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ABSTRACT 

This paper develops and tests algorithms for predicting 
the end-to-end route of a vehicle based on GPS 
observations of the vehicle’s past trips. We show that a 
large portion of a typical driver’s trips are repeated. Our 
algorithms exploit this fact for prediction by matching the 
first part of a driver’s current trip with one of the set of 
previously observed trips. Rather than predicting 
upcoming road segments, our focus is on making long 
term predictions of the route. We evaluate our algorithms 
using a large corpus of real world GPS driving data 
acquired from observing over 250 drivers for an average 
of 15.1 days per subject. Our results show how often 
and how accurately we can predict a driver’s route as a 
function of the distance already driven. 

INTRODUCTION 

Route prediction is the missing piece in several 
proposed ideas for intelligent vehicles. In this paper, we 
present algorithms that predict a vehicle’s entire route as 
it is driven. Such predictions are useful for giving the 
driver warnings about upcoming traffic hazards or 
information about upcoming points of interest, including 
advertising. One of the most innovative applications of 
end-to-end route prediction is for improving the efficiency 
of hybrid vehicles. Given knowledge of future changes in 
elevation and speed, a hybrid control system can 
optimize the vehicle’s charge/discharge schedule. For 
example, if a hybrid vehicle knows about an upcoming 
opportunity to recharge its batteries from regenerative 
braking (e.g., stop-and-go traffic, sharp curves, or a 
steep hill), it can use up part of its battery power prior to 
the opportunity to make room for the expected incoming 
charge. Researchers from Nissan showed that it is 
possible to improve hybrid fuel economy by up to 7.8% if 
the route is known in advance [1]. Tate and Boyd also 
explore the optimal control scheme for a hybrid 
assuming the route is already known [2]. 

While the driver could be asked for his or her route 
before every drive, we suspect that most drivers would 
tire of this quickly. This is especially true for a driver’s 

regular routes, which is where we concentrate our 
efforts. We found that, for drivers observed for at least 
40 days, nearly 60% of their trips were duplicated in our 
observations. Our prediction algorithms look at a GPS 
trace of a driver’s current trip and attempt to find the best 
match to a previously driven trip. We find that, in some 
cases, we can predict a driver’s route with 100% 
accuracy within the first two miles of the trip. Our 
accuracy is lower in other cases, and our results give 
details on how often our algorithm achieves various 
levels of prediction accuracy. 

We trained and tested our algorithms on GPS data from 
252 drivers. The next few sections describe how we 
cleaned our typically noisy GPS data, extracted distinct 
trips, and found drivers’ regular routes. We then go on to 
describe two algorithms for route prediction and give 
details on how well they perform. First, we highlight 
some related work. 

Route prediction for smart vehicles was addressed by 
Karbassi and Barth [3] for a car-sharing application. 
Their task was to predict which route a driver would take 
between given starting and ending drop-off stations. In 
our work, we do not rely on the driver to enter his/her 
destination. Torkkola et al. [4] learn destinations and 
routes from GPS data. As in our work, these learned 
routes are the basis for prediction, although their 
prediction algorithm is not given. Using a hidden Markov 
model learned from 46 sampled trips, Simmons et al. [5] 
predict destinations and routes based on knowledge of 
the road network. They quote an accuracy of predicting 
the next road segment as high as 99%, although in 95% 
of the cases the next road segment is the only one 
connected to the current one. Their rich model allows the 
incorporation of time-of-day, day-of-week, and speed 
sensitivity into their predictions. Their results show that 
only speed is a significant help in boosting their 
prediction accuracy. Patterson et al. [6] applied machine 
learning and a particle filter to people’s GPS traces to 
predict their destination, route, and even mode of 
transportation from an inferred list of previous 
destinations. Our approach also differs from the short-
term route prediction in [7]. In their work, the goal was to 
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predict ahead just a few blocks based on the most 
recent road segments. In this paper, we make long-term 
predictions about the entire route. 

The research we present in this paper is primarily 
differentiated from previous work by our novel process 
for extracting routes from GPS data, our analysis of 
route regularity, our prediction algorithms, and our large 
corpus of test data from 252 separate drivers. We also 
note that our work is different from GPS-based learning 
for finding people’s frequent destinations (e.g., [8]) or for 
predicting a future destination (e.g., [9]). The goal of our 
work is to accurately predict a driver’s entire route very 
early in a trip. 

FROM GPS DATA TO REGULAR ROUTES 

Our route predictions are based on observations of 
individual drivers with GPS. This section explains how 
we gathered raw GPS traces, extracted discrete trips, 
and found regular routes. 

THE GPS DATA (MULTIPERSON LOCATION SURVEY) 

The GPS traces used in our analysis were collected as 
part of the Microsoft Multiperson Location Survey 
(MSMLS). The MSMLS is an ongoing study at Microsoft 
Research aimed at gathering driving data for location-
based research. Since June 2005, over 2.2 million GPS 
location points have been collected from 252 subjects, 
who volunteer to drive with a GPS recorder in their 
vehicle for two weeks or more. Subjects are recruited 
from the Seattle, WA area and nearly all are employees 
of Microsoft or their family members.  

The Garmin Geko 201 portable GPS receiver is used for 
data collection. It is capable of recording up to 10,000 
time stamped GPS points in internal memory (which 
includes latitude, longitude and altitude). We used the 
device’s adaptive recording mode, which dynamically 
modifies the logging frequency based on the device’s 
movement. In this mode, the GPS unit tends to record 
more points when the vehicle is changing speed or 
direction and fewer points when it is stopped or traveling 
in a straight line at constant speed. The median time 
interval between logged data points in our dataset is six 
seconds and the median distance is 208 feet.  

All participants in the MSMLS are instructed to place 
their loaned GPS receivers on their vehicle’s dashboard 
or some other area within the vehicle with a clear view of 
the sky and to drive normally during the survey period. 
The receivers are powered via a car adapter cable 
plugged into the vehicle’s cigarette lighter socket. We 
modified the GPS units slightly such that they would 
automatically turn on whenever power was supplied. 
This was advantageous because it meant that the 
subjects did not have to remember to turn their GPS 
receivers on when they started their vehicles and off 
when they stopped. Thus, once the GPS receivers were 
plugged in, the subjects could forget about them for the 

rest of the survey period. Some vehicles supply power to 
the cigarette lighter socket even when the vehicle is off. 
The adaptive recording mode, however, decreases the 
logging frequency when no motion is detected, thereby 
reducing the accumulation of data when the vehicle is 
parked (even if the device is still receiving power). 

Prior to the data collection period, subjects are asked to 
fill out a short demographic survey. At the end of the 
collection period, they return their GPS receivers to the 
research team. As compensation for their participation, 
volunteers are entered into a drawing to win a $250 
portable media player. 

Currently, the MSMLS database contains 2,222,758 data 
points collected from 252 subjects, for an average of 
8,821 recorded points per person (Figure 1a). On 
average, we have 15.1 days worth of driving data per 
subject (Figure 1b). Although the maximum storage 
capacity of the Geko 201 GPS device is 10,000 data 
points, recently our subjects have been given the option 
of continuing their data collection after their device 
memory initially fills up. In these cases, we have the 
subjects switch to a new GPS receiver after every two 
weeks. At present, 41 subjects have more than 10,000 
data points (average among these subjects: 19,071). 
From this raw data, we extracted discrete trips, a 
process we describe in the next section. 

 
 
Figure 1. A high level view of the MSMLS dataset: (a) 

shows a histogram of the number of data points per 

subject and (b) a histogram of the number of days worth 

of driving data per subject. 

FROM GPS DATA TO TRIPS 

Our route prediction algorithm depends on knowledge of 
a driver’s discrete trips, but the GPS data gives no 
explicit indication of when a trip begins or ends, In 
addition, GPS points themselves are often noisy and 
some contain invalid sensor data. This section explains 
how we go from raw GPS measurements to a plausible 
set of discrete trips for each driver. 

For the purposes of this project, we define a trip simply 
as a set of temporally ordered, time stamped GPS data 
points collected by a given subject. Trips are composed 
of N data points and N-1 trip segments (the edges 
between these points). We created a three stage 
process to transform the raw GPS data into trips: first, 
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we segment the trips into multipoint trip objects; second, 
we clean the trips by removing invalid data points; and 
third, we filter the trips to eliminate false trip objects. 
These are described below. 

Trip Segmentation 

The trip segmentation algorithm sorts each subject’s raw 
GPS data chronologically and looks for gaps between 
two consecutive recorded points (P1, P2) of three 
minutes or more. If a gap is found, P1 becomes the end 
point of the last trip and P2 the beginning point of the 
current trip. The threshold value of three minutes was 
chosen empirically based on the logging interval 
distribution (Figure 2a) and experimentation with map 
visualizations of the data. Although primitive, this 
algorithm takes advantage of the adaptive recording 
mode used by our GPS receivers, which limits the 
number of recorded points when no motion is detected. 
In addition, such a gap also exists when a vehicle is 
parked and turned off for more than three minutes 
thereby signifying the end of a trip (assuming the vehicle 
does not supply power to the GPS device when off). 

Selecting a reasonable threshold value here is 
challenging because it is difficult to distinguish between 
brief stopovers that are legitimate ends to a trip (e.g., 
stopping at a convenience store) and normal traffic 
stoppage (e.g., stopping at a long traffic light). With our 
dataset, it is not possible to tell the difference between a 
three minute gap that resulted from a car being shut off 
and a three minute gap that resulted from a long traffic 
light. Setting the threshold to three minutes resulted in 
27,610 trips. 

 

Figure 2. (a) A three minute gap (red line) between logged 

data points was used to segment the raw data into trips. 

(b) The number of raw trips changes depending on the 

segmentation interval. Here, the red line indicates the 

segmentation interval used in our dataset. 

Trip Cleansing 

Once the trips were segmented, the data points within 
those trips needed to be cleaned, because our GPS data 
contained outliers. Although the Geko 201 GPS receiver 
utilizes the Wide Area Augmentation System (WAAS) to 
assist in location accuracy, outlier points from obscured 
line of sight, device cold starts and other satellite 

disruption phenomena can result in outlier GPS readings 
(see Figure 3). Outliers typically occur in isolation and 
appear as a wildly mistaken point along an otherwise 
reasonable sequence of GPS points. Since the outlier is 
normally far away from the temporally adjacent points in 
the trip, they stand out when we compute local speed 
and acceleration from adjacent points.  

  

 

 

 

Figure 3. The above figures demonstrate example outliers 

in our GPS data. (a) The invalid starting point of this trip 

created a trip segment of a speed exceeding 97,500 mph. 

(b) This same trip once the invalid data point was 

removed. (c) An invalid data point in the middle of a trip 

resulted in an anomalous 397.8 mph trip segment. (d) The 

same trip after cleansing. (e) A map of the Seattle 

metropolitan area with a subset of the (uncleansed) trips 

in our dataset. The trips are colored by subject. Note the 

spurious straight lines in this figure; these are caused by 

outliers. This is the same map view as that found in Figure 

7b but with raw, uncleansed trips. 

We created two trip cleansing algorithms based on 
speed and acceleration to remove the offending points. 
Data points that contributed to a speed of over 100 mph 
or an acceleration of over 80,000 mph

2
 were eliminated. 

We iterated over every trip segment in each trip looking 
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for outliers. If a trip segment exceeded our speed or 
acceleration thresholds both data points were tested for 
validity. If by removing one of the data points, the 
irregularity subsided then we had found our invalid point 
and it was removed (e.g., Figure 3c and 3d). If not, then 
both data points were removed. The trip was then 
reformed into new trip segments and the cleansing 
algorithm started over until all invalid points were 
eliminated. This reduced the number of data points in 
our trips from 2,222,758 to 2,196,828 (a reduction of 
1.2%). 

Trip Filtering 

After cleansing, the next processing stage was trip 
filtering. Vehicles that continued to power their GPS 
receivers even when turned off would often produce 
intermittent streams of GPS readings. Satellite location 
sensing drift would fool the adaptive recording mode into 
thinking that the GPS device had begun moving even 
though the vehicle was parked (Figure 4a). These faulty 
readings could continue for as long as 10-15 minutes at 
a time, though they tended to come in shorter spurts. 
Our trip segmentation algorithm did not discriminate 
between these fictitious trips and the real trips in our 
dataset. Thus, we created a set of trip filtering algorithms 
that work in succession to identify and eliminate these 
false trips. Trip filtering, however rudimentary, is an 
essential part of our work. Before running experiments 
with our route prediction algorithms we had to ensure 
that a vast majority of our trip data was valid. 

MinimumPointCountTripFilter: The minimum point count 
trip filter removed trips with less than a specified point 
count, which we set to ten data points.  

MinimumTripTimeFilter: The minimum trip time filter 
removed trips that took less time than a supplied 
threshold value, which we set to 30 seconds. 

  

Figure 4. (a) 34 garbage trips were created by GPS 

location drift over a three day period while this driver’s 

vehicle was parked outside his house. (b) These garbage 

trips were transformed to intermediate centroid based 

trips (shown in orange), which are less than 0.1 miles in 

length and therefore are filtered out of our dataset. 

CentroidBasedDistanceTripFilter: The centroid-based 
distance trip filter was built to remove dense, highly 
circular trips—a salient characteristic of fictitious trip 
data. It works by iterating over a given trip using a sliding 
window of 10 points long. At each step, a centroid point 

is generated from the data currently in the window, 
essentially making this into a moving average filter on 
2D (latitude, longitude) data. These centroid points are 
then combined into a new trip whose travel distance is 
computed. If this distance is below 0.1 miles, we 
eliminated the original trip. An example of this 
processing is shown in Figure 4. 

DirectionChangeFrequencyTripFilter: The direction 
change frequency trip filter removed trips with a high 
degree of directionality change. The algorithm works by 
counting the number of four-way

1
 and eight-way

2
 

direction changes between each trip segment in a trip. If 
the ratio of direction changes to trip segments is greater 
than 0.5 for four-way directions or 0.6 for eight-way 
directions, the trip is removed. The invalid trip shown in 
Figure 5a shares many characteristics with a legitimate 
trip; it has a reasonable length (1.7 miles) and average 
speed (19.8 mph)—however, one can clearly tell visually 
that the trip data is erroneous. The direction change 
frequency trip filter properly removes this trip as its 
direction change ratios of 0.64 (four-way) and 0.66 
(eight-way) exceed our set thresholds. 

 

Figure 5. (a) The direction change frequency trip filter 

correctly filters this erroneous trip (in red). (b) The trip 

would not have been eliminated via the centroid based trip 

filter (shown in orange). (c) Even a very “turny” legitimate 

trip like that in (c) is not erroneously filtered, which has a 

direction change ratio of 0.19 and 0.33. 

Finally, we used the following two filters to ensure that 
the remaining trips took place within Washington State 
and were complete trips. 
 
WithinBoundsTripFilter: The within bounds trip filter 
removed trips that took place outside of a specified 
geographical bounding box, which was set to the 
approximate boundary of Washington State. Some of 
our subjects took their GPS units with them while 
traveling and placed them in their rental cars. This filter 
removed occurrences of those trips. 

MostRecentTripFilter: The most recent trip filter removed 
the subject’s last trip if their GPS receiver’s storage 
memory was full when it was returned to the research 
team. Removing this trip was necessary because we 
could not guarantee that the last trip in memory was a 
complete trip (i.e., that it did not get cut off when the 
internal memory ran out). 

                                                      
1
 Cardinal directions: North, South, East West 

2
 Cardinal and inter-cardinal directions: North, Northeast, East, Southeast, South, 

Southwest, West, Northwest 

(a) (b) (c) 

(a) (b) 



After filtering, our corpus of trips appeared much more 
reasonable, although some invalid trips remained, and 
some valid trips were removed. Acknowledging that our 
filtering process was not perfect, we tried to err on the 
side of removing too many valid trips with the goal of 
minimizing invalid trips that would distort our prediction 
accuracy experiments. 

THE TRIP DATA 

Trip filtering reduced the number of trips from 27,479 to 
14,523 (a 47.2% reduction). For our analysis, we also 
required that subjects have more than ten total trips; this 
excluded twelve subjects. We felt that ten or fewer trips 
were not enough to properly establish a driver’s regular 
patterns. Thus, our final dataset included 14,468 trips 
from 240 subjects. On average, our subjects took 4 trips 
per day. The average trip length was 7.7 miles and trip 
time 16.3 minutes. For comparison, according to the 
2001 National Household Travel Survey, an average 
driver in a metropolitan area the size of Seattle makes 
4.07 trips per day with an average length of 9.87 miles 
[10]. Figure 6 reveals some high level statistics and 
distributions of our trip data and Figure 7 displays the trip 
data overlaid on two maps, one of Washington State and 
the other of Seattle. 

 

 

Figure 6. A histogram of trip distances is shown in (a) and 

trip durations in (b). Most subjects drove between 3-5 trips 

per day on average as can be observed in (c).  Finally, (d) 

shows a small table of trip statistics. 

FROM TRIPS TO REGULAR ROUTES 

When making a route prediction, we try to pick which 
previously seen route a driver is on. We make a 
distinction between trips, which we extract from the GPS 
data, and routes, which we build from repeated trips. A 
trip describes a driver’s path through time and space 

using time stamped GPS data. A route is simply an 
abstraction of a trip (or trips) without the temporal 
component. That is, a route is a collection of latitude, 
longitude pairs that define a directed path. A regular 
route is a path that a driver drives often. This section 
describes how we extract routes from trip data. 

 

 

Figure 7. A map of Washington (a) and the Seattle 

metropolitan area (b) with overlaid trip data from the 

MSMLS dataset. The trips are colored by subject. Figure 

(b) is the same map view as Figure 3 but with cleaned and 

filtered trips. Note that the maps have been darkened to 

emphasize the trip data. 

Trip Similarity 

Intuitively, trips that a driver takes along the same path 
should be considered the same route. To do this 
programmatically, we must formally define some notion 
of trip similarity. If two or more trips are similar, then we 
combine them into a route. This section shows how we 
assess the similarity of two trips. The algorithm relies 
solely on the (latitude, longitude) data from our filtered 
trips. It does not require an extra step of inferring which 
roads were traversed.  
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At a high level, the algorithm works by computing the 
average minimum point-segment distance between two 
trips (e.g., from Trip A to Trip B and from Trip B to Trip 
A). These averages are added together and divided by 
two to calculate a symmetric score representing the 
similarity between the two trips. 

In particular, our similarity algorithm works as follows: 

1. For every point PAi in Trip A, find the closest trip 
segment TSBj in Trip B (Figure 8a). A trip 
segment is simply a straight line between two 
temporally adjacent GPS points. Calculate the 
minimum point-segment distance between PAi 

and TSBj (Figure 8b). 

2. Add together these point-segment distances to 
compute the total distance between Trip A and 
Trip B: TotalDistanceAB.  

3. Calculate the similarity score (ScoreAB) by 
dividing TotalDistanceAB by the number of data 
points in Trip A. This score is asymmetric; it 
represents the similarity from Trip A to Trip B but 
not from Trip B to Trip A (Figure 8c). 

4. Repeat the above steps but this time compare 
Trip B to Trip A. This produces a 2nd 
asymmetric score: ScoreBA (Figure 8d). 

5. Add both scores together and divide by two to 
calculate the final similarity score. Set ScoreAB 

and ScoreBA equal to this final score thereby 
enforcing symmetry. A lower score indicates 
more similarity. 

6. Finally, store the results in a similarity matrix. 

 

Figure 8. The four figures above walk through some high 

level aspects of our trip similarity algorithm.  

There is one specific nuance in the algorithm which 
allows us to differentiate the directionality of two trips 
along the same path: the comparison between points 
and segments is an ordered comparison. As we iterate 
through a trip’s data points looking for its comparison 
trip’s closest segment, the closest segment found must 
always have an index equal to or greater than the last 
closest segment found (as illustrated in Figure 9). Two 
trips along the same path but in opposite directions will 
then correctly be identified as having unique routes. 

 

 

 

Figure 9. Even though Trip A and Trip B follow roughly the 

same path, they are in opposite directions. The ordered 

comparison ensures that their similarity score is 

comparatively large. 

Our similarity measure is a version of the Hausdorff 
distance algorithm, sometimes used in computer vision 
to compare object outlines [11]. Torkkola et al. [4] use a 
purely point-based algorithm for comparing two trips. 
Their similarity measure looks at the set of closest 
matches between the points in each of the two trips. If 
the maximum of the minimum distances exceeds a 
threshold, the trips are declared dissimilar. Our 
technique compares points in one trip to line segments 
in the other trip, which helps account for variations in 
GPS sampling rate. Also, our similarity measure is 
sensitive to the direction of travel. 

Detecting Routes through Trip Similarity Clustering 

In order to create routes from trip data, every trip in a 
subject’s dataset must be compared (this takes n
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comparisons where n is the number of trips). We use the 
results of these comparisons to construct a trip similarity 
matrix, which holds all of the similarity scores between 
trips for a given subject. The scores in the trip similarity 
matrix are then used to cluster similar trips together. 
Finally, these clusters are converted to routes. The 
precise definition of this cluster-to-route transformation is 
covered in the next section. Here, we focus on route 
detection through trip similarity clustering. 

To detect routes, we repeatedly combine trips with the 
lowest scores (highest similarity) in our similarity matrix 
into trip clusters. We apply dendrogram clustering, which 
is a hierarchical clustering technique that recursively 
clusters data points (Figure 10f), to repeatedly combine 
trips until the lowest score in the similarity matrix 
exceeds a set threshold. For our analysis, this threshold 
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1
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 point in Trip A (PA1). In this 

example, note that both trips are 
in the same direction. 

(b) Using the minimum point-

segment distance algorithm, we 

compute dAB1 from PA1 to TSB1. 

(a) When comparing Trip A to Trip 

B, the first comparison matches 

PA1 to TSB4. Thus all future point A 

matches must be to TSB4 or a 

segment with a greater index 
(e.g., TSB5, TSB6) in Trip B. 

(b) The comparison from Trip 

B to Trip A is also ordered. 
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even though TSA3 is the 
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was set to 0.05 miles (264 feet)—meaning that, on 
average, two trips must be within 0.05 miles apart (using 
our distance measure) to be clustered together. Each 
trip cluster is transformed into a route. The size of the 
cluster represents how frequently that route was 
traveled. Those trips that have not been clustered are 
assumed to be unique routes—routes that have only 
been driven once. 

 

Figure 10. In this example, dendrogram clustering 

uncovers three routes (d) from six example trips (a). Note 

how Dendrogram Clustering uses a threshold to constrain 

the composition of clusters (f). 

Figure 10 illustrates how trip clustering is used to 
discover routes. In this example, a subject has driven six 
trips over three distinct routes (Figure 10a). For 
illustrative purposes, our clustering threshold is set to 5. 
The algorithm begins by constructing an initial 6 x 6 trip 
similarity matrix. Each row and column in the matrix 
represents a trip. Note that the matrix is symmetrical; 
this is an effect of the score symmetry property enforced 
by our trip similarity algorithm. After the initial matrix has 
been constructed, the next step is to scan the matrix for 
the smallest similarity score. In our example, Trip C and 
Trip D have the lowest score and thus, are the first to be 
clustered. This produces Route 1. Trip C and Trip D are 
subsequently removed from the matrix and replaced by 
Route 1 (Figure 10b). The matrix, which now has a 
dimension of 5 x 5, is recomputed and scanned. In this 
case, Trip E and Trip F are found to have the smallest 
score and are clustered into a second route, Route 2 
(Figure 10c). Once again the dimensionality of the matrix 
is reduced. The next scan reveals that Route 1 and Trip 
B have the smallest similarity score. To merge a route 
and a trip, the original trips that make up the route are 
reclustered with the new trip. Thus, in our example, trips 
B and C are reclustered with D to reform Route 1. 

Finally, we are left with a 3 x 3 matrix composed of two 
routes and 1 trip; however, the smallest remaining score 
in the matrix is greater than the dendrogram clustering 
threshold so the clustering ceases (Figure 10f). 

From Trip Clusters to Routes 

Left unsettled in the explanation above is how we 
combine multiple trips into one representative route. The 
key objective of this transformation is to maintain the 
overall path structure that the trip cluster follows. We 
experimented with three separate trip merging 
algorithms before selecting one for our analysis: 

EvenIntervalMerge: The even interval merge algorithm 
resamples trips in the trip cluster at even distance 
intervals and calculates the average (latitude, longitude) 
point at every interval. These averaged points comprise 
the route. The sampling rate is determined by the 
average number of data points per trip in the trip cluster. 

ExhaustiveIntervalMerge: The exhaustive interval merge 
algorithm is similar to the above but the trip data is not 
resampled at a fixed rate. Instead, every data point in 
each trip becomes a resampling point. This provides a 
higher fidelity reproduction of the overall path structure 
compared to the even interval merge algorithm but at a 
cost of complexity. This algorithm produces a route that 
grows exponentially with the number of trips and the 
number of data points within those trips. 

BestRepresentativeMerge: Unlike the previous two 
merging algorithms, this algorithm does not attempt to 
explicitly merge trips into an aggregate representation. 
Instead, it selects an existing trip as the canonical route. 
The selected trip has the smallest average similarity 
score to all other trips in the trip cluster. Its path structure 
(set of latitude, longitude points) is copied directly into 
the route. 

For our route prediction experiments we chose the even 
interval merge algorithm. Although the exhaustive merge 
algorithm offers a slightly better reproduction of path 
structure, its increase in complexity made our clustering 
computations prohibitively expensive. Note that when 
merging two routes or a route and a trip, the original trip 
data that comprises the route is used for merging and 
not the route’s abstract form.  

ROUTE PREDICTION 

Our expectation is that much of an individual’s driving is 
spent traversing regular routes. If this is true, then we 
can try to recognize when a driver is on a regular route 
and thus predict that he or she will stay on that route. In 
this section we use our trip and route data to show how 
regular drivers are, and then we develop two route 
prediction algorithms based on this regularity. We should 
note that in our dataset we did not track which vehicles 
had more than one primary driver. We expect that a 
shared vehicle will take longer to produce regular routes 

 A B C D E F 

A 0 5 8 9 14 16 

B 5 0 3 4 9 11 

C 8 3 0 1 6 8 

D 9 4 1 0 5 7 

E 14 9 6 5 0 2 

F 16 11 8 7 2 0 

 

(f) A visual depiction of the Dendrogram clustering algorithm. 

Horizontal space between letters coarsely approximates to the 
distance between the trips shown in (a). 

 A B R1 E F 

A 0 5 8.5 14 16 

B 5 0 3.5 9 11 

R1 8.5 3.5 0 5.5 7.5 

E 14 9 5.5 0 2 

F 16 11 7.5 2 0 

 

 A B R1 R2 

A 0 5 8.5 15 

B 5 0 3.5 10 

R1 8.5 3.5 0 6.5 

R2 15 10 6.5 0 

 

 R3 R1 R2 

R3 0 7.3 15 

R1 7.3 0 7.7 

R2 15 7.7 0 

 

(a) The initial trip 

similarity matrix 
for the above trips. 

(b) Trip C and Trip 

D are merged to 
form Route 1. 

(c) Trip E and Trip 

F are merged to 
form Route 2. 

(d) The final 

trip similarity 
matrix. 

cut off threshold = 5 
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simply because there will likely be a greater variance in 
routes driven. 

DRIVERS ARE REGULAR 

We define a repeat trip as any trip that occurs more than 
once along a route. On average, 39.3% of the trips our 
drivers take are repeat trips (Figure 11). For 67 of our 
subjects, this rate was greater than 50%—that is, one 
out of every two trips for these drivers is along an 
established route. Five of our subjects, however, never 
drove a route more than once. These subjects are 
somewhat anomalous in that we only have an average 
of 4.6 days worth of driving data from them. For subjects 
whom we have at least 20 days worth of data (n=45), the 
average increases to 49.8%.  

 

Figure 11. This bar graph shows the percentage of trips 

that are repeat trips for each subject (average=39.3%, 

median=39.6%). Each bar represents a subject.  

             

Figure 12. The percentage of repeat trips that a driver 

takes grows with the number of days of observation. By 

the 25
th

 day of observation, a majority of trips driven are 

over routes that have been seen before. The trend line is 

graphed in red. 

In general, we find more repeat trips with more days of 
observation. In fact, the number of repeat trips 
approaches 60% for subjects observed 40 days or more, 
as show in Figure 12. This repeat trip growth rate is 
relevant because our proposed system predicts a 
driver’s route based on the driver’s trip history. A slow 
growth rate for repeat trips would mean that the system 
would have to monitor the driver for a longer period of 
time before making accurate predictions. On the first day 
of observation (the day when our subjects received their 
GPS recorders), 1.5% of the trips were determined to be 
repeat trips. By day three, this percentage jumps to 15%. 
By the first full week (7 day period), over 35% of a 
driver’s trips are repeat trips.  

The percentage of unseen routes appears to decay 
exponentially with the number of days of observation 
before leveling off around the 30

th
 day at 50-60%. 

Clearly, the number of new routes that a driver may take 
is unbounded. However, the core set of routes a driver 
takes appears to be discoverable within a month. Note 
that the number of subjects contributing data drops as 
the days of observation increases (see table next to 
Figure 12). As a result, the y-axis value becomes more 
variable.  

Finally, one additional way to look at route regularity is 
by the distribution of a driver’s trips across routes. A 
highly regular driver will have a large portion of his/her 
trips distributed over only a few routes. That is, a small 
amount of routes will account for a large percentage of 
this driver’s trips. In our data, the route traveled most 
frequently accounts for an average of 12% of a driver’s 
total trips. This is typically the morning commute route. 
The top ten most frequently traveled routes account for 
nearly 50% of a driver’s trips. Figure 13 shows an 
averaged cumulative distribution of trips to routes for 
each subject. To build this graph, we ordered each 
subject’s set of routes by the frequency of travel—that is, 
the first route for each subject is the route comprising the 
most trips, the 2

nd
 route is the route comprising the 2

nd
 

most trips, and so on. We then averaged the number of 
trips in each of these routes across subjects to 
determine the average distribution of trips in routes in 
our dataset. Thus, Figure 13 shows that, on average, the 
most popular route makes up 12% of a driver’s trips and 
the top 10 most popular routes make up 50% of a 
driver’s trips. Note that this graph includes routes that 
were only driven once—hence the graph correctly 
progresses towards 100% (where 100% of the trips 
make up 100% of the routes). 

 

Figure 13. This graph reveals that a small amount of 

routes comprise a majority of trips driven. It takes roughly 

10 routes to account for 50% of a driver’s trips. For 

comparison, the thin green diagonal line depicts a trip to 

route ratio of 1:1. In other words, it graphs the 

hypothetical case of our dataset having no repeat trips. 

ROUTE PREDICTION ALGORITHMS 

As a trip progresses, we try to find which previously 
driven route, if any, the driver is on. Using the trip 
similarity algorithm described earlier, we calculate the 
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Num 
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1 1.5 240 

3 15.5 240 

5 23.4 230 

10 35.6 188 

15 48.3 86 

25 52.3 37 

40 68.8 4 

55 66.7 1 
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Index 
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Num 
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1 12 240 

2 20.2 240 

5 34.3 240 

10 49 239 

15 56.7 229 

30 76.4 169 

60 82.7 36 

120 91.8 4 

157 100 1 

 
 



distance between the current trip and existing routes and 
store the results in a similarity matrix. This matrix is 
continuously updated as the trip progresses at pre-
specified distance intervals, for example, every quarter 
mile. The values d1 and d2 store the distances between 
the current (partial) trip and the 1

st
 and 2

nd
 closest 

routes. These distances obviously change as the trip 
progresses. In addition, different route objects will likely 
comprise the 1

st
 and 2

nd
 closest routes over the course 

of a trip (Figure 14). 

 

Figure 14. Both of our route prediction algorithms are 

based on calculating a continuously updated similarity 

matrix, which tracks the distance from the current trip to 

the existing routes. Note that before the trip completes, 

the closest route is not always the correct route. 

We created two simple algorithms to predict a driver’s 
route based on the above calculations. (1) The closest 
match algorithm always returns an ordered list of the 
routes most similar to the current trip, and we take the 
closest route as the predicted route. (2) The threshold 
match algorithm returns a route and a confidence 
measure given the current trip’s travel distance so far 
and the distances to the 1

st
 and 2

nd
 closest routes (d1 

and d2). Details of these two algorithms are given in the 
next section. 

 

Figure 15. A set of example trips that forge new routes and 

therefore cannot be correctly matched to existing routes 

using our algorithms. 

Of course, not all routes can be predicted. As our data 
shows (Figure 12), even after a month of observation 
40% of a driver’s trips are still over new routes. In these 
cases, the closest route found is never a correct match 
(as the correct match does not exist). Figure 15 
highlights a set of example trips whose routes cannot be 
predicted using our algorithms. In Figure 15c, for 
example, the closest route to Trip C is Route 2. 
However, Trip C clearly does not traverse the same path 
as Route 2. Figure 15b highlights a different case, which 
covers an area of future work for us involving partial 
route matching. Although Trip B begins on a new route, 
it eventually converges to two pre-existing routes 
(Routes 1 and 2). At this point, it may be possible to 

predict Trip B’s remaining path. This type of prediction, 
however, is beyond the scope of this paper. Instead, we 
focus on matching routes in their entirety. 

ROUTE PREDICTION RESULTS 

We tested our two route prediction algorithms on 14,468 
trips from 240 subjects. To test our algorithms, we 
applied a leave-one-out approach, where one test trip 
was left out of a driver’s dataset and the remaining trips 
were clustered into routes. The test trip was then 
“virtually driven” in 5% increments and our route 
prediction algorithms were applied. This process was 
repeated for every trip for each subject. In the real world, 
the test trip is analogous to the driver’s current trip that 
s/he is currently driving. 

For both algorithms, we present our prediction 
accuracies for the full set of trips and for just the repeat 
trips. The former is much more challenging because it 
includes routes that have only been driven once. With 
the leave-one-out approach, these routes are eliminated 
while their trips are tested—thus there is no correct route 
left in the trip clusters to match. Neither of our two 
algorithms attempt to predict routes that have never 
been driven in the past and thus perform poorly in these 
cases as a result. 

CLOSEST MATCH PREDICTION RESULTS 

The closest match prediction algorithm greedily selects 
the closest route to the currently driven trip as the 
predicted route. To measure the distance to a candidate 
route, we use the Hausdorff-like, trip similarity measure 
described earlier. The closest match algorithm also 
returns an ordered list of best route match candidates. 
Figure 16 shows the average location of the correct 
route in this ordered list as the trip advances. As 
expected, when the trip first begins and little information 
is known about its path, the correct route is not 
necessarily the best match. After 35% of the trip has 
been driven, the correct route moves to within the top 5 
locations in the ordered list; after 50%, the correct route 
is, on average, within the top 2 matches (Figure 16a).  

Note, however, that speaking in terms of “percent of trip 
completed” is useful in capturing how well the algorithm 
performed but it is not practical. A vehicle navigation 
system can never be certain of how far along a trip it is 
in terms of percentage complete without knowing the 
exact route of the trip from start-to-end—this, of course, 
is what we are trying to predict. Instead, a much more 
practical input parameter is the trip’s current distance 
traveled—that is, how far the vehicle has traveled since 
the trip began. Every vehicle is capable of tracking this 
value. Thus, Figure 16b more accurately portrays the 
performance of the closest match prediction algorithm in 
a real usage scenario. It shows, on average, how highly 
the correct route is ranked as a function of the trip’s 
current travel distance. For example, by the end of a 
trip’s first mile, the correct route is, on average, within 
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Route 2 

Trip A Trip B 

Route 1 

Route 2 Route 2 

Route 1 

Trip C 

Route 1 

Route 2 

Trip D 

(a) Trip A ends at 

a different dest-

ination than the 
existing routes. 

(b) Trip B begins 

at a different start-

ing point than the 
existing routes. 

(c) Trip C trav-

erses a new  

route.  

(d) Trip D follows 

an existing route 

but in the oppo-
site direction 

(a) When Trip A 

(in red) begins, 

the closest route 
is Route 1. 

(b) Early in the 

trip, the closest 

route remains 
Route 1. 

(c) The closest 

route switches to 

Route 2 soon 
after the turn.  

(d) The correct 

route match for 

Trip A is indeed 
Route 2. 

Route 1 

Route 2 

Trip A Route 1 

Route 2 

Trip A Route 1 

Route 2 

Trip A Route 1 

Route 2 

Trip A 



the top 8 matches and within the top 5 after 5 miles of 
driving. Note that because this graph is an aggregate 
view of performance, each point includes trips that are in 
a range of completion. For instance, at the mile 3 slice, 
the graph includes data on short trips that are just 
completing (e.g., trips of 3-4 miles in length) as well as 
long trips that are really just beginning (e.g., > 20 miles).  

 

Figure 16. The closest match prediction algorithm returns 

an ordered list of the best matching route candidates. The 

average correct route index is graphed above by both 

percent of trip completed (a) and current travel distance 

(b). At the halfway point of a trip’s completion, the correct 

route is within the top 2 matches. 

Obviously the goal here is to distinguish the correct route 
as early in a trip’s lifetime as possible. We believe the 
primary reason why it takes so long to select the correct 
route is because there is a good deal of overlap between 
a driver’s most frequently traveled routes. Clearly there 
is a small set of paths that extend from a driver’s home 
or workplace—these paths only become distinct after a 
certain amount of divergence. Thus, early in a trip’s 
lifetime there are many reasonable candidates for route 
matching. As we propose toward the end of this paper, 
looking at the time of day and day of week may help 
make the distinction. 

Another performance metric to explore is the correct 
prediction rate based on trip progress.  
Figure 17 shows a quadrant of graphs; the upper 
quadrant is by percent of trip complete and the lower 
quadrant is by current travel distance. By the end of the 
first mile, 30% of repeat trips are correctly predicted 
(13% overall). However, by this point, the correct 
prediction for repeat trips is already within the top 10 
closest routes 70% of the time—by the third mile this 
percentage increases to 80%. Depending on the 
application, even an n-best list of matching routes could 
be useful. If there is an important warning, for example 
an upcoming accident site, then alerting the driver even 
with some uncertainty about his/her route may be 
worthwhile. In the case of a hybrid vehicle, the control 
system could plan for the worst case route (or the 
average case) until a clear winner emerges. Our 2

nd
 

algorithm, which we describe next, returns confidence 
estimates along with its predictions—these could be 
used to better reason about instituting dynamic 
behaviors based on the predictions. 

    

 

 

 

  

 

 

 

Figure 17. These graphs show the performance of the 

closest match prediction algorithm. The figures on the top 

row are by percent of trip complete while the figures on 

the bottom row are by distance traveled (in miles). The left 

column includes route prediction for all trips while the 

right column only includes repeat trips. 

THRESHOLD MATCH PREDICTION RESULTS 

The threshold match prediction algorithm receives as 
input the current trip’s travel distance and the trip’s 
distance to the 1

st
 and 2

nd
 closest routes (d1 and d2). The 

parameters d1 and d2 are not point-to-point distances but 
rather the Hausdorff-like, trip similarity measure 
described earlier. The algorithm returns the fraction of 
closest routes that were correctly predicted in the past 
with those combinations of values. Our intuition was that 
the percentage of correctly predicted routes would rise 
proportionally as d1 grew small and d2 grew large. In 
other words, our predictions would become more 
accurate as the current trip comes closer to the closest 
route and father away from the 2

nd
 closest route. 
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(a) By the halfway point, a trip’s 

route can be correctly predicted 

20% of the time, and the correct 

prediction is within the top 10 

route matches 40% of the time. 

(b) If we look only at repeat trips, 

the prediction jumps to 40% 

accuracy at the halfway point, and 

the correct route is within the top 

10 matches over 97% of the time. 

(c) The closest route is the correct 

prediction between 15% and 25% 

of the time for each mile traveled 

up to 20 miles. The correct route 

is within the top 10 list 30-40% of 

the time. 

(d) We can correctly predict 40% 

of repeat trips by mile 3 and the 

correct route is within the top 10 

matches over 75% of the time. 



All Trips 

  

 

 

Only Repeat Trips 

 

 

 

Frequency of d1, d2 Values 

 

 

Figure 18. These graphs were constructed by iterating over d1 and d2 threshold values at different trip distance intervals and 

calculating the correct route prediction accuracies when d1 <= the d1 threshold and d2 > the d2 threshold. The top two rows of 

graphs show the prediction accuracies for all trip and repeat trips respectively. The bottom row shows the frequency of these 

d1, d2 combinations in our data. 
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(a) Within the first 0 – 2 miles of a trip, the 

prediction accuracy largely follows our 

intuition. When d1 is small and d2 is 

comparatively large, the accuracy is high. For 

example, when d1 <= 0.05 miles and d2 > 1 

mile, our accuracy is greater than 85%. 

(b) Here, when both d1 and d2 are small (d1 <= 

0.05 and d2 > 0.05) we achieve 71% accuracy. 

As d1 grows large, the accuracy drops to less 

than 10%. Interestingly, we not see the rate of 
predictions increase as d2 grows large. 

(c) At the 4 – 6 mile point in a trip, more is 

known about the trip’s path structure and thus 

the overall predictions are slightly better than 

the previous intervals.  

(d) Similar to (a), when a trip just begins and 

only one route is close, it is highly likely that 

this route is the correct match. For all values 

of d2, when d1 is very small we correctly 

predict the route more than 70% of the time.  

(e) As expected, the overall prediction rates 

are greater for repeat trips than for all trips. 

Compare this graph to that found in (b) above.  

(f) By the time a trip reaches 4-6 miles in travel 

distance, there is often enough path structure 

to correctly predict the route even with 

relatively high values of d1.. The entire row of 

predictions when d1 < 0.05 miles has an 

average accuracy of 85%. 

(g) The frequency of occurrence of d1, d2 
combinations of values at 0 – 2 miles. 

(h) The frequency of occurrence of d1, d2 
combinations of values at 2 – 4 miles. 

(i) The frequency of occurrence of d1, d2 
combinations of values at 4 – 6 miles. 



 
Our results were computed by iterating over a set of test 
d1 and d2 threshold values for discrete moments in a trip 
and calculating the percentage whose routes were 
correctly predicted. In particular, we checked how often 
the closest route was the correct route when d1 was less 
than or equal to the test d1 threshold and d2 was greater 
than the test d2 threshold (i.e., d1 <= threshold d1 && d2 
> threshold d2). Although we ran a range of experimental 
values, the graphs included in this paper were 
constructed by setting the initial thresholds to d1 = d2 = 
0.05 miles. We then incremented the d1 threshold value 
in an outer loop and the d2 threshold value in an inner 
loop to build a 2D-array of prediction performance for 
those thresholds. We expected much higher accuracies 
when d1 was small and d2 was large. The 0.05 mile 
increment and starting value were chosen based on the 
density of data when d1 and d2 are small (a majority of 
our trip data is relatively close to an existing route). We 
ran this experiment in travel distance bins of 2 miles long 
from 0 – 2 miles to 20-22 miles. Given that the average 
trip length in our corpus was 7.7 miles, we present 
graphs from 0 – 2 miles, 2 – 4 miles, and 4 – 6 miles as 
they cover a large portion of trips before they have 
completed.  

Figure 18 displays a 3 x 3 graph matrix of our results. 
Each row of graphs represents a different aspect of the 
threshold match algorithm’s performance. Each column 
is organized by travel distance: 0 – 2 miles, 2 – 4 miles, 
and 4 – 6 miles. The top row shows prediction 
accuracies for all trips, the second row shows prediction 
accuracies for repeat trips, and the bottom row shows 
the occurrence frequency of those d1, d2 combinations at 
those travel distances.  

The data in the plots in Figure 18 could be used by an 
application engineer to assess the prediction algorithm’s 
confidence. Given the distance into the trip and the 
values of d1 and d2, the first two rows of plots give the 
fraction of time that the nearest route was the correct 
prediction, based on our experiments. Sometimes the 
algorithm was 100% correct in its predictions, and other 
times it was lower. The location-aware application can 
then decide what action to take. For example, a hybrid 
vehicle may change its battery rate of charge based on 
the confidence of the route prediction. The bottom row of 
plots shows how often the corresponding d1 and d2 
occurred in our test data. Some trips never satisfy 
certain settings of the thresholds, so they would not 
trigger a route prediction for that particular setting. This 
gives an idea of how often we can actually make a 
prediction of a given confidence. 

Overall, the graphs tend to follow our expectations—as 
the closest route (d1) and 2

nd
 closest route (d2) diverge, 

our prediction accuracies increase. We also note that 
predictions for repeated trips (2

nd
 row of plots) are 

generally more accurate than those for all trips, which 
include both single and repeated trips (1

st
 row of plots). 

As we showed previously, longer observation times 
result in the discovery of more driver repetition, meaning 

that we expect our prediction accuracy would rise as the 
driver is observed for more days. 

One aspect that is immediately identifiable from the last 
row of graphs is that there is a very high density of trips 
where both d1 and d2 are small. This makes the problem 
of correct end-to-end route prediction even more 
challenging—it means that a trip often has at least two 
close routes as it progresses. Distinguishing the two may 
not be possible by focusing completely on their 
geographic similarity. In the next section we propose 
additional attributes that could be used to aid prediction 
in these cases.  

CONCLUSION 

We begin this section by enumerating potential areas of 
future work before summarizing this paper’s primary 
contributions and concluding. 

FUTURE WORK 

There is much future work to be done. First, we only 
incorporated one feature, that of geographic distance, 
into our route prediction algorithm. In the future, we 
would like to explore how incorporating additional 
features such as frequency and recency of route travel 
would allow us to make more accurate predictions earlier 
in a trip’s lifetime. Other factors such as identifying the 
vehicle’s driver or whether or not there are passengers 
in the car may also aid prediction but are more difficult to 
detect.  

 

 

 

Figure 19. In both of these figures the correct route was 

predicted using only the geographic-based trip similarity 

algorithms described in the paper. Note, however, that 

there is a strong temporal pattern between a trip and its 

matching route as well. 

In addition, we have just begun exploring route 
periodicity—that is, the temporal patterns that exist in 
route driving behavior (e.g., by time of day, day of week). 
Although some related work [5, 7] suggests that the 
temporal aspects of a route do not increase prediction 
accuracy, these papers focused on near-term 
predictions and not on routes as a whole. We have early 
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evidence to suggest that time may be leveraged to 
improve general route prediction (Figure 19). 

Finally, correctly predicting a route that has never been 
traveled is an open problem. In many cases, it is simply 
not possible to predict a driver’s route once they deviate 
from their trip history. We suspect, however, that a few 
elements may be leveraged to increase accuracy under 
certain conditions:  

1. Rather than focusing all of the prediction efforts on 
full route matching, for those trips that follow a new 
route, it may be possible to predict at least part of 
the route (e.g., if the latter part of a new trip 
overlaps with an existing route like in Figure 15b). 
We did not explore partial route matching in this 
paper.  

2. Although we have yet to investigate this in our data, 
our intuition is that for many new routes, the return 
route will follow the same path but in the opposite 
direction. At best, this could decrease the amount 
of new routes by 50% if we assume that all new 
routes are driven in reverse on the return trip. If 
nothing else, the return route could be weighted 
higher by the prediction algorithm. 

3. Finally, driver familiarity, general route popularity, 
common destinations among area population, 
optimal path behavior [9], etc. could all be used as 
heuristics to guide new route predictions. 

SUMMARY 

In this paper, we showed how the regularity of a driver’s 
traveling behavior could be exploited to predict the end-
to-end route for their current trip. We made three primary 
contributions. First, we provided a methodology for 
automatically extracting routes from raw GPS data 
without knowledge of the underlying road structure. 
Second, we presented a detailed discussion and 
analysis of repeat trip behavior from a real world dataset 
of 14,468 trips from 252 drivers. Finally, we developed 
and evaluated two algorithms that used a driver’s trip 
history to make route predictions of their current trip. 
Although performance varies, we believe some 
application areas such as improving hybrid vehicle 
efficiency and dynamic traffic alert systems could still 
benefit from long-term route predictions even with a 
degree of uncertainty. 
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