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ABSTRACT

In many cases, the quantitative relevance of physicaltsffec
for a given technical problem is not known a priori. This told
especially for the analysis of the dynamics. Adopted from no
analog circuit design, in the last years symbolic model wigdun
techniques found their way towards mechatronic system imode
ing. Given a scenario (system inputs, initial values, pagters)
and an error bound, symbolic model reduction reduces the de-
tailed model to a less complex model, which is guaranteed to
stay within predefined error bounds. However, presently-sym
bolic reduction techniques deliver reduced models, whigh a
only verified for a single scenario. For example a reduced ve-
hicle model emerging from the reduction of a complex muiiybo
vehicle model for a cornering maneuver with a small constant
steering angle, is not verified to stay inside the error baufot
any other maneuver. In this contribution this drawback is ad
dressed by the use of interval-valued scenarios.

1 INTRODUCTION

Having a detailed model of a technical system at hand, often
itis not clear which physical effects have a major influencée
solution. Therefore reducing the complexity of a techngad-
tem manually is a hard task mainly relying on the intuitiom an
experience of the design engineer. This holds even moreddr m
els build up by simulation-tools like Dymola [1] or Adams [2]
because the emerging mathematical model is mostly hard to in
terpret. Hence, algorithms for the automated model rednétie
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required. Symbolic reduction techniques were first dewsdidp
generate behavioral models of non-linear analog elettcica
cuits [3,4]. Behavioral models are particular helpful feample

in circuit design. Mostly used for behavioral model generat
is the so-called DC-analysis, which considers the ciraquithie
steady state. Hence, ranking procedures were developgéoonl
the DC-analysis. Transient ranking procedures were pteden
in [5]. Having transient ranking procedures for arbitrarB
systems at hand, the symbolic reduction techniques carfde ef
tively used for the reduction of any mechatronic system f&.
opposed to the DC-analysis, for the transient analysis alaim
tion scenario (initial values, system inputs and pararsgtanst
be chosen. Thus, here the symbolic reduction techniquesedel
a reduced model, which is verified only for the chosen scenari
This is a huge drawback especially for systems which allaw fo
user engagement. For such systems the identification afisign
cant scenarios is an additional hard task. As an exampler-a cc
nering maneuver or a straight ahead travel are typical meangu
for a vehicle, but the parameters like velocity or steeringlea
can vary in wide range. Here this drawback is tried to overeom
by means of interval methods for the transient analysiscivis
mathematically speaking an initial value problem. Usirtgiival
methods interval-valued initial values and/or parameters be
treated [7].

This contribution is structured as follows. First symbakcluc-
tion techniques are presented. Then interval methods fibalin
value problems are shown and integrated into the reducliym a
rithm. Afterwards the results are presented. It will be séleat
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Figure 1. SCHEME OF THE REDUCTION ALGORITHM

the presented algorithm works fine for small systems, bl fiai
complex ones. Hence, in the outlook further approaches;twhi
are part of current research, are discussed. Furthermasa-a c
clusion is drawn.

2 SYMBOLIC MODEL REDUCTION

In order to extend existing symbolic reduction techniques
for the use of interval-valued scenarios, first the staténefart
is reviewed. The basic idea of symbolic model reduction-tech
niques is to identify those terms of a DAE (or ODE) system,
whose influence on the solution of the system is minor, and to
perform a reduction on them (e.g. to neglect them). The algo-
rithm consists of two steps, see for example [6] and [8]. tFirs
for a specific reduction the influence of each term on the solu-
tion of the DAE-System is estimated in the so called “ranking
Then the terms are sorted ascendingly with respect to thiir i
ence on the solution in order to perform the reductions ag &
the solution of the reduced DAE-System remains within a-user
defined error bound [8]. Possible reduction techniques are neg-
ligence of terms, setting terms to constants, linearinatfderms
or symmetry considerations. While the first three reductemes
operations on terms of the DAE-System, the last one opeoates
variables as follows: First, all variables are checkedragaach
other for being symmetric in the sense, that they have simila
values similar along the whole simulation. For two similariv
ables every occurrence of the first variable is substitutethe

second variable. One equation (the one leading to the sshalle
error) is deleted. The symbolic reduction algorithm is el&zed

in Fig.1 for a chosen reduction technique. Given a scenayi®- (
tem inputs,initial states and parameters) and an errordyabe
algorithm starts with the ranking. Here, the influence ofqen-

ing a reduction on a specific term is estimated by a simplifiec
simulation. Afterwards it is checked whether the reductitrad

to an error inside the error bounds, beginning with the ssall
Finally, a less detailed model, performing within the préssd
error bounds results.

Let now

F:Qx|—RM 1)

be differentiable, wher® c R" x R" is an open set. Then

F(x,x,t) =0 (2)

is called DAE-system ii‘% is singular. Furthermore, Ié% be
given in expanded form

1
I

Fi(x,x,t) = Ztl}i(x,k,t), 1<i<m, (3)
k=1

Whereli1 is the number of terms iRj andtlii denotes th&-th term
in F;. Each term in the first Ievelt may consist of a functiof,
whose argument is a sum i¥fsecond level subternh% (1<i<

I?)

2
I

té(X,)'(,t) = fl}@(zté(xv).(vt))? (4)
k=1

and so on. Here level indicates the hierarchy of argumerstede
into each other in each single summand. Then theZ$és the
set of all terms in thé-th level. The manipulation of a term is
called reduction in the following. Consequently, for thecfeall
reductionsX' for one reduction technique in a levelt holds

|7 =] %] ®)

Fork e K
FK=0 (6)
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is the DAE-system emerging from the reduction Then for
DAE-systems of the form of Eqn. 2
F(x,x,t,u) =0 (7
with system inputsl, a scenario is the set of a vector field defined
on the interval for the system inputs, the initial values and the
parameters. Furthermor@((F (x,X,t),u) is the solution of eqn.

2 computed by a numerical integrataf at nodedy,...,tn. The
solution

y= [y} — A(F (x50, u) ®)

y

consists of two components. 3, the ngy; output variables are
contained, whilg/ consists of the remaining internal variables.

2.1 Reduction Techniques

Then

[F(y*(),y*(t).ut)]| <n. (1<i<N)  (10)
holds for a prescribed accuragy Hence,
[[F<(y* (ta). y*(ta) u(ta) |
Rees(F, k) = : (11)
|

PO ),y (), u) )

seems to be a good estimate for the error resulting from the re
ductionk € XK. The residual ranking is a very fast ranking pro-
cedure due to its simplicity.

2.2.2 One-Step Ranking Typically, computing the
solution of a DAE-system, at each time step a non-linear sys

As mentioned above possible reduction techniques are the tem of equations is iteratively solved. Usually the solutad the

negligence of termsneg), setting terms to constant$l{onsy),
symmetry considerations or the simplification of pieceviise-
tions. Throughout this paper only the first two reductiorhtec

preceding time step is used as the initial value for the swiwdf
the system of non-linear equations at the next time-steptheo
computation of the solution of Eqn.6, the reference sofuyio

niques are considered. While the negligence of terms does notat the corresponding time steps can be used for the initiaésa

require any information about the term under consideraet:
ting to a constant does. UsinUcons; Usually the considered
term is replaced by its mean value throughout the simulatiwh
hence depends on the scenario. Certainly, that mean vasue ha
be computed performing a reference simulation first. Howeve
this is no drawback, since a reference simulation is essdnti
the ranking anyway.

2.2 Ranking

In [5] different ranking algorithms are proposed. Here the
so called One-Step- and the Residual-Ranking will be dissalis
In general a ranking procedure estimates the influence of a re
duction on the solution of a DAE (or ODE) system. Usually the
error emerging from the reduction is considered. To es#rtteit
error a reference solutioyr is required. The crux of the matter
is that the quality of the estimate raises with the duratibthe
ranking procedure. Clearly, an fast and accurate rankingepr
dure is sought. Mathematically speaking a ranking proce@ur
maps two DAE-systems on a real value, estimating the error be
tween their solutions. Apparently, performing a simulatfor
each reduction would lead to the perfect estimate, but kst v
long.

2.2.1 Residual Ranking Lety* be the reference solu-
tion calculated by a numerical integratyf

©)

Now, additionally limiting the iterations to one, a estimaf the
solution of Eqn.6y is obtained. Consequently

Rster F,K) = [[Yout — Yout (12)

is computed. The one-step ranking is more accurate than tr
residual ranking and delivers a good compromise betweanacc
racy and runtime.

2.3 Term Cancellation

During the term cancellation procedure reductions are per
formed as long as the emerging error remains within the pre
scribed error bound. The emerging error is measured only at
the ngyt output variables. Thus has dimensiomgy:. To per-
form as many reductions as possible, it is beneficial to stiint
those reductions, which lead to a small error. Thus, firsstte
of reductionsX is sorted in ascending order depending on the
ranking, resulting inksort. Now, one possibility is to check one
reduction of Xsot after the other. This is done by checking the
computed solution of the reduced DAE-system for stayingiwit
the error bouna. However, this method can be accelerated by
the use of clusters [9]. Using clusters, the set of redustikya,
is divided intos disjunct subsets

s
Ksort:USia

i=1

(13)
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where

(14)

Each clustes; contains reductions leading to a similar estimated
error (for example up to a factor of 10). Now the clusters are
checked one after another, beginning wihcontaining the re-
ductions leading to the smallest estimated error. Thustipheil
reductions can be verified by one simulation. If a clusietan

not be verified (the reductions of lead to errors greater than
the error boundt), S is divided disjunct into two clusters?
and $?. The term cancellation procedure then continues with
Sik (1 <k <2). The whole reduction algorithm is shown in al-
gorithm 1 for a reduction techniqu&, a ranking procedur® , a
numerical integratof\’ and a certain leved. Here for a reduction

K € K, k1 undoes the reduction.

Algorithm 1 REDUCTION ALGORITHM
Require: DAE-systemF, Error Boundg, Scenarial
Ensure Reduced DAE-Syster@
Yl < a((F,u)
G<«F
r< R(F, K%
ComputeSfromr
while § # 0 do
S=5
S=5\$%
for all k € S do
G <G~
end for
Yout <= N(G u)
t < wn
|f & > ethen
for all kj do
GeGX'
end for
Divide % into 5t and.$?
S <= [5t1a5t275}
end if
end while

Yout ||, L <1 < Nout

3 VALIDATED SOLUTION OF INITIAL VALUE PROB-
LEMS
In many applications the initial values and/or the parame-
ters of the system under consideration are uncertain. lerdod
take this uncertainty into account intervals can be empul$46].

Several solvers for ODEs containing uncertainty exist pdt
none for DAEs with uncertain initial values and/or paramete
Thus, in the next sections only systems which can be modsled :
an system of ODEs are considered.

3.1 Solving Initial Value Problems Containing Uncer-
tainty

Classical interval methods for ODEs are based on Taylor se
ries expansion. These methods are implemented for examp
in the AWA [11] and the VNODE(-LP) [12, 13] package. The
COSY VI [14] as well as the VSPODE [15, 16] solver are based
on Taylor models [17]. As VSPODE is the only solver for ODEs
with interval valued initial values and interval valued aaeters,
it is chosen here and shortly reviewed. Given an initial galu
problem

= f(xv¢)a X(tO) =Xo € XO; ¢ € ev (15)

where¢ is ap-dimensional parameter vectdf; and® are inter-
vals and

f:R"x RP > R™ (16)

is differentiable as needed. The solution of Eqn. 15 is atfanc
that is interval valued. Now interval enclosures of thatcfion
y(t) at all nodeg; (1 <i < N) are desired. The algorithm con-
sists of two steps. First a coarse a priori enclosure is céaadpu
which is tightened in a second step. In the first phase with the
help of Banach’s fixed point theorem and a traditional higtheo
method [18] a new step sizg = tj,; —tj is computed such that
uniqueness of the solution is guaranteed inside a coarde-enc
sure of the solution. The high order method is a generatinati
of the Picard-iteration [11]. In the second phase tightarmus
are computed using Taylor models and the mean value theorer
Furthermore, the result is improved applying advanced atkth
basing on a QR-factorization, in order to reduce the wragppin
effect (error from enclosing a non-rectangular region bea-r
angle) [10]. Noteworthy, the quality of the bounds depenthen
order used for the Taylor models and the Taylor series, ighehn
orders lead to tighter bounds, but longer runtime.

3.2 Application to Symbolic Model Reduction

Now, the VSPODE solver is integrated into to model re-
duction algorithm in order to reduce systems simulated rfer i
terval valued scenarios. Due to the absence of an intervé DA
solver [7], only systems of the form Eqn.15 are be considere
from now on. Setting\( to the VSPODE solver and using the
same notation as for DAES, the structure of algorithm 1 remai
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Figure 2. THE LINEAR ONE-TRACK MODEL

the same, but some modifications are necessary. The ranking p
cedure and the term cancellation have to be adjusted. Tlik res
ual ranking can be used without modifications. For a more ac-
curate ranking the one-step ranking could be adopted in #ye w
that the iterative high-order method uses initial valuesfithe
reference simulation and performs only one iteration. Thou

this approach seems not very promising due to the unchanged

second phase and the sensitivity of the solver on the exgansi
of the intervals. The second phenomenon is further expdaime
the next section. Here another ranking procedure is ch&ian.
ply the order of the Taylor models and the Taylor series is low
ered. This leads to less computational effort, and worsadsu
Thus, this approach is suitable for the ranking of an intenia
tial value problem. In algorithm 1 a reductien(or a clusterSy

of reductions) is verified, if

|AL(F,u)i = ALF u)i|| <&, 1< < noye. 17)
For two intervalsa andb the subtraction is defined as
a—b=[Sufda) —Inf(b),Inf(a) — Supb)], (18)

Table 1. PARAMETERS OF THE LINEAR ONE TRACK MODEL

J, | Inertia 192kg- n?
m | Mass 145kg
C§ Spring constant rear 10000({;‘—1
CF | Spring constant fron 80000%
IR | length to rear tire 1.45m
IF | length to front tire | 1.3m

4 RESULTS

4.1 Reduction of a Linear One Track Model

The reduction algorithm is implemented in Matlab using the
Maple Toolbox for Matlab. Since the VSPODE solver is imple-
mented in C++ it is called via a MEX-function. The results are
computed on a 1.8 GHz PC and visualized using INTLAB [19].
As a first example, the linear one track model is presented. Th
linear one track model describes the dynamics of a vehigle fo
a constant velocity [20]. Although the complex vehicle dyra
ics are already simplified during the derivation of the lineae
track model some reductions are expected. Looking at Figd2 a
using the approximations

vy+ - 17 v — - IR
Ry ~ —Cq (<, —) andR, = —Cg - (Z—_~—), (20)

for small steering angled the ODE of the linear single track
model reads
CF

_c§+c§v CRIR—CF-IF

— _ ] ~a
y = m-v y+( m-v V)L|J+ m o) (21)
_ CRURLCE.F CRIRPLCE.F?  CE.IF
b= 3V y—( 3V b+ X, 0
(22)
fx =V-CoS — vy -siny (23)
fy = V-siny 4 vy - cosy (24)

and therefore Eqn. 17 does not represent the change of the so-

lution properly in case of intervals. A more adequate daters
that the inequality

max max

F ) FK L X
1<j<NOpe{Supinf} ‘Op(N( 7U)IA]) OD(N( 7u)|-,J)| <&,

(19)

holds for 1< i < ngy.The left hand side of Eqn.19 computes
the maximum of the deviation of the supremum and the infimum
from the reference solution. Hence, the maximum deviatiomf
the reference solution can be boundecby

in state space, whewg is the lateral velocity is the yaw angle
andry respectivelyry denote the position of the vehicle. In Tab.1
the parameters of the linear one track model are shown. Th
reduction is performed for a straight-ahead travel and aerarg
maneuver, each lasting ten seconds.

4.1.1 Straight-Ahead Travel The straight travel is
performed twice. In the first scenario the velocitys set to
v=16.6T, while in the second scenaridis interval valued and
set tov = [16.6,19.4] 7. Furthermore, the steering angle at the
wheeld is set t0d = [— 1355, 1850/ Hence, the linear one track
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Figure 3. INTERVAL-VALUED POSITION OF THE DETAILED MODEL

FOR THE STRAIGHT-AHEAD TRAVEL WITH V = 16.6%]
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Figure 4. INTERVAL-VALUED POSITION OF THE DETAILED MODEL

FOR THE STRAIGHT-AHEAD TRAVEL WITH [16.6,19.4] o

model is tried to be reduced not only for a straight-aheacktra
but also for small steering angles and a variable veloaityadth
cases the position of the vehicle is chosen as output. §ettin
error bound ofe;; = 0.1m (i € {x,y}) onry andry for the first
scenario, the model reduces to

v = [-0.137720.13772+[-0.137450.137493 (25)
() = [-0.008250.00825 (26)
fx = [16.64796 16.667 (27)
fy=siny-v. (28)
6

o
o
>
‘
‘

2

©
o
N

Error in x-Position [m]
o
o
£

2.5 5 7.5 10
Time [s]

Figure 5.  ERRROR IN Iy BETWEEN THE ORIGINAL AND THE RE-
DUCED MODEL
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Figure 6. ERRROR IN Iy BETWEEN THE ORIGINAL AND THE RE-
DUCED MODEL

Obviously, the lateral acceleration, the yaw rate and thecity

in x-direction are set to intervals with constant bounds, heirt
mean values. Furthermore, the term of the right hand sideeof t
the lateral velocity, which depends on the lateral velotgglf is
neglected, since the lateral velocity is quite low. In Figaril 6
the error in the position is plotted. The error is computetbas
the term cancellation using the left hand side of Eqn. 19c&in
the velocity inx-direction is set to the mean value, the error,n
is maximal at = 0.5s. Contrary, the error imy grows with time.
In Fig. 3 the output variables andry of the original model are
plotted. Note that the plot consists of many thin intervale tb
the real valued velocity.

The plot of the output variables andry for the second scenario

Copyright © 2009 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



8 0.05
— — 0.04
E 6 { E
c c
S £ 0.03
] i | @
g g
x > 0.02
= =
s 2 T 2 001
] L
OO 25 5 7.5 10 ‘
Time [s] Time [s]
Figure 7. ERRROR IN Iy BETWEEN THE ORIGINAL AND THE RE- Figure 8. ERRROR IN ry BETWEEN THE ORIGINAL AND THE RE-
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is given in Fig. 4. Raising the error bound tp= 10m and
ry = 0.6m, the reduced model reads 60 1
g 50 4
vy = [—0.181370.18137 + [-0.14601,0.1460] (29) T a0 |
() =[-0.109170.10917 + [—0.09457 0.09457 (30) %
fx = cos|—0.043350.04335 - v+ [16.6667,16.6667  (31) o 39 1
fFy = sing-v. (32) > 20 :
10 1
As can be seen in Fig. 7 and 8 here the actual erroy seems "“”“W““‘.‘.‘.‘.‘mmw""""""'f"

to stay far from the maximum. However, during the reduction 50 100 150 200
algorithm the error reaches3D71m, but drops to a maximum x-Position [m]

of 0.0463n again. That effect occurs, if two reductions produce

errors, which prone to erase each other. This effect cant®so  y,c 9. INTERVAL-VALUED POSITION OF THE DETAILED MODEL
observed in Fig. 8. Without the last reduction the error Woul o A CORNERING MANEUVER TRAVEL WITH V — 16.6™ and & —
not start to decrease at the value d463n, but raise further to S
0.307Im. The last reduction causes an error in the other direction
and the leads to the shown plot. Obviously, this is an adulio
argument for the use of clusters in the term cancellatiocgro by

E

dure.
cR+cl ,CRIRCLIF E
[Vy lp]T = ; Ram‘Y:aF ( “R rEZVQ F |:2V) [Vy] + %F o
4.1.2 Cornering As well as the straight-ahead travel Gl L (GG U
the cornering maneuver is performed with a real valued vigloc . . ——
of v=16.67 and an interval valued velocity of= [13.8,16.6]. c D
This time the lateral acceleratiag and the yaw rat€) are cho- (33)
sen as output variables, since they are often more sigrifioan
vehicle dynamics than position. Hence, the out@l;t(D]T is First the case of a real valued velocity is considered. Ts-po
calculated via the output matrf® and the feedforward matriR tion of the vehicle is plotted in Fig.9. For a constant redligd
7 Copyright © 2009 by ASME
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steering angle the system reaches steady state after a While

an interval valued steering angle®¥ [%, 1]° at the front-wheel

the same holds as can be seen in Fig.10 and 11. Consequently
one would expect the right hand sides of Eqn. 21 -24 to vanish.
Starting in the interval steady state the model reducesmectad

to
V=0 (34)
P=0 (35)
fy=0 (36)
fy=0. (37)

Here the error bounds-,y = 0.01% andey = 0.001 are used. As
expected the dynamics of the model vanish and the lateral-acc
eration as well as the yaw rate remain constant. On the orgk han
this is the expected result, on the other hand the resultismiyp
obtained for cornering with a constant steering angle, lsotfar
cornering with a steering angle betwe%onand r.

As a last example the velocity is interval valued again arid se
tov=[13.8,16.6]. Furthermore, the system does not start from
steady state this time. Using the same steering angle ag abov
and the error bounds;, = 0.33 andey = 0.1 the reduced sys-

tem reads
V=0 (38)
. CRIRPLCE.F? - CELIF
P=—( Y b+ 3, g (39)
fx="0 (40)
fy=0. (41)

Here the simulation time was set tg, 3ince the system reaches
steady state within this time and the error remains conaoan
be seenin Fig. 12 and 13.

4.2 Reduction of a Planar Two Track Model

The underlying planar two track model consists of 18 states.
One for the rotation of each wheel, two for the planar forees a
ing on each tire and six for the position and orientation efib-
hicle. The steady state tire forces are calculated usingjrtbar
part of the Dugoff tire model [21]. Simulating that model kvén
interval-valued steering angle at the wheel§ ef[-1076,1079]
the integration aborts after.@bs, since the diameter of the re-
sulting interval valued states gets to large. Hence, everafo
very small steering angle the simulation can not be perfdrme
Consequently, the reduction could not be performed forale
scenarios. The results for single scenarios can be fourRin [
The break-down time of the solver shrinks with the complexit
of the system. Hence, in order to perform a symbolic redactio

8

Yaw Rate

0.6 ‘ i ‘ ‘

Time [s]

Figure 10. YAW RATE FOR THE FIRST TWO SECONDS OF A COR-
NERING MANEUVER WITH V = 16,67 and 6 = [%, 1°

2
1. ]
ER
L. ]
S
8 q ]
5 L
8
g 1. ]
<
T:E 4
o
8 0. ]
0 0.5 1 1.5 2
Time [s]
Figure 11. LATERAL ACCELERATION FOR THE FIRST TWO SEC-

ONDS OF A CORNERING MANEUVER WITH V = 16,6% and 0 =
2 110
[37 1]

one has to check first if the system under consideration can k
simulated for the chosen interval valued scenario.

5 CONCLUSION AND OUTLOOK

In this contribution an approach for the extension of sym-
bolic reduction techniques is presented. The use of intene
narios leads to reduced models, which are valid not only ifer o
scenario. The algorithm delivers fine results in the casenaills
systems as for example the linear one track model. For corr
plex systems the algorithm fails, due to the absence of dileas
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Figure 12. ERROR IN THE Vy FOR A CORNERING MANEUVER WITH
v=[138,16.6]T and 5= [35,1]°
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Figure 13. YAW RATE FOR THE FIRST TWO SECONDS OF A COR-
NERING MANEUVER WITH v = 16,6 and 8 = 3, 1]°

solver. Here other approaches are part of current rese@inte,
discretizing scenario regions would lead to very high cotapu
tional effort the procedures shown in [23] or [24] seem pi®mi

ing. Another way could be the backward computation of reach-

ability sets as presented in [25]. Though, the computation o
reachability sets is computationally even more expengiam t
solving initial value problems with uncertain initial vas. A
compromise might by the forward computation of reachapilit
sets using piecewise linear approximations [26]. The @hoic
an efficient method for complex systems and its examinasgon i
part of future work.
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