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ABSTRACT
In many cases, the quantitative relevance of physical effects

for a given technical problem is not known a priori. This holds
especially for the analysis of the dynamics. Adopted from non-
analog circuit design, in the last years symbolic model reduction
techniques found their way towards mechatronic system model-
ing. Given a scenario (system inputs, initial values, parameters)
and an error bound, symbolic model reduction reduces the de-
tailed model to a less complex model, which is guaranteed to
stay within predefined error bounds. However, presently sym-
bolic reduction techniques deliver reduced models, which are
only verified for a single scenario. For example a reduced ve-
hicle model emerging from the reduction of a complex multibody
vehicle model for a cornering maneuver with a small constant
steering angle, is not verified to stay inside the error bounds for
any other maneuver. In this contribution this drawback is ad-
dressed by the use of interval-valued scenarios.

1 INTRODUCTION
Having a detailed model of a technical system at hand, often

it is not clear which physical effects have a major influence on the
solution. Therefore reducing the complexity of a technicalsys-
tem manually is a hard task mainly relying on the intuition and
experience of the design engineer. This holds even more for mod-
els build up by simulation-tools like Dymola [1] or Adams [2],
because the emerging mathematical model is mostly hard to in-
terpret. Hence, algorithms for the automated model reduction are

required. Symbolic reduction techniques were first developed to
generate behavioral models of non-linear analog electrical cir-
cuits [3,4]. Behavioral models are particular helpful for example
in circuit design. Mostly used for behavioral model generation
is the so-called DC-analysis, which considers the circuit in the
steady state. Hence, ranking procedures were developed only for
the DC-analysis. Transient ranking procedures were presented
in [5]. Having transient ranking procedures for arbitrary DAE-
systems at hand, the symbolic reduction techniques can be effec-
tively used for the reduction of any mechatronic system [6].As
opposed to the DC-analysis, for the transient analysis a simula-
tion scenario (initial values, system inputs and parameters) must
be chosen. Thus, here the symbolic reduction techniques deliver
a reduced model, which is verified only for the chosen scenario.
This is a huge drawback especially for systems which allow for
user engagement. For such systems the identification of signifi-
cant scenarios is an additional hard task. As an example, a cor-
nering maneuver or a straight ahead travel are typical maneuvers
for a vehicle, but the parameters like velocity or steering angle
can vary in wide range. Here this drawback is tried to overcome
by means of interval methods for the transient analysis, which is
mathematically speaking an initial value problem. Using interval
methods interval-valued initial values and/or parameterscan be
treated [7].
This contribution is structured as follows. First symbolicreduc-
tion techniques are presented. Then interval methods for initial
value problems are shown and integrated into the reduction algo-
rithm. Afterwards the results are presented. It will be seen, that
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Figure 1. SCHEME OF THE REDUCTION ALGORITHM

the presented algorithm works fine for small systems, but fails for
complex ones. Hence, in the outlook further approaches, which
are part of current research, are discussed. Furthermore a con-
clusion is drawn.

2 SYMBOLIC MODEL REDUCTION
In order to extend existing symbolic reduction techniques

for the use of interval-valued scenarios, first the state of the art
is reviewed. The basic idea of symbolic model reduction tech-
niques is to identify those terms of a DAE (or ODE) system,
whose influence on the solution of the system is minor, and to
perform a reduction on them (e.g. to neglect them). The algo-
rithm consists of two steps, see for example [6] and [8]. First,
for a specific reduction the influence of each term on the solu-
tion of the DAE-System is estimated in the so called “ranking”.
Then the terms are sorted ascendingly with respect to their influ-
ence on the solution in order to perform the reductions as long as
the solution of the reduced DAE-System remains within a user-
defined error boundε [8]. Possible reduction techniques are neg-
ligence of terms, setting terms to constants, linearization of terms
or symmetry considerations. While the first three reductionsare
operations on terms of the DAE-System, the last one operateson
variables as follows: First, all variables are checked against each
other for being symmetric in the sense, that they have similar
values similar along the whole simulation. For two similar vari-
ables every occurrence of the first variable is substituted by the

second variable. One equation (the one leading to the smallest
error) is deleted. The symbolic reduction algorithm is visualized
in Fig.1 for a chosen reduction technique. Given a scenario (sys-
tem inputs,initial states and parameters) and an error bound, the
algorithm starts with the ranking. Here, the influence of perform-
ing a reduction on a specific term is estimated by a simplified
simulation. Afterwards it is checked whether the reductions lead
to an error inside the error bounds, beginning with the smallest.
Finally, a less detailed model, performing within the prescribed
error bounds results.
Let now

F : Ω× I 7→R
m (1)

be differentiable, whereΩ ⊂R
n×R

n is an open set. Then

F(x, ẋ, t) = 0 (2)

is called DAE-system if∂F
∂ẋ is singular. Furthermore, letF be

given in expanded form

Fi(x, ẋ, t) =
l1i

∑
k=1

t1
ki
(x, ẋ, t), 1≤ i ≤ m, (3)

wherel1
i is the number of terms inFi andt1

ki
denotes thek-th term

in Fi . Each term in the first levelt1
ki

may consist of a functionf 1
ki

,

whose argument is a sum ofl2
i second level subtermst2

ki
(1≤ i ≤

l2
i )

t1
ki
(x, ẋ, t) = f 1

ki
(

l2i

∑
k=1

t2
ki
(x, ẋ, t)), (4)

and so on. Here level indicates the hierarchy of arguments nested
into each other in each single summand. Then the setT i is the
set of all terms in thei-th level. The manipulation of a term is
called reduction in the following. Consequently, for the set of all
reductionsK i for one reduction technique in a leveli, it holds

∣∣T i
∣∣ =

∣∣K i
∣∣ . (5)

For κ ∈ K

Fκ = 0 (6)
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is the DAE-system emerging from the reductionκ. Then for
DAE-systems of the form of Eqn. 2

F(x, ẋ, t,u) = 0 (7)

with system inputsu, a scenario is the set of a vector field defined
on the intervalI for the system inputs, the initial values and the
parameters. Furthermore,N (F(x, ẋ, t),u) is the solution of eqn.
2 computed by a numerical integratorN at nodest1, . . . , tN. The
solution

y =

[
yout

y

]
= N (F(x, ẋ, t),u) (8)

consists of two components. Inyout thenout output variables are
contained, whiley consists of the remaining internal variables.

2.1 Reduction Techniques
As mentioned above possible reduction techniques are the

negligence of terms (Uneg), setting terms to constants (Uconst),
symmetry considerations or the simplification of piecewisefunc-
tions. Throughout this paper only the first two reduction tech-
niques are considered. While the negligence of terms does not
require any information about the term under consideration, set-
ting to a constant does. UsingUconst, usually the considered
term is replaced by its mean value throughout the simulationand
hence depends on the scenario. Certainly, that mean value has to
be computed performing a reference simulation first. However,
this is no drawback, since a reference simulation is essential for
the ranking anyway.

2.2 Ranking
In [5] different ranking algorithms are proposed. Here the

so called One-Step- and the Residual-Ranking will be discussed.
In general a ranking procedure estimates the influence of a re-
duction on the solution of a DAE (or ODE) system. Usually the
error emerging from the reduction is considered. To estimate that
error a reference solutiony⋆ is required. The crux of the matter
is that the quality of the estimate raises with the duration of the
ranking procedure. Clearly, an fast and accurate ranking proce-
dure is sought. Mathematically speaking a ranking procedure R

maps two DAE-systems on a real value, estimating the error be-
tween their solutions. Apparently, performing a simulation for
each reduction would lead to the perfect estimate, but last very
long.

2.2.1 Residual Ranking Let y⋆ be the reference solu-
tion calculated by a numerical integratorN

y⋆ = N (F). (9)

Then

∥∥F(y⋆(ti), ẏ⋆(ti),u(ti))
∥∥ < η, (1≤ i ≤ N) (10)

holds for a prescribed accuracyη. Hence,

Rres(F,κ) =

∥∥∥∥∥∥∥




∥∥Fκ(y⋆(t1), ẏ⋆(t1),u(t1))
∥∥

...∥∥Fκ(y⋆(tN), ẏ⋆(tN),u(tN)
∥∥)




∥∥∥∥∥∥∥
(11)

seems to be a good estimate for the error resulting from the re-
ductionκ ∈ K . The residual ranking is a very fast ranking pro-
cedure due to its simplicity.

2.2.2 One-Step Ranking Typically, computing the
solution of a DAE-system, at each time step a non-linear sys-
tem of equations is iteratively solved. Usually the solution of the
preceding time step is used as the initial value for the solution of
the system of non-linear equations at the next time-step. For the
computation of the solution of Eqn.6, the reference solution y⋆

at the corresponding time steps can be used for the initial values.
Now, additionally limiting the iterations to one, a estimate of the
solution of Eqn.6̂y is obtained. Consequently

Rstep(F,κ) = ‖y⋆
out− ŷout‖ (12)

is computed. The one-step ranking is more accurate than the
residual ranking and delivers a good compromise between accu-
racy and runtime.

2.3 Term Cancellation
During the term cancellation procedure reductions are per-

formed as long as the emerging error remains within the pre-
scribed error boundε. The emerging error is measured only at
the nout output variables. Thus,ε has dimensionnout. To per-
form as many reductions as possible, it is beneficial to startwith
those reductions, which lead to a small error. Thus, first theset
of reductionsK is sorted in ascending order depending on the
ranking, resulting inKsort. Now, one possibility is to check one
reduction ofKsort after the other. This is done by checking the
computed solution of the reduced DAE-system for staying within
the error boundε. However, this method can be accelerated by
the use of clusters [9]. Using clusters, the set of reductions Ksort

is divided intosdisjunct subsets

Ksort =
s⋃

i=1

Si , (13)
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where

S = [S1, . . . ,Ss]. (14)

Each clusterSi contains reductions leading to a similar estimated
error (for example up to a factor of 10). Now the clusters are
checked one after another, beginning withS1 containing the re-
ductions leading to the smallest estimated error. Thus, multiple
reductions can be verified by one simulation. If a clusterSi can
not be verified (the reductions ofSi lead to errors greater than
the error boundε), Si is divided disjunct into two clustersS1

i
and S2

i . The term cancellation procedure then continues with
Sk

i (1 ≤ k ≤ 2). The whole reduction algorithm is shown in al-
gorithm 1 for a reduction techniqueU, a ranking procedureR , a
numerical integratorN and a certain levelk. Here for a reduction
κ ∈ K , κ−1 undoes the reduction.

Algorithm 1 REDUCTION ALGORITHM
Require: DAE-systemF, Error Boundε, Scenariou
Ensure: Reduced DAE-SystemG

yre f
out ⇐ N (F,u)

G ⇐ F
r ⇐ R (F,K k)
ComputeS from r
while S 6= /0 do

St = S1

S = S \S1

for all κ ∈ St do
G ⇐ Gκ

end for
yout ⇐ N (G,u)

εti ⇐
∥∥∥yre f

outi −youti

∥∥∥ , 1≤ i ≤ nout

if εt ≥ ε then
for all κi do

G ⇐ Gκ−1

end for
Divide St into S1

t andS2
t

S ⇐ [S1
t ,S2

t ,S ]
end if

end while

3 VALIDATED SOLUTION OF INITIAL VALUE PROB-
LEMS
In many applications the initial values and/or the parame-

ters of the system under consideration are uncertain. In order to
take this uncertainty into account intervals can be employed [10].

Several solvers for ODEs containing uncertainty exist [7],but
none for DAEs with uncertain initial values and/or parameters.
Thus, in the next sections only systems which can be modeled as
an system of ODEs are considered.

3.1 Solving Initial Value Problems Containing Uncer-
tainty

Classical interval methods for ODEs are based on Taylor se-
ries expansion. These methods are implemented for example
in the AWA [11] and the VNODE(-LP) [12, 13] package. The
COSY VI [14] as well as the VSPODE [15,16] solver are based
on Taylor models [17]. As VSPODE is the only solver for ODEs
with interval valued initial values and interval valued parameters,
it is chosen here and shortly reviewed. Given an initial value
problem

ẋ = f(x,ϕ), x(t0) = x0 ∈ X0, ϕ ∈ Θ, (15)

whereϕ is ap-dimensional parameter vector,X0 andΘ are inter-
vals and

f : Rn×R
p 7→R

m (16)

is differentiable as needed. The solution of Eqn. 15 is a function
that is interval valued. Now interval enclosures of that function
y(t) at all nodesti (1 ≤ i ≤ N) are desired. The algorithm con-
sists of two steps. First a coarse a priori enclosure is computed,
which is tightened in a second step. In the first phase with the
help of Banach’s fixed point theorem and a traditional high-order
method [18] a new step sizehi = ti+1− ti is computed such that
uniqueness of the solution is guaranteed inside a coarse enclo-
sure of the solution. The high order method is a generalization
of the Picard-iteration [11]. In the second phase tighter bounds
are computed using Taylor models and the mean value theorem.
Furthermore, the result is improved applying advanced methods
basing on a QR-factorization, in order to reduce the wrapping
effect (error from enclosing a non-rectangular region by a rect-
angle) [10]. Noteworthy, the quality of the bounds depend onthe
order used for the Taylor models and the Taylor series, i.e. higher
orders lead to tighter bounds, but longer runtime.

3.2 Application to Symbolic Model Reduction
Now, the VSPODE solver is integrated into to model re-

duction algorithm in order to reduce systems simulated for in-
terval valued scenarios. Due to the absence of an interval DAE
solver [7], only systems of the form Eqn.15 are be considered
from now on. SettingN to the VSPODE solver and using the
same notation as for DAEs, the structure of algorithm 1 remains
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Figure 2. THE LINEAR ONE-TRACK MODEL

the same, but some modifications are necessary. The ranking pro-
cedure and the term cancellation have to be adjusted. The resid-
ual ranking can be used without modifications. For a more ac-
curate ranking the one-step ranking could be adopted in the way,
that the iterative high-order method uses initial values from the
reference simulation and performs only one iteration. Though,
this approach seems not very promising due to the unchanged
second phase and the sensitivity of the solver on the expansion
of the intervals. The second phenomenon is further explained in
the next section. Here another ranking procedure is chosen.Sim-
ply the order of the Taylor models and the Taylor series is low-
ered. This leads to less computational effort, and worse bounds.
Thus, this approach is suitable for the ranking of an interval ini-
tial value problem. In algorithm 1 a reductionκ (or a clusterS0

of reductions) is verified, if

∥∥N (F,u)i −N (Fκ
,u)i

∥∥ < εi , 1≤ i ≤ nout. (17)

For two intervalsa andb the subtraction is defined as

a−b = [Sup(a)− In f (b), In f (a)−Sup(b)], (18)

and therefore Eqn. 17 does not represent the change of the so-
lution properly in case of intervals. A more adequate criterion is
that the inequality

max
1≤ j≤N

max
Op∈{Sup,In f}

∣∣Op(N (F,u)i, j)−Op(N (Fκ
,u)i, j)

∣∣ < εi ,

(19)

holds for 1≤ i ≤ nout.The left hand side of Eqn.19 computes
the maximum of the deviation of the supremum and the infimum
from the reference solution. Hence, the maximum deviation from
the reference solution can be bounded byε.

Table 1. PARAMETERS OF THE LINEAR ONE TRACK MODEL

Jz Inertia 1920kg·m2

m Mass 1450kg

CR
α Spring constant rear 100000N

m

CF
α Spring constant front 80000N

m

lR length to rear tire 1.45m

lF length to front tire 1.3m

4 RESULTS
4.1 Reduction of a Linear One Track Model

The reduction algorithm is implemented in Matlab using the
Maple Toolbox for Matlab. Since the VSPODE solver is imple-
mented in C++ it is called via a MEX-function. The results are
computed on a 1.8 GHz PC and visualized using INTLAB [19].
As a first example, the linear one track model is presented. The
linear one track model describes the dynamics of a vehicle for
a constant velocity [20]. Although the complex vehicle dynam-
ics are already simplified during the derivation of the linear one
track model some reductions are expected. Looking at Fig.2 and
using the approximations

FyF ≈−CF
α · (

vy + ψ̇ · lF

v
) andFyR ≈−CR

α · (
vy− ψ̇ · lR

v
), (20)

for small steering anglesδ the ODE of the linear single track
model reads

v̇y = −
CR

α +CF
α

m·v
vy +(

CR
α · lR−CF

α · lF

m·v
−v)ψ̇+

CF
α

m
δ (21)

ψ̈ =
CR

α · lR+CF
α · lF

Jz ·v
vy− (

CR
α · lR2

+CF
α · lF 2

Jz ·v
)ψ̇+

CF
α · lF

Jz
δ

(22)

ṙx = v·cosψ−vy ·sinψ (23)

ṙy = v·sinψ+vy ·cosψ (24)

in state space, wherevy is the lateral velocity,ψ is the yaw angle
andrx respectivelyry denote the position of the vehicle. In Tab.1
the parameters of the linear one track model are shown. The
reduction is performed for a straight-ahead travel and a cornering
maneuver, each lasting ten seconds.

4.1.1 Straight-Ahead Travel The straight travel is
performed twice. In the first scenario the velocityv is set to
v = 16.6m

s , while in the second scenariov is interval valued and
set tov = [16.6,19.4]m

s . Furthermore, the steering angle at the
wheelδ is set toδ = [− π

1800,
π

1800]
◦. Hence, the linear one track
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Figure 3. INTERVAL-VALUED POSITION OF THE DETAILED MODEL

FOR THE STRAIGHT-AHEAD TRAVEL WITH v = 16.6m
s
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Figure 4. INTERVAL-VALUED POSITION OF THE DETAILED MODEL

FOR THE STRAIGHT-AHEAD TRAVEL WITH [16.6,19.4]m
s

model is tried to be reduced not only for a straight-ahead travel,
but also for small steering angles and a variable velocity. In both
cases the position of the vehicle is chosen as output. Setting an
error bound ofεr i = 0.1m (i ∈ {x,y}) on rx and ry for the first
scenario, the model reduces to

v̇y = [−0.13772,0.13772]+ [−0.13745,0.13745] (25)

ψ̈ = [−0.00825,0.00825] (26)

ṙx = [16.64796,16.667] (27)

ṙy = sinψ ·v. (28)
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Obviously, the lateral acceleration, the yaw rate and the velocity
in x-direction are set to intervals with constant bounds, i.e. their
mean values. Furthermore, the term of the right hand side of the
the lateral velocity, which depends on the lateral velocityitself is
neglected, since the lateral velocity is quite low. In Fig. 5and 6
the error in the position is plotted. The error is computed asfor
the term cancellation using the left hand side of Eqn. 19. Since
the velocity inx-direction is set to the mean value, the error inrx

is maximal att = 0.5s. Contrary, the error inry grows with time.
In Fig. 3 the output variablesrx andry of the original model are
plotted. Note that the plot consists of many thin intervals due to
the real valued velocity.
The plot of the output variablesrx andry for the second scenario
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is given in Fig. 4. Raising the error bound torx = 10m and
ry = 0.6m, the reduced model reads

v̇y = [−0.18137,0.18137]+ [−0.14601,0.14601] (29)

ψ̈ = [−0.10917,0.10917]+ [−0.09457,0.09457] (30)

ṙx = cos[−0.04335,0.04335] ·v+[16.6667,16.6667] (31)

ṙy = sinψ ·v. (32)

As can be seen in Fig. 7 and 8 here the actual error inry seems
to stay far from the maximum. However, during the reduction
algorithm the error reaches 0.3071m, but drops to a maximum
of 0.0463m again. That effect occurs, if two reductions produce
errors, which prone to erase each other. This effect can alsobe
observed in Fig. 8. Without the last reduction the error would
not start to decrease at the value of 0.0463m, but raise further to
0.3071m. The last reduction causes an error in the other direction
and the leads to the shown plot. Obviously, this is an additional
argument for the use of clusters in the term cancellation proce-
dure.

4.1.2 Cornering As well as the straight-ahead travel
the cornering maneuver is performed with a real valued velocity
of v = 16.6m

s and an interval valued velocity ofv = [13.8,16.6].
This time the lateral acceleration ˙vy and the yaw ratëψ are cho-
sen as output variables, since they are often more significant for
vehicle dynamics than position. Hence, the output

[
v̇y ψ̈

]T
is

calculated via the output matrixC and the feedforward matrixD
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Figure 9. INTERVAL-VALUED POSITION OF THE DETAILED MODEL

FOR A CORNERING MANEUVER TRAVEL WITH v = 16.6m
s and δ =

[2
3,1]◦

by

[
v̇y ψ̈

]T
=


 −

CR
α+CF

α
m·v (

CR
α ·l

R−CF
α ·lF

m·v −v)
CR

α ·l
R+CF

α ·lF

Jz·v
(

CR
α ·l

R2
+CF

α ·lF
2

Jz·v
)




︸ ︷︷ ︸
C

[
vy

ψ̈

]
+

[
CF

α
m

CF
α ·lF

Jz

]

︸ ︷︷ ︸
D

δ.

(33)

First the case of a real valued velocity is considered. The posi-
tion of the vehicle is plotted in Fig.9. For a constant real valued
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steering angle the system reaches steady state after a while. For
an interval valued steering angle ofδ = [2

3,1]◦ at the front-wheel
the same holds as can be seen in Fig.10 and 11. Consequently,
one would expect the right hand sides of Eqn. 21 -24 to vanish.
Starting in the interval steady state the model reduces as expected
to

v̇y = 0 (34)

ψ̈ = 0 (35)

ṙx = 0 (36)

ṙy = 0. (37)

Here the error boundsεv̇y = 0.01m
s andεψ̈ = 0.001 are used. As

expected the dynamics of the model vanish and the lateral accel-
eration as well as the yaw rate remain constant. On the one hand
this is the expected result, on the other hand the result is not only
obtained for cornering with a constant steering angle, but also for
cornering with a steering angle between2

3
◦

and 1◦.
As a last example the velocity is interval valued again and set
to v = [13.8,16.6]. Furthermore, the system does not start from
steady state this time. Using the same steering angle as above
and the error boundsεv̇y = 0.3m

s2 andεψ̈ = 0.1 the reduced sys-
tem reads

v̇y = 0 (38)

ψ̈ = −(
CR

α · lR2
+CF

α · lF 2

Jz ·v
)ψ̇+

CF
α · lF

Jz
δ (39)

ṙx = 0 (40)

ṙy = 0. (41)

Here the simulation time was set to 2s, since the system reaches
steady state within this time and the error remains constantas can
be seen in Fig. 12 and 13.

4.2 Reduction of a Planar Two Track Model
The underlying planar two track model consists of 18 states.

One for the rotation of each wheel, two for the planar forces act-
ing on each tire and six for the position and orientation of the ve-
hicle. The steady state tire forces are calculated using thelinear
part of the Dugoff tire model [21]. Simulating that model with an
interval-valued steering angle at the wheels ofδ = [−10−6,10−6]
the integration aborts after 0.05s, since the diameter of the re-
sulting interval valued states gets to large. Hence, even for a
very small steering angle the simulation can not be performed.
Consequently, the reduction could not be performed for interval
scenarios. The results for single scenarios can be found in [22].
The break-down time of the solver shrinks with the complexity
of the system. Hence, in order to perform a symbolic reduction
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Figure 10. YAW RATE FOR THE FIRST TWO SECONDS OF A COR-
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one has to check first if the system under consideration can be
simulated for the chosen interval valued scenario.

5 CONCLUSION AND OUTLOOK
In this contribution an approach for the extension of sym-

bolic reduction techniques is presented. The use of interval sce-
narios leads to reduced models, which are valid not only for one
scenario. The algorithm delivers fine results in the case of small
systems as for example the linear one track model. For com-
plex systems the algorithm fails, due to the absence of a feasible
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solver. Here other approaches are part of current research.Since,
discretizing scenario regions would lead to very high computa-
tional effort the procedures shown in [23] or [24] seem promis-
ing. Another way could be the backward computation of reach-
ability sets as presented in [25]. Though, the computation of
reachability sets is computationally even more expensive than
solving initial value problems with uncertain initial values. A
compromise might by the forward computation of reachability
sets using piecewise linear approximations [26]. The choice of
an efficient method for complex systems and its examination is
part of future work.
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Anfangs-und Randwertaufgaben und Anordnungen”. PhD
thesis, PhD thesis, University of Karlsruhe.

[12] Nedialkov, N., and Jackson, K., 2002. “The design and im-
plementation of an object-oriented validated ODE solver”.
Draft, available via http://www. cas. mcmaster. ca/nedialk.

[13] Nedialkov, N., 2006. VNODE-LP. Tech. rep., Department
of Computing and Software , McMaster University.

[14] Makino, K., and Berz, M., 2006. “COSY INFINITY Ver-
sion 9”. Nuclear Inst. and Methods in Physics Research, A,
558(1), pp. 346–350.

[15] Lin, Y., and Stadtherr, M., 2006. “Validated Solution of
Initial Value Problems for ODEs with Interval Parameters”.
2nd NSF Workshop on Reliable Engineering Computing,
Savannah,.

[16] Lin, Y., and Stadtherr, M., 2007. “Validated solutionsof

9 Copyright c© 2009 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



initial value problems for parametric ODEs”.Applied Nu-
merical Mathematics,57(10), pp. 1145–1162.

[17] Neher, M., Jackson, K., and Nedialkov, N., 2007. “On Tay-
lor Model Based Integration of ODEs”.SIAM Journal on
Numerical Analysis,45(1), p. 236.

[18] Nedialkov, N., Jackson, K., and Pryce, J., 2001. “An effec-
tive high-order interval method for validating existence and
uniqueness of the solution of an IVP for an ODE”.Reliable
computing,7(6), pp. 449–465.

[19] Rump, S., 1999. “INTLAB-INTerval LABoratory”.Devel-
opments in Reliable Computing, pp. 77–104.

[20] Riekert, P., and Schunck, T., 1940. “Zur Fahrmechanik des
gummibereiften Kraftfahrzeugs”.Archive of Applied Me-
chanics (Ingenieur Archiv),11(3), pp. 210–224.

[21] Dugoff, H., Fancher, P., Segel, L., of Michigan, U., of Stan-
dards, N. B., States, U., Institute, H. S. R., and Bureau, N.
H. S., 1969. Tire Performance Characteristics Affecting
Vehicle Response to Steering and Braking Control Inputs.
Michigan Highway Safety Research Institute.

[22] Mikelsons, L., Unterreiner, M., and Brandt, T., 2009. “Gen-
eration of Continuously Adjustable Vehicle Models using
Symbolic Reduction Methods”.To appear in ECCOMAS
Multibody Dynamics 2009.

[23] Girard, A., and Pappas, G., 2006. “Verification Using Sim-
ulation”. Lecture Notes in Computer Science,3927, p. 272.

[24] Kapinski, J., Krogh, B., Maler, O., and Stursberg, O., 2003.
“On Systematic Simulation of Open Continuous Systems”.
Lecture Notes in Computer Science, pp. 283–297.

[25] Mitchell, I., Bayen, A., and Tomlin, C., 2005. “A time-
dependent Hamilton-Jacobi formulation of reachable sets
for continuous dynamic games”.Automatic Control, IEEE
Transactions on,50(7), pp. 947–957.

[26] Asarin, E., Dang, T., and Girard, A., 2003. “Reachabil-
ity Analysis of Nonlinear Systems Using Conservative Ap-
proximation”. Lecture Notes in Computer Science, pp. 20–
35.

10 Copyright c© 2009 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use


