive disturbance observer [22]. 

In this paper, we consider the specific problem of adaptively 
rejecting sinusoidal discrete disturbance inputs in (1) with un­
known and time-varying frequencies to„ik), amplitudes c„{k), and 
phases 4>ii(k), 1 < n < fe„. More precisely, it is assumed that the 
frequencies, amplitudes, and phases are piecewise constant func­
tions of time. The regulation problem is solved within a parame­
trized set of stabilizing controllers constructed using the Youla 
parametrization [36]. The purpose of the adaptation is to tune the 
Youla parameter in the stabilizing controller in order to asymptot­
ically satisfy a set of interpolation conditions that are equivalent to 
disturbance rejection. For a given nominal plant model, we present 
three adaptive regulator design algorithms and their convergence 
properties. The first two algorithms represent recursive least 
squares (RLS) algorithms with time varying dead zone width. 
These algorithms are to be used in the case where the disturbance 
properties are unknown but constant. It is shown that asymptotic 
disturbance rejection can be achieved if an exponentially decaying 
bound on the disturbance response of the desired closed loop 
control system is known. In order to deal with disturbance inputs 
with time varying frequencies, a RLS algorithm with time-varying 
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weighting is considered. In this case, the persistent excitation 
assumption is invoiced to show asymptotic rejection of disturbance 
inputs with time varying properties. When the performance vari­
able is same as the signal that is fed back to the controller, the 
on-line controller construction amounts to an adaptive implemen­
tation of the internal model principle. 

The solution approach to the regulation problem presented in 
this paper differs from those presented in the literature [10, 11] in 
that the latter are based on explicitly estimating the disturbance 
model and then using the estimated model in the controller design. 
In contrast to the aforementioned, a direct adaptive controller 
design approach is presented in this paper which does not require 
the estimation of the disturbance model. For example, the adapta­
tion algorithm does not have to deal, in the case of periodic signals 
of the form (1), with the explicit estimation of the period of the 
disturbance as is done in [14, 29, 30]. Moreover, the solution is 
proposed for a more general class of feedback systems than those 
treated in [10, 11]. More specifically, the regulation problem posed 
in this paper is for feedback systems where the performance 
variable is not necessarily the signal being fed back to the con­
troller, whereas the opposite is true for the work in [10, 11]. It 
should be noted that the work presented in [10, 11] treats a more 
general problem where the controller is adapted with respect to 
both the disturbance and plant model uncertainties, but for a 
special case of the general feedback systems considered here. The 
adaptation approach used in this paper is the same as that used in 
[33, 27]. The purpose of the adaptation in [27] is to improve the 
performance of a nominal optimal disturbance rejection controller 
in the face of plant model uncertainties by adjusting the Youla 
parameter. In this work, the primary objective of the adaptation is 
to construct, on-line and for a given nominal plant, an asymptotic 
controller capable of performing asymptotic disturbance rejection. 

The rest of the paper is organized as follows. Section 2 presents 
the framework within which the regulation problem is solved and 
gives conditions for regulation. Recursive algorithms for adaptive 
regulator design are presented and their properties analyzed in 
Section 3. The performance of the adaptation algorithms is illus­
trated through an example in Section 4. 

2 Preliminaries 
The solution approach is based on working within a parame­

trized set of stabilizing controllers where the Youla parameter is 
the design parameter. More details can be found in [3, 32, 13, 18]. 

Let Rj, denote the set of proper real rational transfer matrices and 
RH^ the subset of asymptotically stable real rational transfer 
matrices. Consider a plant G = [o'", c,"] with inputs [,"'] and 
outputs [,'], where w, u, e, and y are scalar signals representing, 
respectively, the disturbance input, the control signal, an error or 
performance variable, and a measurement signal. Consider a 
coprime factorization of G„, given by G„,, = NM"' where N and 
M are in RH^. Let U and V in RH„ be such that the following 
Bezout identity MV - UN = 1 is satisfied. A stabilizing control­
ler Ko for the system G,,,, is then given by K„ = UV. Using the 
base stabilizing controller Kg, the set of all stabilizing controllers 
in R,, for the system G„y can be constructed using the Youla 
parametrization [36]. In fact, for any Q G RH„, the controller K 
given by K = (U + MQ){V + NQ)~\ is a stabilizing controller 
for the plant G,,,,. Moreover, every rational stabilizing controller K 
has the form given above for some Q G RH„. Under some very 
mild conditions [13, 18], a stabilizing controller for G,,,, is also a 
stabilizing controller for G. 

Let K he a stabilizing controller constructed using the Youla 
parametrization of stabilizing controllers where the Youla param­
eter is denoted by Q E. RH„. Then the closed-loop system can be 
reconfigured as shown in Fig. 1 where T = [j" l"], and where 
T,„ = G,„, + G,„UMG,,„ T„ = G„M, and 7,„ = MG,,, are all 
in RH,^. The closed-loop system transfer function is given by, 

K 

.9 T 

Q 

r 

Fig. 1 Reparametrlzation and equivalent block diagrams of the closed-
loop system 

Pr.aiz) 
E{z) 

W{z) iKAz) + T„iz)Q(z)T„.,iz)l 

It was shown in [3] that if Q(z) is chosen to be of the form of a 

Finite Impulse Response (FIR) fitter, Q{z) then the 

regulation requirement can be put in the form of interpolation 
conditions. Satisfying the latter is equivalent to solving a linear 
equation A0 -)- B = 0 in the parameter vector d = [q,, . . . , 
q,,,,]', where A and B are real matrices computed from the data 
and A is n,, X n,,. 

3 Adaptive Regulation 
In adaptive regulation, it is desired to construct, on-line, an 

asymptotic controller that rejects disturbance inputs of the form (1) 
with unknown and/or time varying properties. The adaptation 
approach is based on tuning the Youla parameter Q to asymptot­
ically achieve the desired regulator. Two types of controller pa­
rameter adaptation algorithms are considered. The first type of 
algorithms represent recursive least squares (RLS) algorithms with 
dead zone. Two algorithms of this type are presented. These 
algorithms are to be used in the case where the disturbance input 
properties are unknown but constant. In the case where the distur­
bance input properties are unknown and time varying, a second 
type of algorithms, representing the RLS algorithm with a time 
varying forgetting factor, is considered. The RLS algorithms with 
dead zone require only a decaying upper bound on the magnitude 
of the response of the nominal (desired) closed-loop system to 
show asymptotic regulation, whereas the RLS algorithm with time 
varying forgetting factor requires a persistent excitation assump­
tion. It is shown that if the number of parameters is greater than the 
minimal number of parameters needed to achieve regulation, the 
RLS algorithms with dead zone yield zero steady state closed loop 
system response. The latter property implies that the adaptive 
system using the RLS algorithms with dead zone can tolerate 
over-parametrization, whereas this is not the case for the adaptive 
systems using the RLS algorithm with a time varying forgetting 
factor. 

3.1 The Performance Variable. The purpose of this section 
is to derive an expression for the performance variable e suitable 
for use with adaptation algorithms, i.e., an expression where e can 
be considered an "affine" function of the parameter estimation 
error. 

During adaptation, the subsystem represented by the operator Q 
is time varying. Therefore, in subsequent equations, transfer func­
tion notation is not used. Instead, systems will be considered 
operators on signals. Let B ' denote the / time step delay operator. 
The performance variable e{k) is given by 

e{k) = [T„.AB^') + r„(B-')e,r,„(B-')]w(fc), 

(2) 

where 

rik) = r,„.(B"')w(fe). 
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In the above expression for e{k), the operators Ty, i,j = 1, 2, are 
time-invariant whereas Q,, is a time-varying operator. Define a 
pseudo-performance variable 

e,(k) = [T„,{B-') + Q,T,AB~')T„AB-')]wik), 

= T„AB~')w{k) + Q,T,AB'')r{k). 

Assuming Qj, is of the form 

Q,= ^qi{k-l)B'-', (3) 
i= i 

the signal e, can be expressed as 

"1 

eiik) = [T„AB~')w{k)] + 2 ?/(fc - l ) B ' - ' [ r „ ( B - ' ) r W ] , 

"«(*:) «,(« 

= voik) - 4,\k)B{k- 1), 

where 

<^{k)^[-vAk) . . . -vAk'n,+ \)Y, (4) 

B{k) = {qm ...qn,m''. (5) 

Let 00 be a parameter vector satisfying the interpolation condi­
tions. Let Qo be the Youla parameter that results from using 0o in 
(3) and {eo(')} the decaying disturbance response that results from 
the use of go in (2). Then 

eoik) = [r„,(f i- ' ) + T,AB~')QJ„AB-')']w{.k) 

= T„AB~')w{k) + TjB-')Qor{k) 

= T„AB-')w{k) + QoT,AB-')rik) 

Voik) - Vik)eo (6) 

where 4>{k) is given by (4). Define the signals eaC )̂ — 
[TsAB-')Q, - QJse{B-')V{k) mdd(k) = eAk) + e^k). The 
performance variable is then 

e{k) = e{k) - eAk) + eAk) - CQW + eoW 

= [eAk) - eoW] + [eoW + {e{k) - eAk))] 

= [eAk) - eoik)] + K W + i\.T,AB-')Q, 

- QkT.AB-')']rik))] 

= UAk)-eoik)-]+ [eoik) +eAk)] 

= [eAk)-eAk)] + dik) 

= ^Ak)Sik- I) + dik), (7) 

where d(k) = Of,— 6(k). An exponentially decaying upper bound 
go = ajS', a > 0, 0 < |3 < 1, on the response CQ is used to define 
an upper bound d(k) = eo(k) + ejik) on the signal d(k). 

In order to be able to compute the regression vector </> without 
knowing the disturbance input w, we need to find an expression of 
r that is independent of w. We have that 

yik) = G^,iB-')wik) + G„AB->ik) 

= G„AB~')wik) + M~'iB-')NiB'')uik). (8) 

We also have that T„XB'') = M(B~')G„AB~') [13, 18]. Since 
rik) = T„iB~')w(k) = M(B~')G„y(B~')w(k), then from (8) we 
obtain 

rik) = MiB-^)yik) - NiB-^)uik). (9) 

It can be seen from the derivations given above that the regres­
sion vector does not require knowledge of the disturbance input 
values. In fact, according to (9) it is only necessary to know u and 

y in order to compute r, and consequently, compute w, which is the 
only variable present in the regression vector. 

3.2 Case of Unknown But Time-Invariant Disturbance 
Properties. In this case, the disturbance input is of the form 

to 

wik) = S c„ cos i(o„k + (j>„), where the number of sinu-

soids ko, the amplitudes c„, frequencies w„, and phases 4>„, 
n = 1, . . . , ^0, are unknown. It is assumed that a bound ^o on 
the number of sinusoids that can be assumed to exist in the 
expression above is known (i.e. in the design of the adaptation 
algorithm, the number of sinusoids in the expression above can 
be taken arbitrarily large as long as it is greater than or equal to 
ko, the true number of sinusoids). Two RLS algorithms with 
dead-zone are presented and their performances analyzed. The 
following assumption is invoked since it will be used in sub­
sequent theorems. 

Assumption 1: The constants a and p in the expression for eo 
are assumed known a priori. 

The adaptation algorithm is given by 

Hk + 1) = Hk) 

+ \ik+ 1) 
Pik)(i>ik + 1) 

1 + \ik+ l)c!}Ak + l)Pik)(j)ik + i 
eik+ 1), 

(10) 

Pik + I) = Pik) 

- Kik+ 1) 

with g(O) = 0̂ 

Hk) = 
1 if 

Pik)<j>Ak+ l)<^(/t-H l)P(fc) 

1 + A(yt + l)<l)'^ik + \)Pik)4>ik + 1) 

P(0) = Po > 0, and where 

eik) 

(11) 

1 + 4>Ak)Pik- l)(j>ik) 
otherwise. 

^\m\, 
(12) 

The convergence properties of the algorithm are given in the 
following theorem. 

Theorem 1 [2]: If Assumption 1 is satisfied and n, > 2ko, then 
the algorithm given by (10), (11), and (12) yields 

a/ The adaptive system is Bounded-Input Bounded-Output 
stable, 

b/ limt^„ l§(k) - §(k - /)|| = 0, VO < / < co. 
c/ limt_»„ d{k) = 0. 
d/ limt^„ [eAk)/l + 4>Ak)P(k - l)<l){k)] = 0. 
e/ lim^̂ oo e(k) = 0. 

The adaptation algorithm presented above is based on using the 
error signal e in (10). A second algorithm, which uses a modified 
error e = e — ej, can also be derived and is somewhat easier to 
analyze. Note that at time k, the signal eiik) is a function of d(k — 
1) and consequently can be computed and used in the expression 
for e. Consider the algorithm given below 

Hk+1) = Hk) 

+ \ik+ 1 
Pik)(t>ik+ 1) 

1 + A(/t + l)Vik + l)Pik)<])ik + 1 
eik+ 1) 

Pik+ I) = Pik) 

- Xik+ 1) 
Pik)4>ik+ \)^Ak+ l)Pik) 

1 + A(/fc + l)(i>Ak + l)Pik)cj)ik + 1) 

with 9(0) = 8o and P(0) = Po > 0 and where 

(13) 

(14) 
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X{k) 
1 if 

e~\k) 

1 + 4>''\k)P{k- i)4>{k) 
otherwise. 

2 el(k). 

(15) 

Theorem 2 [2]: If Assumption 1 is satisfied and n, s 2ko, then 
the algorithm given by (13), (14), and (15) yields 

a/ The adaptive system is Bounded-Input Bounded-Output 
stable, 

b/ lim^^. [e\k)/l + 4>\k)P{k - l)(/)(/fc)] = 0. 
c/ lims^„ \\e{k) - ^{k - Oil = 0, VO < / < ^ . 
d/ limi._„ e{k) = 0. 

Remark: There is no indication in the above theorems as to 
whether the parameters converge or not, and if they do converge, 
where they converge to. 

Remark: The adaptation algorithms presented above work 
well only in the case where the nominal parameter vector Qa is 
constant. When 9o changes with time, the performance of the 
adaptation algorithms deteriorates due to the fact that the magni­
tude of the adaptation gain, given by [P{k — 1)</)(A;)/1 -I-
k(k)(\)\k)P{k - \)(^{k)] in (10) and (13), decreases with time 
after the algorithm is started. Therefore, the estimation algorithms 
are not capable of effectively tracking changes in the nominal 
parameter vector. A third adaptation algorithm, capable of tracking 
a piece-wise constant nominal parameter vector 6o is given in the 
next section. 

3.3 Case of Unknown and Time-Varying Disturbance 
Properties. In this section, it is assumed that /CQ in (1) is known 
and that the coefficients c„, frequencies w,,, and phases </>„, n = 
1, . . . , A:o, in (1) are unknown and possibly time-varying. In order 
to be able to reject such disturbance inputs, it is necessary to use 
an adaptation algorithm capable of tracking time varying param­
eters. The recursive least squares algorithm with time varying 
forgetting factor is considered for this purpose. Some of the 
properties of such algorithm are discussed in [17, 6] and the 
references therein. The algorithm is given by 

d{k + \) = e{k) + \(k + \)P(k + l)(j)ik + l)eik + 1), (16) 

P''(k + I) = \{k + l)[P"'{fc) + ^(k + \)(l>''Xk + 1)], (17) 

with §(0) = §0, P{0) = Po > 0, and where X(k) is the time 
varying forgetting factor satisfying 0 < A„,i„ s \{k) < A,„.,< < 1. 
Using the Matrix Inversion Lemma [1], the above equations can be 
rewritten as 

Hk+ l) = §{k) 

P{k)4){k + 

1 + <^\k+ l)P{k)<l)(k+ 1) 
e{k+ 1), (18) 

P(k+ 1) 
I 

Xik+ 1) 

Pik) 
P(k)(^{k+ \)4>'^{k+ l)P(k) 

1 + cj)'^ik+ l)P(k)<p(k+ 1) 
(19) 

Note that the parameter adaptation algorithm is driven by the 
modified error e and not the actual error (or performance variable) 
e. In the following, it is assumed that the disturbance parameters 
in (1) are piecewise constant functions of time and that changes in 
the parameters are sufficiently spaced in time to allow parameter 
convergence. 

Assumption 2: At any time k, there exists a unique parameter 
vector 6o(k) satisfying the regulation conditions corresponding to 
the disturbance input properties at time k. 

We can then define the parameter error at time k, d{k) = 
9o(k) — h{k), and the change A0o(^) in the parameter vector 

satisfying the interpolation conditions Aeo(^) = Qa{k) - 6i,(k -
1). Using Eq. (16) and the expression for e, we have 

Ooik-h 1) - e{k+ 1) 

= [doik + 1) - 6o{k)] + [eM - e{k)] 

- \(k + ])P{k + l)(l>(k + l)[(l)'''{k)e(k - I) + eoik)]. 

which can be rewritten as 

e{k+ 1) = [/ - Xik + l)Pik + l)(j)(k + \)(j)''Xk + l)]9{k) 

+ AOoik) - Xik + l)P{k + l)(j){k + l)eoik + 1). 

Using Eq. (17), we have 

e(k 4- 1) = [\(k + l)P{k + l)p-'{k)]9ik) + A0oW 

- \ik + \)P{k + \)4>{k + l)eo(fe -I- 1). 

Using the approach in [17] for the convergence analysis of the 
adaptation algorithm, the effects of the initial conditions, changes 
in the parameter vector 6a, and the signal eo on the parameter 
estimation error Q{k) can be studied separately using the following 
equations 

Qiik -H 1) = [X{k + \)P{k + l)P^\k)'\ey{k), 

01 (0) = 0(0), (20) 

e^ik -H 1) = {X{k + \)P(k + \)p-\k)'\e^{k) + A0o(/t), 

02(0) = 0, (21) 

0,(fc -K 1) = [X{k + \)P{k +• \)p-\k)]6i{k) 

- X(k + l)P{k + \)4>{k + \)ea{k + 1), 

03(0) = 0. (22) 

where 0|(-) represents the response to the initial condition 0(0), 
02(0 the response to the change in the nominal parameter vector 
00, and 03(0 the response to the forcing signal eo(0. Note that the 
separation of the effects of the initial conditions, changes in the 
nominal parameter vector, and the perturbation term e^ was pos­
sible due to the fact that [X{k + \)P{k + \)P~\k)'\ is indepen­
dent of 0(0 as v,, and consequently (/)(0, are independent of 0(0. 
Consider now the assumption below to be used in the next theo­
rem. 

Assumption 3: The signal v, is persistently exciting of order 

The above assumption is easily satisfied if T„T,„ does not have 
zeros at the poles of W(z). The properties of the algorithm are 
given by the following theorem. 

Theorem 3 [2]: If Assumptions 2 and 3 are satisfied, then the 
algorithm given by (18) and (19) yields 

a/ limt^. Oiik) = 0, / = 1, 2, 3. 
b/ The adaptive system is Bounded-Input Bounded-Output 

stable. 

4 Examples 
Consider the SISO plant given by the following state space 

representation 

xik + \) = .&xik) + uik) + .5w(/t), x(0) = 0, 

yik)=xik). 

The disturbance input is given by wik) = sin iwikT^ -I- sin 
(a>2kT,) where o), and 0)2 are the frequencies of the continuous 
time sinusoids and T, = 1 sec is the sampling period. 
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In the example given above, the plant P is such that G^, = G„, 
and G„e = G„j,. Hence the disturbance response e is the same as 
the plant output);. The stabilizing controller Â oĈ ) — -(0.06/z -
0.1) is considered. In order to construct a set of stabilizing con­
trollers, the Youla parameter Q is chosen to be of the form Q(z) = 
?i + I2Z'' + q}Z~^ + 94^^^ Notice that the number of param­
eters n, is the same as the number of poles n^ of lV(z). The 
resulting parametrized controller transfer function is 

takes place even when the number of parameters in Q is larger than 
4, we consider adjusting the parameters of a tenth order Youla 
parameter Q, i.e., there are ten parameters to be adjusted. The 
parameter vector & is initialized at the origin. The performances of 
the two algorithms are shown in Figs. 4 and 5. In both cases, the 
error goes to zero asymptotically and the parameter estimates 
converge to 

Kiz) 
q,Z*+ ( - .06 + ? j - l ) z ' + ( ? 3 2 ) z ' + ( ? 4 ,)z 

z" + (91 - . l ) z ' + q^Z^ + q,Z + ?4 
(23) 

and the transfer function Fr,Q(z) = [E{z)/W(z) relating the 
disturbance input w to the disturbance response e is given by 

^ , , Z*+ (?l - .1)Z^ + ?2Z^ + «3Z + «4 

^^•2(^^== z V - . 9 z + .14) • (2^^ 

For the disturbance input considered above, the disturbance re­
sponse is given by 

E{z) = 
z" + (?i - . l ) z^ + qiZ^ + q-iZ + 94 

z\z^- .9z + .U) 

sin (fc),r,)z 
- I - • 

sin (a)27'j)z 
z ' - 2 cos (coiTjz + 1 z^ - 2 cos (wjTjz + 1 

In order to have E{z) G RH„, we must have ^i = 0.1 — 2(cos 
( a ) , r j -I- cos {M^T,)), q2 = 2(1-1-2 cos (w,r,) cos (wzTJ), 
^3 = —2(cos (wiTj) -f- cos (wiTj)), and 94 = 1. It is 
important to notice that if, for given ojj and 0)2 > the values of 
qu 92, q^, and q^ given above are used in the controller K 
in (23), the controller would contain a model of the distur­
bance input (1) (the poles of W{z) are also poles of K{z)). 
Hence, if during adaptation, the adjusted Q parameters con­
verge to the nominal parameters given above, then the control­
ler design would represent an adaptive implementation of the 
Internal Model Principle. This is due to the fact that, for the 
plant given above, we have e = y. The frequencies of the 
disturbance are Wiik) = 3 rad/sec and C(>2(fc) = 1 rad/sec for 
0 £ ^ < 500 and then change to Wi(^) = 2.5 rad/sec and 
(Oi{k) = 1.5 rad/sec for 500 ^ k. Therefore, the parameter 
vector 9 = [5,, q2, q^, q^V that should be used to achieve 
regulation is as follows: for 0 < A: < 500, 0 = [.9994, 
- . 1396 , .8994, l]'^ and for 500 < fe, 9 = [1.5608, 1.7733, 
1.4608, 1 ] ̂ . The performance of the two adaptation algorithms 
is discussed below. 

4.1 The RLS Algorithms With Dead Zone. In order 
to use the RLS algorithms with dead zone, it is necessary 
to determine ^ and a in the expression for e. A conserva­
tive value for ^ can be given by examining the poles of FT,Q{Z) 
in (24) which are located at z = 0, .2, and .7. The slowest pole 
of Fr,Q(z) is located at z = .7. Therefore, we can take ^ = 
.95 > .7. The value of a is set equal to 1. The performance of 
the adaptation algorithms is illustrated in Figs. 2 and 3. The 
initial conditions are §(0) = [0, 0, 0, 0]'^ and P(0) = 100/ 
where / is a 4 X 4 identity matrix. For 0 s k < 500, the 
closed-loop system was able to slowly reject the disturbance 
input. The estimated parameters converged to the nominal pa­
rameters. 

The simulation results presented above correspond to the case 
where the minimal number of parameters (4 in this case) needed to 
achieve regulation are used. To illustrate the fact that regulation 

[0.3092, -0 .2254, 0.5020, -0 .0972, 0.0509, 

-0 .2855, -0 .1507, 0.1471, 0.0525, 0.3944]''. 

4.2 The RLS Algorithm With a Forgetting Factor. The 
forgetting factor in this algorithm is a constant A = .95. The initial 
conditions of the algorithm are §(Q) = [0, 0, 0, 0]^ and F(0) = 
100/ where / is a 4 X 4 identity matrix. The performance of the 
closed-loop control system is shown in Fig. 6. It can be seen that 
the adaptive control system was capable of rejecting the distur­
bance input even when the frequency of the disturbance input 
changes at time 500 s. The estimated parameters converged to the 
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Fig. 2 Response of the adaptive control system using the RLS algo­
rithm with dead zone and driven by the performance variable e. Top: 
disturbance Input w{k). l\/llddle: response of the adaptive control system 
to the disturbance Input i«(ft). Bottom: parameters of the controller pa­
rametrizing mapping Q (sampling period = 1 s). 
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Fig. 3 Response of the adaptive control system using the RLS algo­
rithm with dead zone and driven by the modified performance variable e. 
Top: disturbance Input w{k). Middle: response of the adaptive control 
system to the disturbance Input w{k). Bottom: parameters of the control­
ler parametrizing mapping 0 (sampling period = 1 s). 
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Fig. 4 Response of the adaptive control system using the RLS algo­
rithm with dead zone and driven by the performance variable e, for the 
case of an overparametrized Q. Top: disturbance input w(k). iVIiddle: 
response of the adaptive control system to the disturbance Input w(k). 
Bottom: parameters of the controller parametrizing mapping Q (sampling 
period =̂  1 s). 

nominal parameters. Hence, for both values of the disturbance 
frequency, the adaptive control algorithm was able to construct an 
internal model of the disturbance input in the controller. 

200 250 300 
Time (sec) 

Fig. 5 Response of the adaptive control system using the RLS algo­
rithm with dead zone and driven by the modified performance variable e, 
for the case of an overparameterized Q. Top; disturbance input w(fc). 
Middle: response of the adaptive control system to the disturbance Input 
iv(/(). Bottom: parameters of the controller parametrizing mapping Q 
(Sampling period = 1 s), 

1000 

400 500 600 
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Fig. 6 Response of the adaptive control system using the RLS algo­
rithm with forgetting factor. Top: disturbance input w{k). Middle: re­
sponse of the adaptive control system to the disturbance input w{k). 
Bottom: parameters of the controller parametrizing mapping Q (sampling 
period = 1 s). 

5 Summary and Conclusions 
The problem of adaptively rejecting sinusoidal disturbance in­

puts with unknown and/or time varying characteristics was con­
sidered for SISO plants. The adaptation approach is based on 
searching, on-line, within a parametrized set of stabilizing control­
lers, for the controller that achieves asymptotic disturbance rejec­
tion. Adaptive disturbance rejection algorithms which are robust 
with respect to changes in the disturbance input modes are pre­
sented and their properties analyzed. When the performance vari­
able is the same as the measurement signal, the adaptation results 
in an on-line implementation of the Internal Model Principle. 
Experimental implementation and evaluation of the proposed con­
trollers, for noise cancellation in an acoustic duct, is presented in 
a companion paper [4]. 
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