
2008-01-0201

Route Prediction from Trip Observations

Jon Froehlich
University of Washington

John Krumm
Microsoft Research

Copyright © 2008 SAE International

ABSTRACT

This paper develops and tests algorithms for predicting
the end-to-end route of a vehicle based on GPS
observations of the vehicle’s past trips. We show that a
large portion of a typical driver’s trips are repeated. Our
algorithms exploit this fact for prediction by matching the
first part of a driver’s current trip with one of the set of
previously observed trips. Rather than predicting
upcoming road segments, our focus is on making long
term predictions of the route. We evaluate our algorithms
using a large corpus of real world GPS driving data
acquired from observing over 250 drivers for an average
of 15.1 days per subject. Our results show how often
and how accurately we can predict a driver’s route as a
function of the distance already driven.

INTRODUCTION

Route prediction is the missing piece in several
proposed ideas for intelligent vehicles. In this paper, we
present algorithms that predict a vehicle’s entire route as
it is driven. Such predictions are useful for giving the
driver warnings about upcoming traffic hazards or
information about upcoming points of interest, including
advertising. One of the most innovative applications of
end-to-end route prediction is for improving the efficiency
of hybrid vehicles. Given knowledge of future changes in
elevation and speed, a hybrid control system can
optimize the vehicle’s charge/discharge schedule. For
example, if a hybrid vehicle knows about an upcoming
opportunity to recharge its batteries from regenerative
braking (e.g., stop-and-go traffic, sharp curves, or a
steep hill), it can use up part of its battery power prior to
the opportunity to make room for the expected incoming
charge. Researchers from Nissan showed that it is
possible to improve hybrid fuel economy by up to 7.8% if
the route is known in advance [1]. Tate and Boyd also
explore the optimal control scheme for a hybrid
assuming the route is already known [2].

While the driver could be asked for his or her route
before every drive, we suspect that most drivers would
tire of this quickly. This is especially true for a driver’s

regular routes, which is where we concentrate our
efforts. We found that, for drivers observed for at least
40 days, nearly 60% of their trips were duplicated in our
observations. Our prediction algorithms look at a GPS
trace of a driver’s current trip and attempt to find the best
match to a previously driven trip. We find that, in some
cases, we can predict a driver’s route with 100%
accuracy within the first two miles of the trip. Our
accuracy is lower in other cases, and our results give
details on how often our algorithm achieves various
levels of prediction accuracy.

We trained and tested our algorithms on GPS data from
252 drivers. The next few sections describe how we
cleaned our typically noisy GPS data, extracted distinct
trips, and found drivers’ regular routes. We then go on to
describe two algorithms for route prediction and give
details on how well they perform. First, we highlight
some related work.

Route prediction for smart vehicles was addressed by
Karbassi and Barth [3] for a car-sharing application.
Their task was to predict which route a driver would take
between given starting and ending drop-off stations. In
our work, we do not rely on the driver to enter his/her
destination. Torkkola et al. [4] learn destinations and
routes from GPS data. As in our work, these learned
routes are the basis for prediction, although their
prediction algorithm is not given. Using a hidden Markov
model learned from 46 sampled trips, Simmons et al. [5]
predict destinations and routes based on knowledge of
the road network. They quote an accuracy of predicting
the next road segment as high as 99%, although in 95%
of the cases the next road segment is the only one
connected to the current one. Their rich model allows the
incorporation of time-of-day, day-of-week, and speed
sensitivity into their predictions. Their results show that
only speed is a significant help in boosting their
prediction accuracy. Patterson et al. [6] applied machine
learning and a particle filter to people’s GPS traces to
predict their destination, route, and even mode of
transportation from an inferred list of previous
destinations. Our approach also differs from the short-
term route prediction in [7]. In their work, the goal was to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357629163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

predict ahead just a few blocks based on the most
recent road segments. In this paper, we make long-term
predictions about the entire route.

The research we present in this paper is primarily
differentiated from previous work by our novel process
for extracting routes from GPS data, our analysis of
route regularity, our prediction algorithms, and our large
corpus of test data from 252 separate drivers. We also
note that our work is different from GPS-based learning
for finding people’s frequent destinations (e.g., [8]) or for
predicting a future destination (e.g., [9]). The goal of our
work is to accurately predict a driver’s entire route very
early in a trip.

FROM GPS DATA TO REGULAR ROUTES

Our route predictions are based on observations of
individual drivers with GPS. This section explains how
we gathered raw GPS traces, extracted discrete trips,
and found regular routes.

THE GPS DATA (MULTIPERSON LOCATION SURVEY)

The GPS traces used in our analysis were collected as
part of the Microsoft Multiperson Location Survey
(MSMLS). The MSMLS is an ongoing study at Microsoft
Research aimed at gathering driving data for location-
based research. Since June 2005, over 2.2 million GPS
location points have been collected from 252 subjects,
who volunteer to drive with a GPS recorder in their
vehicle for two weeks or more. Subjects are recruited
from the Seattle, WA area and nearly all are employees
of Microsoft or their family members.

The Garmin Geko 201 portable GPS receiver is used for
data collection. It is capable of recording up to 10,000
time stamped GPS points in internal memory (which
includes latitude, longitude and altitude). We used the
device’s adaptive recording mode, which dynamically
modifies the logging frequency based on the device’s
movement. In this mode, the GPS unit tends to record
more points when the vehicle is changing speed or
direction and fewer points when it is stopped or traveling
in a straight line at constant speed. The median time
interval between logged data points in our dataset is six
seconds and the median distance is 208 feet.

All participants in the MSMLS are instructed to place
their loaned GPS receivers on their vehicle’s dashboard
or some other area within the vehicle with a clear view of
the sky and to drive normally during the survey period.
The receivers are powered via a car adapter cable
plugged into the vehicle’s cigarette lighter socket. We
modified the GPS units slightly such that they would
automatically turn on whenever power was supplied.
This was advantageous because it meant that the
subjects did not have to remember to turn their GPS
receivers on when they started their vehicles and off
when they stopped. Thus, once the GPS receivers were
plugged in, the subjects could forget about them for the

rest of the survey period. Some vehicles supply power to
the cigarette lighter socket even when the vehicle is off.
The adaptive recording mode, however, decreases the
logging frequency when no motion is detected, thereby
reducing the accumulation of data when the vehicle is
parked (even if the device is still receiving power).

Prior to the data collection period, subjects are asked to
fill out a short demographic survey. At the end of the
collection period, they return their GPS receivers to the
research team. As compensation for their participation,
volunteers are entered into a drawing to win a $250
portable media player.

Currently, the MSMLS database contains 2,222,758 data
points collected from 252 subjects, for an average of
8,821 recorded points per person (Figure 1a). On
average, we have 15.1 days worth of driving data per
subject (Figure 1b). Although the maximum storage
capacity of the Geko 201 GPS device is 10,000 data
points, recently our subjects have been given the option
of continuing their data collection after their device
memory initially fills up. In these cases, we have the
subjects switch to a new GPS receiver after every two
weeks. At present, 41 subjects have more than 10,000
data points (average among these subjects: 19,071).
From this raw data, we extracted discrete trips, a
process we describe in the next section.

Figure 1. A high level view of the MSMLS dataset: (a)

shows a histogram of the number of data points per

subject and (b) a histogram of the number of days worth

of driving data per subject.

FROM GPS DATA TO TRIPS

Our route prediction algorithm depends on knowledge of
a driver’s discrete trips, but the GPS data gives no
explicit indication of when a trip begins or ends, In
addition, GPS points themselves are often noisy and
some contain invalid sensor data. This section explains
how we go from raw GPS measurements to a plausible
set of discrete trips for each driver.

For the purposes of this project, we define a trip simply
as a set of temporally ordered, time stamped GPS data
points collected by a given subject. Trips are composed
of N data points and N-1 trip segments (the edges
between these points). We created a three stage
process to transform the raw GPS data into trips: first,

0

10

20

30

40

50

60

70

80

0 10,000 20,000 30,000 40,000

N
u

m
 S

u
b

je
ct

s

Num of Data Points

data points per subject histogram

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50 55

N
u

m
 S

u
b

je
ct

s

Data Collection Period (in days)

survey period per subject histogram

(a) (b)

we segment the trips into multipoint trip objects; second,
we clean the trips by removing invalid data points; and
third, we filter the trips to eliminate false trip objects.
These are described below.

Trip Segmentation

The trip segmentation algorithm sorts each subject’s raw
GPS data chronologically and looks for gaps between
two consecutive recorded points (P1, P2) of three
minutes or more. If a gap is found, P1 becomes the end
point of the last trip and P2 the beginning point of the
current trip. The threshold value of three minutes was
chosen empirically based on the logging interval
distribution (Figure 2a) and experimentation with map
visualizations of the data. Although primitive, this
algorithm takes advantage of the adaptive recording
mode used by our GPS receivers, which limits the
number of recorded points when no motion is detected.
In addition, such a gap also exists when a vehicle is
parked and turned off for more than three minutes
thereby signifying the end of a trip (assuming the vehicle
does not supply power to the GPS device when off).

Selecting a reasonable threshold value here is
challenging because it is difficult to distinguish between
brief stopovers that are legitimate ends to a trip (e.g.,
stopping at a convenience store) and normal traffic
stoppage (e.g., stopping at a long traffic light). With our
dataset, it is not possible to tell the difference between a
three minute gap that resulted from a car being shut off
and a three minute gap that resulted from a long traffic
light. Setting the threshold to three minutes resulted in
27,610 trips.

Figure 2. (a) A three minute gap (red line) between logged

data points was used to segment the raw data into trips.

(b) The number of raw trips changes depending on the

segmentation interval. Here, the red line indicates the

segmentation interval used in our dataset.

Trip Cleansing

Once the trips were segmented, the data points within
those trips needed to be cleaned, because our GPS data
contained outliers. Although the Geko 201 GPS receiver
utilizes the Wide Area Augmentation System (WAAS) to
assist in location accuracy, outlier points from obscured
line of sight, device cold starts and other satellite

disruption phenomena can result in outlier GPS readings
(see Figure 3). Outliers typically occur in isolation and
appear as a wildly mistaken point along an otherwise
reasonable sequence of GPS points. Since the outlier is
normally far away from the temporally adjacent points in
the trip, they stand out when we compute local speed
and acceleration from adjacent points.

Figure 3. The above figures demonstrate example outliers

in our GPS data. (a) The invalid starting point of this trip

created a trip segment of a speed exceeding 97,500 mph.

(b) This same trip once the invalid data point was

removed. (c) An invalid data point in the middle of a trip

resulted in an anomalous 397.8 mph trip segment. (d) The

same trip after cleansing. (e) A map of the Seattle

metropolitan area with a subset of the (uncleansed) trips

in our dataset. The trips are colored by subject. Note the

spurious straight lines in this figure; these are caused by

outliers. This is the same map view as that found in Figure

7b but with raw, uncleansed trips.

We created two trip cleansing algorithms based on
speed and acceleration to remove the offending points.
Data points that contributed to a speed of over 100 mph
or an acceleration of over 80,000 mph

2
 were eliminated.

We iterated over every trip segment in each trip looking

10

100

1000

10000

100000

1000000

0 50 100 150 200 250

C
o

u
n

t
(l

o
ga

ri
th

m
ic

 s
ca

le
)

GPS Logging Interval (in seconds)

logging interval histogram

0

10

20

30

40

50

60

30 230 430 630 830

R
aw

 T
ri

p
 C

o
u

n
t

(T
h

o
u

sa
n

d
s)

Segmentation Interval (seconds)

raw trip count based on
segmentation interval

(a) (b)

Invalid

Starting

Point

(a) (b)

Invalid

Starting Point

Removed

 Remaining

Valid Trip

(c)

(d)

Invalid Data Point

Invalid Data Point

Removed

(e)

for outliers. If a trip segment exceeded our speed or
acceleration thresholds both data points were tested for
validity. If by removing one of the data points, the
irregularity subsided then we had found our invalid point
and it was removed (e.g., Figure 3c and 3d). If not, then
both data points were removed. The trip was then
reformed into new trip segments and the cleansing
algorithm started over until all invalid points were
eliminated. This reduced the number of data points in
our trips from 2,222,758 to 2,196,828 (a reduction of
1.2%).

Trip Filtering

After cleansing, the next processing stage was trip
filtering. Vehicles that continued to power their GPS
receivers even when turned off would often produce
intermittent streams of GPS readings. Satellite location
sensing drift would fool the adaptive recording mode into
thinking that the GPS device had begun moving even
though the vehicle was parked (Figure 4a). These faulty
readings could continue for as long as 10-15 minutes at
a time, though they tended to come in shorter spurts.
Our trip segmentation algorithm did not discriminate
between these fictitious trips and the real trips in our
dataset. Thus, we created a set of trip filtering algorithms
that work in succession to identify and eliminate these
false trips. Trip filtering, however rudimentary, is an
essential part of our work. Before running experiments
with our route prediction algorithms we had to ensure
that a vast majority of our trip data was valid.

MinimumPointCountTripFilter: The minimum point count
trip filter removed trips with less than a specified point
count, which we set to ten data points.

MinimumTripTimeFilter: The minimum trip time filter
removed trips that took less time than a supplied
threshold value, which we set to 30 seconds.

Figure 4. (a) 34 garbage trips were created by GPS

location drift over a three day period while this driver’s

vehicle was parked outside his house. (b) These garbage

trips were transformed to intermediate centroid based

trips (shown in orange), which are less than 0.1 miles in

length and therefore are filtered out of our dataset.

CentroidBasedDistanceTripFilter: The centroid-based
distance trip filter was built to remove dense, highly
circular trips—a salient characteristic of fictitious trip
data. It works by iterating over a given trip using a sliding
window of 10 points long. At each step, a centroid point

is generated from the data currently in the window,
essentially making this into a moving average filter on
2D (latitude, longitude) data. These centroid points are
then combined into a new trip whose travel distance is
computed. If this distance is below 0.1 miles, we
eliminated the original trip. An example of this
processing is shown in Figure 4.

DirectionChangeFrequencyTripFilter: The direction
change frequency trip filter removed trips with a high
degree of directionality change. The algorithm works by
counting the number of four-way

1
 and eight-way

2

direction changes between each trip segment in a trip. If
the ratio of direction changes to trip segments is greater
than 0.5 for four-way directions or 0.6 for eight-way
directions, the trip is removed. The invalid trip shown in
Figure 5a shares many characteristics with a legitimate
trip; it has a reasonable length (1.7 miles) and average
speed (19.8 mph)—however, one can clearly tell visually
that the trip data is erroneous. The direction change
frequency trip filter properly removes this trip as its
direction change ratios of 0.64 (four-way) and 0.66
(eight-way) exceed our set thresholds.

Figure 5. (a) The direction change frequency trip filter

correctly filters this erroneous trip (in red). (b) The trip

would not have been eliminated via the centroid based trip

filter (shown in orange). (c) Even a very “turny” legitimate

trip like that in (c) is not erroneously filtered, which has a

direction change ratio of 0.19 and 0.33.

Finally, we used the following two filters to ensure that
the remaining trips took place within Washington State
and were complete trips.

WithinBoundsTripFilter: The within bounds trip filter
removed trips that took place outside of a specified
geographical bounding box, which was set to the
approximate boundary of Washington State. Some of
our subjects took their GPS units with them while
traveling and placed them in their rental cars. This filter
removed occurrences of those trips.

MostRecentTripFilter: The most recent trip filter removed
the subject’s last trip if their GPS receiver’s storage
memory was full when it was returned to the research
team. Removing this trip was necessary because we
could not guarantee that the last trip in memory was a
complete trip (i.e., that it did not get cut off when the
internal memory ran out).

1
 Cardinal directions: North, South, East West

2
 Cardinal and inter-cardinal directions: North, Northeast, East, Southeast, South,

Southwest, West, Northwest

(a) (b) (c)

(a) (b)

After filtering, our corpus of trips appeared much more
reasonable, although some invalid trips remained, and
some valid trips were removed. Acknowledging that our
filtering process was not perfect, we tried to err on the
side of removing too many valid trips with the goal of
minimizing invalid trips that would distort our prediction
accuracy experiments.

THE TRIP DATA

Trip filtering reduced the number of trips from 27,479 to
14,523 (a 47.2% reduction). For our analysis, we also
required that subjects have more than ten total trips; this
excluded twelve subjects. We felt that ten or fewer trips
were not enough to properly establish a driver’s regular
patterns. Thus, our final dataset included 14,468 trips
from 240 subjects. On average, our subjects took 4 trips
per day. The average trip length was 7.7 miles and trip
time 16.3 minutes. For comparison, according to the
2001 National Household Travel Survey, an average
driver in a metropolitan area the size of Seattle makes
4.07 trips per day with an average length of 9.87 miles
[10]. Figure 6 reveals some high level statistics and
distributions of our trip data and Figure 7 displays the trip
data overlaid on two maps, one of Washington State and
the other of Seattle.

Figure 6. A histogram of trip distances is shown in (a) and

trip durations in (b). Most subjects drove between 3-5 trips

per day on average as can be observed in (c). Finally, (d)

shows a small table of trip statistics.

FROM TRIPS TO REGULAR ROUTES

When making a route prediction, we try to pick which
previously seen route a driver is on. We make a
distinction between trips, which we extract from the GPS
data, and routes, which we build from repeated trips. A
trip describes a driver’s path through time and space

using time stamped GPS data. A route is simply an
abstraction of a trip (or trips) without the temporal
component. That is, a route is a collection of latitude,
longitude pairs that define a directed path. A regular
route is a path that a driver drives often. This section
describes how we extract routes from trip data.

Figure 7. A map of Washington (a) and the Seattle

metropolitan area (b) with overlaid trip data from the

MSMLS dataset. The trips are colored by subject. Figure

(b) is the same map view as Figure 3 but with cleaned and

filtered trips. Note that the maps have been darkened to

emphasize the trip data.

Trip Similarity

Intuitively, trips that a driver takes along the same path
should be considered the same route. To do this
programmatically, we must formally define some notion
of trip similarity. If two or more trips are similar, then we
combine them into a route. This section shows how we
assess the similarity of two trips. The algorithm relies
solely on the (latitude, longitude) data from our filtered
trips. It does not require an extra step of inferring which
roads were traversed.

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35

N
u

m
 T

ri
p

s

Trip Distance (miles)

trip distance histogram

M
o

re

0

100

200

300

400

500

0

10 20 30 40 50 60 70 80 90 10
0

N
u

m
 T

ri
p

s

Trip Time (minutes)

trip duration histogram

M
o

re

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7

N
u

m
 S

u
b

je
ct

s

Average Num Trips Per Day

average num of trips per day by
subject

description avg

med

trip distance
(miles)

7.7 4.2

trip time
(minutes)

16.3 11.5

num trips /
day

4 3.9

num trips /
subject

60.3 50

num days of
data / subject

15.1 13

(a) (b)

(c) (d)

(a)

(b)

At a high level, the algorithm works by computing the
average minimum point-segment distance between two
trips (e.g., from Trip A to Trip B and from Trip B to Trip
A). These averages are added together and divided by
two to calculate a symmetric score representing the
similarity between the two trips.

In particular, our similarity algorithm works as follows:

1. For every point PAi in Trip A, find the closest trip
segment TSBj in Trip B (Figure 8a). A trip
segment is simply a straight line between two
temporally adjacent GPS points. Calculate the
minimum point-segment distance between PAi

and TSBj (Figure 8b).

2. Add together these point-segment distances to
compute the total distance between Trip A and
Trip B: TotalDistanceAB.

3. Calculate the similarity score (ScoreAB) by
dividing TotalDistanceAB by the number of data
points in Trip A. This score is asymmetric; it
represents the similarity from Trip A to Trip B but
not from Trip B to Trip A (Figure 8c).

4. Repeat the above steps but this time compare
Trip B to Trip A. This produces a 2nd
asymmetric score: ScoreBA (Figure 8d).

5. Add both scores together and divide by two to
calculate the final similarity score. Set ScoreAB

and ScoreBA equal to this final score thereby
enforcing symmetry. A lower score indicates
more similarity.

6. Finally, store the results in a similarity matrix.

Figure 8. The four figures above walk through some high

level aspects of our trip similarity algorithm.

There is one specific nuance in the algorithm which
allows us to differentiate the directionality of two trips
along the same path: the comparison between points
and segments is an ordered comparison. As we iterate
through a trip’s data points looking for its comparison
trip’s closest segment, the closest segment found must
always have an index equal to or greater than the last
closest segment found (as illustrated in Figure 9). Two
trips along the same path but in opposite directions will
then correctly be identified as having unique routes.

Figure 9. Even though Trip A and Trip B follow roughly the

same path, they are in opposite directions. The ordered

comparison ensures that their similarity score is

comparatively large.

Our similarity measure is a version of the Hausdorff
distance algorithm, sometimes used in computer vision
to compare object outlines [11]. Torkkola et al. [4] use a
purely point-based algorithm for comparing two trips.
Their similarity measure looks at the set of closest
matches between the points in each of the two trips. If
the maximum of the minimum distances exceeds a
threshold, the trips are declared dissimilar. Our
technique compares points in one trip to line segments
in the other trip, which helps account for variations in
GPS sampling rate. Also, our similarity measure is
sensitive to the direction of travel.

Detecting Routes through Trip Similarity Clustering

In order to create routes from trip data, every trip in a
subject’s dataset must be compared (this takes n

2

comparisons where n is the number of trips). We use the
results of these comparisons to construct a trip similarity
matrix, which holds all of the similarity scores between
trips for a given subject. The scores in the trip similarity
matrix are then used to cluster similar trips together.
Finally, these clusters are converted to routes. The
precise definition of this cluster-to-route transformation is
covered in the next section. Here, we focus on route
detection through trip similarity clustering.

To detect routes, we repeatedly combine trips with the
lowest scores (highest similarity) in our similarity matrix
into trip clusters. We apply dendrogram clustering, which
is a hierarchical clustering technique that recursively
clusters data points (Figure 10f), to repeatedly combine
trips until the lowest score in the similarity matrix
exceeds a set threshold. For our analysis, this threshold

comparison direction B to A

dBA1
Trip B

Trip A

dBA2
dBA3

dBA4
TSA5

PB1
PB2

PB3

PB4

 comparison direction A to B

TSB4

dAB1

Trip B

dAB2
dAB3 dAB4

dAB5

Trip A
PA1

PA2

PA3

PA4

PA5

dAB1

Trip B

dAB2
dAB3 dAB4

dAB5

Trip A

dBA1

Trip B

Trip A
dBA2

dBA4

dBA3

90°
dAB1

Trip B

Trip A

TSB1

Trip B

Trip A
PA1

PA2

PA3

PA4

PA5

PB1

PB2

PB3
PB4

(c) We iterate this process for

each point in Trip A to compute

an average minimum point-

segment distance from Trip A to

Trip B. This is the ScoreAB.

(d) We repeat steps (b) and (c)

but this time we compute the

minimum point-segment distance

from Trip B to Trip A. This is the

ScoreBA.

(a) First, we find the closet trip

segment in Trip B (TSB1) to the

1
st

 point in Trip A (PA1). In this

example, note that both trips are
in the same direction.

(b) Using the minimum point-

segment distance algorithm, we

compute dAB1 from PA1 to TSB1.

(a) When comparing Trip A to Trip

B, the first comparison matches

PA1 to TSB4. Thus all future point A

matches must be to TSB4 or a

segment with a greater index
(e.g., TSB5, TSB6) in Trip B.

(b) The comparison from Trip

B to Trip A is also ordered.

Hence, PB4 is matched to TSA5

even though TSA3 is the

closest geographically.

was set to 0.05 miles (264 feet)—meaning that, on
average, two trips must be within 0.05 miles apart (using
our distance measure) to be clustered together. Each
trip cluster is transformed into a route. The size of the
cluster represents how frequently that route was
traveled. Those trips that have not been clustered are
assumed to be unique routes—routes that have only
been driven once.

Figure 10. In this example, dendrogram clustering

uncovers three routes (d) from six example trips (a). Note

how Dendrogram Clustering uses a threshold to constrain

the composition of clusters (f).

Figure 10 illustrates how trip clustering is used to
discover routes. In this example, a subject has driven six
trips over three distinct routes (Figure 10a). For
illustrative purposes, our clustering threshold is set to 5.
The algorithm begins by constructing an initial 6 x 6 trip
similarity matrix. Each row and column in the matrix
represents a trip. Note that the matrix is symmetrical;
this is an effect of the score symmetry property enforced
by our trip similarity algorithm. After the initial matrix has
been constructed, the next step is to scan the matrix for
the smallest similarity score. In our example, Trip C and
Trip D have the lowest score and thus, are the first to be
clustered. This produces Route 1. Trip C and Trip D are
subsequently removed from the matrix and replaced by
Route 1 (Figure 10b). The matrix, which now has a
dimension of 5 x 5, is recomputed and scanned. In this
case, Trip E and Trip F are found to have the smallest
score and are clustered into a second route, Route 2
(Figure 10c). Once again the dimensionality of the matrix
is reduced. The next scan reveals that Route 1 and Trip
B have the smallest similarity score. To merge a route
and a trip, the original trips that make up the route are
reclustered with the new trip. Thus, in our example, trips
B and C are reclustered with D to reform Route 1.

Finally, we are left with a 3 x 3 matrix composed of two
routes and 1 trip; however, the smallest remaining score
in the matrix is greater than the dendrogram clustering
threshold so the clustering ceases (Figure 10f).

From Trip Clusters to Routes

Left unsettled in the explanation above is how we
combine multiple trips into one representative route. The
key objective of this transformation is to maintain the
overall path structure that the trip cluster follows. We
experimented with three separate trip merging
algorithms before selecting one for our analysis:

EvenIntervalMerge: The even interval merge algorithm
resamples trips in the trip cluster at even distance
intervals and calculates the average (latitude, longitude)
point at every interval. These averaged points comprise
the route. The sampling rate is determined by the
average number of data points per trip in the trip cluster.

ExhaustiveIntervalMerge: The exhaustive interval merge
algorithm is similar to the above but the trip data is not
resampled at a fixed rate. Instead, every data point in
each trip becomes a resampling point. This provides a
higher fidelity reproduction of the overall path structure
compared to the even interval merge algorithm but at a
cost of complexity. This algorithm produces a route that
grows exponentially with the number of trips and the
number of data points within those trips.

BestRepresentativeMerge: Unlike the previous two
merging algorithms, this algorithm does not attempt to
explicitly merge trips into an aggregate representation.
Instead, it selects an existing trip as the canonical route.
The selected trip has the smallest average similarity
score to all other trips in the trip cluster. Its path structure
(set of latitude, longitude points) is copied directly into
the route.

For our route prediction experiments we chose the even
interval merge algorithm. Although the exhaustive merge
algorithm offers a slightly better reproduction of path
structure, its increase in complexity made our clustering
computations prohibitively expensive. Note that when
merging two routes or a route and a trip, the original trip
data that comprises the route is used for merging and
not the route’s abstract form.

ROUTE PREDICTION

Our expectation is that much of an individual’s driving is
spent traversing regular routes. If this is true, then we
can try to recognize when a driver is on a regular route
and thus predict that he or she will stay on that route. In
this section we use our trip and route data to show how
regular drivers are, and then we develop two route
prediction algorithms based on this regularity. We should
note that in our dataset we did not track which vehicles
had more than one primary driver. We expect that a
shared vehicle will take longer to produce regular routes

 A B C D E F

A 0 5 8 9 14 16

B 5 0 3 4 9 11

C 8 3 0 1 6 8

D 9 4 1 0 5 7

E 14 9 6 5 0 2

F 16 11 8 7 2 0

(f) A visual depiction of the Dendrogram clustering algorithm.

Horizontal space between letters coarsely approximates to the
distance between the trips shown in (a).

 A B R1 E F

A 0 5 8.5 14 16

B 5 0 3.5 9 11

R1 8.5 3.5 0 5.5 7.5

E 14 9 5.5 0 2

F 16 11 7.5 2 0

 A B R1 R2

A 0 5 8.5 15

B 5 0 3.5 10

R1 8.5 3.5 0 6.5

R2 15 10 6.5 0

 R3 R1 R2

R3 0 7.3 15

R1 7.3 0 7.7

R2 15 7.7 0

(a) The initial trip

similarity matrix
for the above trips.

(b) Trip C and Trip

D are merged to
form Route 1.

(c) Trip E and Trip

F are merged to
form Route 2.

(d) The final

trip similarity
matrix.

cut off threshold = 5

A B C D E F

Route 3 Route 1 Route 2

Trip A
Trip B

Trip C

Trip E

Trip F

Trip D

Trip A
Trip B

Route 1

Trip E

Trip F

Trip A
Trip B

Route 1

Route 2

Route 3
Route 1

Route 2

simply because there will likely be a greater variance in
routes driven.

DRIVERS ARE REGULAR

We define a repeat trip as any trip that occurs more than
once along a route. On average, 39.3% of the trips our
drivers take are repeat trips (Figure 11). For 67 of our
subjects, this rate was greater than 50%—that is, one
out of every two trips for these drivers is along an
established route. Five of our subjects, however, never
drove a route more than once. These subjects are
somewhat anomalous in that we only have an average
of 4.6 days worth of driving data from them. For subjects
whom we have at least 20 days worth of data (n=45), the
average increases to 49.8%.

Figure 11. This bar graph shows the percentage of trips

that are repeat trips for each subject (average=39.3%,

median=39.6%). Each bar represents a subject.

Figure 12. The percentage of repeat trips that a driver

takes grows with the number of days of observation. By

the 25
th

 day of observation, a majority of trips driven are

over routes that have been seen before. The trend line is

graphed in red.

In general, we find more repeat trips with more days of
observation. In fact, the number of repeat trips
approaches 60% for subjects observed 40 days or more,
as show in Figure 12. This repeat trip growth rate is
relevant because our proposed system predicts a
driver’s route based on the driver’s trip history. A slow
growth rate for repeat trips would mean that the system
would have to monitor the driver for a longer period of
time before making accurate predictions. On the first day
of observation (the day when our subjects received their
GPS recorders), 1.5% of the trips were determined to be
repeat trips. By day three, this percentage jumps to 15%.
By the first full week (7 day period), over 35% of a
driver’s trips are repeat trips.

The percentage of unseen routes appears to decay
exponentially with the number of days of observation
before leveling off around the 30

th
 day at 50-60%.

Clearly, the number of new routes that a driver may take
is unbounded. However, the core set of routes a driver
takes appears to be discoverable within a month. Note
that the number of subjects contributing data drops as
the days of observation increases (see table next to
Figure 12). As a result, the y-axis value becomes more
variable.

Finally, one additional way to look at route regularity is
by the distribution of a driver’s trips across routes. A
highly regular driver will have a large portion of his/her
trips distributed over only a few routes. That is, a small
amount of routes will account for a large percentage of
this driver’s trips. In our data, the route traveled most
frequently accounts for an average of 12% of a driver’s
total trips. This is typically the morning commute route.
The top ten most frequently traveled routes account for
nearly 50% of a driver’s trips. Figure 13 shows an
averaged cumulative distribution of trips to routes for
each subject. To build this graph, we ordered each
subject’s set of routes by the frequency of travel—that is,
the first route for each subject is the route comprising the
most trips, the 2

nd
 route is the route comprising the 2

nd

most trips, and so on. We then averaged the number of
trips in each of these routes across subjects to
determine the average distribution of trips in routes in
our dataset. Thus, Figure 13 shows that, on average, the
most popular route makes up 12% of a driver’s trips and
the top 10 most popular routes make up 50% of a
driver’s trips. Note that this graph includes routes that
were only driven once—hence the graph correctly
progresses towards 100% (where 100% of the trips
make up 100% of the routes).

Figure 13. This graph reveals that a small amount of

routes comprise a majority of trips driven. It takes roughly

10 routes to account for 50% of a driver’s trips. For

comparison, the thin green diagonal line depicts a trip to

route ratio of 1:1. In other words, it graphs the

hypothetical case of our dataset having no repeat trips.

ROUTE PREDICTION ALGORITHMS

As a trip progresses, we try to find which previously
driven route, if any, the driver is on. Using the trip
similarity algorithm described earlier, we calculate the

0%

20%

40%

60%

80%

100%

%
 o

f
Tr

ip
s

th
at

 a
re

 R
ep

ea
t

Tr
ip

s

Each Bar Represents a Subject

% of trips that are repeat trips for each subject

0%

20%

40%

60%

80%

100%

1 6 11 16 21 26 31 36 41 46 51

%
 o

f
Tr

ip
s

th
at

 a
re

 R
ep

ea
t

Tr
ip

s

Day of Observation

repeat trip occurrences by day of
observation in the MSMLS survey

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 21 41 61 81 101 121 141

P
er

ce
n

ta
ge

 o
f

Tr
ip

s

Route Index
(Ordered By Most Frequently Traveled)

average cumulative distribution
of trips in routes

Average
Median
No Repeat Trips

Day % Repeat

Trips

Num

Subjects

1 1.5 240

3 15.5 240

5 23.4 230

10 35.6 188

15 48.3 86

25 52.3 37

40 68.8 4

55 66.7 1

Route

Index

% of

Trips

Num

Subjects

1 12 240

2 20.2 240

5 34.3 240

10 49 239

15 56.7 229

30 76.4 169

60 82.7 36

120 91.8 4

157 100 1

distance between the current trip and existing routes and
store the results in a similarity matrix. This matrix is
continuously updated as the trip progresses at pre-
specified distance intervals, for example, every quarter
mile. The values d1 and d2 store the distances between
the current (partial) trip and the 1

st
 and 2

nd
 closest

routes. These distances obviously change as the trip
progresses. In addition, different route objects will likely
comprise the 1

st
 and 2

nd
 closest routes over the course

of a trip (Figure 14).

Figure 14. Both of our route prediction algorithms are

based on calculating a continuously updated similarity

matrix, which tracks the distance from the current trip to

the existing routes. Note that before the trip completes,

the closest route is not always the correct route.

We created two simple algorithms to predict a driver’s
route based on the above calculations. (1) The closest
match algorithm always returns an ordered list of the
routes most similar to the current trip, and we take the
closest route as the predicted route. (2) The threshold
match algorithm returns a route and a confidence
measure given the current trip’s travel distance so far
and the distances to the 1

st
 and 2

nd
 closest routes (d1

and d2). Details of these two algorithms are given in the
next section.

Figure 15. A set of example trips that forge new routes and

therefore cannot be correctly matched to existing routes

using our algorithms.

Of course, not all routes can be predicted. As our data
shows (Figure 12), even after a month of observation
40% of a driver’s trips are still over new routes. In these
cases, the closest route found is never a correct match
(as the correct match does not exist). Figure 15
highlights a set of example trips whose routes cannot be
predicted using our algorithms. In Figure 15c, for
example, the closest route to Trip C is Route 2.
However, Trip C clearly does not traverse the same path
as Route 2. Figure 15b highlights a different case, which
covers an area of future work for us involving partial
route matching. Although Trip B begins on a new route,
it eventually converges to two pre-existing routes
(Routes 1 and 2). At this point, it may be possible to

predict Trip B’s remaining path. This type of prediction,
however, is beyond the scope of this paper. Instead, we
focus on matching routes in their entirety.

ROUTE PREDICTION RESULTS

We tested our two route prediction algorithms on 14,468
trips from 240 subjects. To test our algorithms, we
applied a leave-one-out approach, where one test trip
was left out of a driver’s dataset and the remaining trips
were clustered into routes. The test trip was then
“virtually driven” in 5% increments and our route
prediction algorithms were applied. This process was
repeated for every trip for each subject. In the real world,
the test trip is analogous to the driver’s current trip that
s/he is currently driving.

For both algorithms, we present our prediction
accuracies for the full set of trips and for just the repeat
trips. The former is much more challenging because it
includes routes that have only been driven once. With
the leave-one-out approach, these routes are eliminated
while their trips are tested—thus there is no correct route
left in the trip clusters to match. Neither of our two
algorithms attempt to predict routes that have never
been driven in the past and thus perform poorly in these
cases as a result.

CLOSEST MATCH PREDICTION RESULTS

The closest match prediction algorithm greedily selects
the closest route to the currently driven trip as the
predicted route. To measure the distance to a candidate
route, we use the Hausdorff-like, trip similarity measure
described earlier. The closest match algorithm also
returns an ordered list of best route match candidates.
Figure 16 shows the average location of the correct
route in this ordered list as the trip advances. As
expected, when the trip first begins and little information
is known about its path, the correct route is not
necessarily the best match. After 35% of the trip has
been driven, the correct route moves to within the top 5
locations in the ordered list; after 50%, the correct route
is, on average, within the top 2 matches (Figure 16a).

Note, however, that speaking in terms of “percent of trip
completed” is useful in capturing how well the algorithm
performed but it is not practical. A vehicle navigation
system can never be certain of how far along a trip it is
in terms of percentage complete without knowing the
exact route of the trip from start-to-end—this, of course,
is what we are trying to predict. Instead, a much more
practical input parameter is the trip’s current distance
traveled—that is, how far the vehicle has traveled since
the trip began. Every vehicle is capable of tracking this
value. Thus, Figure 16b more accurately portrays the
performance of the closest match prediction algorithm in
a real usage scenario. It shows, on average, how highly
the correct route is ranked as a function of the trip’s
current travel distance. For example, by the end of a
trip’s first mile, the correct route is, on average, within

Route 1

Route 2

Trip A Trip B

Route 1

Route 2 Route 2

Route 1

Trip C

Route 1

Route 2

Trip D

(a) Trip A ends at

a different dest-

ination than the
existing routes.

(b) Trip B begins

at a different start-

ing point than the
existing routes.

(c) Trip C trav-

erses a new

route.

(d) Trip D follows

an existing route

but in the oppo-
site direction

(a) When Trip A

(in red) begins,

the closest route
is Route 1.

(b) Early in the

trip, the closest

route remains
Route 1.

(c) The closest

route switches to

Route 2 soon
after the turn.

(d) The correct

route match for

Trip A is indeed
Route 2.

Route 1

Route 2

Trip A Route 1

Route 2

Trip A Route 1

Route 2

Trip A Route 1

Route 2

Trip A

the top 8 matches and within the top 5 after 5 miles of
driving. Note that because this graph is an aggregate
view of performance, each point includes trips that are in
a range of completion. For instance, at the mile 3 slice,
the graph includes data on short trips that are just
completing (e.g., trips of 3-4 miles in length) as well as
long trips that are really just beginning (e.g., > 20 miles).

Figure 16. The closest match prediction algorithm returns

an ordered list of the best matching route candidates. The

average correct route index is graphed above by both

percent of trip completed (a) and current travel distance

(b). At the halfway point of a trip’s completion, the correct

route is within the top 2 matches.

Obviously the goal here is to distinguish the correct route
as early in a trip’s lifetime as possible. We believe the
primary reason why it takes so long to select the correct
route is because there is a good deal of overlap between
a driver’s most frequently traveled routes. Clearly there
is a small set of paths that extend from a driver’s home
or workplace—these paths only become distinct after a
certain amount of divergence. Thus, early in a trip’s
lifetime there are many reasonable candidates for route
matching. As we propose toward the end of this paper,
looking at the time of day and day of week may help
make the distinction.

Another performance metric to explore is the correct
prediction rate based on trip progress.
Figure 17 shows a quadrant of graphs; the upper
quadrant is by percent of trip complete and the lower
quadrant is by current travel distance. By the end of the
first mile, 30% of repeat trips are correctly predicted
(13% overall). However, by this point, the correct
prediction for repeat trips is already within the top 10
closest routes 70% of the time—by the third mile this
percentage increases to 80%. Depending on the
application, even an n-best list of matching routes could
be useful. If there is an important warning, for example
an upcoming accident site, then alerting the driver even
with some uncertainty about his/her route may be
worthwhile. In the case of a hybrid vehicle, the control
system could plan for the worst case route (or the
average case) until a clear winner emerges. Our 2

nd

algorithm, which we describe next, returns confidence
estimates along with its predictions—these could be
used to better reason about instituting dynamic
behaviors based on the predictions.

Figure 17. These graphs show the performance of the

closest match prediction algorithm. The figures on the top

row are by percent of trip complete while the figures on

the bottom row are by distance traveled (in miles). The left

column includes route prediction for all trips while the

right column only includes repeat trips.

THRESHOLD MATCH PREDICTION RESULTS

The threshold match prediction algorithm receives as
input the current trip’s travel distance and the trip’s
distance to the 1

st
 and 2

nd
 closest routes (d1 and d2). The

parameters d1 and d2 are not point-to-point distances but
rather the Hausdorff-like, trip similarity measure
described earlier. The algorithm returns the fraction of
closest routes that were correctly predicted in the past
with those combinations of values. Our intuition was that
the percentage of correctly predicted routes would rise
proportionally as d1 grew small and d2 grew large. In
other words, our predictions would become more
accurate as the current trip comes closer to the closest
route and father away from the 2

nd
 closest route.

0

2

4

6

8

10

12

1% 50% 100%

A
vg

. C
o

rr
ec

t
R

o
u

te
 M

at
ch

 L
o

ca
ti

o
n

Percent of Trip Completed

route match location by
percent of trip completed

0

2

4

6

8

10

1 3 5 7 9 11 13 15 17 20

A
vg

. C
o

rr
ec

tR
o

u
te

 M
at

ch
 L

o
ca

ti
o

n

Current Travel Distance (miles)

route match location by miles
driven

0%

20%

40%

60%

80%

100%

1% 25% 50% 75% 100%

C
o

rr
ec

t
P

re
d

ic
ti

o
n

Percent of Trip Complete

correct prediction of all trips
by percent of trip complete

0%

20%

40%

60%

80%

100%

1% 25% 50% 75% 100%

C
o

rr
ec

t
P

re
d

ic
ti

o
n

Percent of Trip Complete

correct prediction
of repeat trips by

percent of trip complete

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 20

C
o

rr
ec

t
P

re
d

ic
ti

o
n

Current Travel Distance (miles)

correct prediction of all trips
by miles driven

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 20

C
o

rr
ec

t
P

re
d

ic
ti

o
n

Current Travel Distance (miles)

correct prediction of repeat trips
by miles driven

(a) By the halfway point, a trip’s

route can be correctly predicted

20% of the time, and the correct

prediction is within the top 10

route matches 40% of the time.

(b) If we look only at repeat trips,

the prediction jumps to 40%

accuracy at the halfway point, and

the correct route is within the top

10 matches over 97% of the time.

(c) The closest route is the correct

prediction between 15% and 25%

of the time for each mile traveled

up to 20 miles. The correct route

is within the top 10 list 30-40% of

the time.

(d) We can correctly predict 40%

of repeat trips by mile 3 and the

correct route is within the top 10

matches over 75% of the time.

All Trips

Only Repeat Trips

Frequency of d1, d2 Values

Figure 18. These graphs were constructed by iterating over d1 and d2 threshold values at different trip distance intervals and

calculating the correct route prediction accuracies when d1 <= the d1 threshold and d2 > the d2 threshold. The top two rows of

graphs show the prediction accuracies for all trip and repeat trips respectively. The bottom row shows the frequency of these

d1, d2 combinations in our data.

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d2 Threshold (miles)

Prediction Accuracy, 0-2 Miles, All Trips

d1 Threshold (miles)

F
ra

c
ti
o
n
 C

o
rr

e
c
t

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d2 Threshold (miles)

Prediction Accuracy, 2-4 Miles, All Trips

d1 Threshold (miles)

F
ra

c
ti
o
n
 C

o
rr

e
c
t

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d2 Threshold (miles)

Prediction Accuracy, 4-6 Miles, All Trips

d1 Threshold (miles)

F
ra

c
ti
o
n
 C

o
rr

e
c
t

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d2 Threshold (miles)

Prediction Accuracy, 0-2 Miles, Repeat Trips

d1 Threshold (miles)

F
ra

c
ti
o
n
 C

o
rr

e
c
t

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d2 Threshold (miles)

Prediction Accuracy, 2-4 Miles, Repeat Trips

d1 Threshold (miles)

F
ra

c
ti
o
n
 C

o
rr

e
c
t

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d2 Threshold (miles)

Prediction Accuracy, 4-6 Miles, Repeat Trips

d1 Threshold (miles)

F
ra

c
ti
o
n
 C

o
rr

e
c
t

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

0.25

d2 Threshold (miles)

Possible Predictions, 0-2 Miles, Repeat Trips

d1 Threshold (miles)

F
ra

c
ti
o
n
 P

o
s
s
ib

le
 t

o
 P

re
d
ic

t

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

0.25

d2 Threshold (miles)

Possible Predictions, 2-4 Miles, Repeat Trips

d1 Threshold (miles)

F
ra

c
ti
o
n
 P

o
s
s
ib

le
 t

o
 P

re
d
ic

t

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

0.25

d2 Threshold (miles)

Possible Predictions, 4-6 Miles, Repeat Trips

d1 Threshold (miles)

F
ra

c
ti
o
n
 P

o
s
s
ib

le
 t

o
 P

re
d
ic

t

(a) Within the first 0 – 2 miles of a trip, the

prediction accuracy largely follows our

intuition. When d1 is small and d2 is

comparatively large, the accuracy is high. For

example, when d1 <= 0.05 miles and d2 > 1

mile, our accuracy is greater than 85%.

(b) Here, when both d1 and d2 are small (d1 <=

0.05 and d2 > 0.05) we achieve 71% accuracy.

As d1 grows large, the accuracy drops to less

than 10%. Interestingly, we not see the rate of
predictions increase as d2 grows large.

(c) At the 4 – 6 mile point in a trip, more is

known about the trip’s path structure and thus

the overall predictions are slightly better than

the previous intervals.

(d) Similar to (a), when a trip just begins and

only one route is close, it is highly likely that

this route is the correct match. For all values

of d2, when d1 is very small we correctly

predict the route more than 70% of the time.

(e) As expected, the overall prediction rates

are greater for repeat trips than for all trips.

Compare this graph to that found in (b) above.

(f) By the time a trip reaches 4-6 miles in travel

distance, there is often enough path structure

to correctly predict the route even with

relatively high values of d1.. The entire row of

predictions when d1 < 0.05 miles has an

average accuracy of 85%.

(g) The frequency of occurrence of d1, d2
combinations of values at 0 – 2 miles.

(h) The frequency of occurrence of d1, d2
combinations of values at 2 – 4 miles.

(i) The frequency of occurrence of d1, d2
combinations of values at 4 – 6 miles.

Our results were computed by iterating over a set of test
d1 and d2 threshold values for discrete moments in a trip
and calculating the percentage whose routes were
correctly predicted. In particular, we checked how often
the closest route was the correct route when d1 was less
than or equal to the test d1 threshold and d2 was greater
than the test d2 threshold (i.e., d1 <= threshold d1 && d2
> threshold d2). Although we ran a range of experimental
values, the graphs included in this paper were
constructed by setting the initial thresholds to d1 = d2 =
0.05 miles. We then incremented the d1 threshold value
in an outer loop and the d2 threshold value in an inner
loop to build a 2D-array of prediction performance for
those thresholds. We expected much higher accuracies
when d1 was small and d2 was large. The 0.05 mile
increment and starting value were chosen based on the
density of data when d1 and d2 are small (a majority of
our trip data is relatively close to an existing route). We
ran this experiment in travel distance bins of 2 miles long
from 0 – 2 miles to 20-22 miles. Given that the average
trip length in our corpus was 7.7 miles, we present
graphs from 0 – 2 miles, 2 – 4 miles, and 4 – 6 miles as
they cover a large portion of trips before they have
completed.

Figure 18 displays a 3 x 3 graph matrix of our results.
Each row of graphs represents a different aspect of the
threshold match algorithm’s performance. Each column
is organized by travel distance: 0 – 2 miles, 2 – 4 miles,
and 4 – 6 miles. The top row shows prediction
accuracies for all trips, the second row shows prediction
accuracies for repeat trips, and the bottom row shows
the occurrence frequency of those d1, d2 combinations at
those travel distances.

The data in the plots in Figure 18 could be used by an
application engineer to assess the prediction algorithm’s
confidence. Given the distance into the trip and the
values of d1 and d2, the first two rows of plots give the
fraction of time that the nearest route was the correct
prediction, based on our experiments. Sometimes the
algorithm was 100% correct in its predictions, and other
times it was lower. The location-aware application can
then decide what action to take. For example, a hybrid
vehicle may change its battery rate of charge based on
the confidence of the route prediction. The bottom row of
plots shows how often the corresponding d1 and d2
occurred in our test data. Some trips never satisfy
certain settings of the thresholds, so they would not
trigger a route prediction for that particular setting. This
gives an idea of how often we can actually make a
prediction of a given confidence.

Overall, the graphs tend to follow our expectations—as
the closest route (d1) and 2

nd
 closest route (d2) diverge,

our prediction accuracies increase. We also note that
predictions for repeated trips (2

nd
 row of plots) are

generally more accurate than those for all trips, which
include both single and repeated trips (1

st
 row of plots).

As we showed previously, longer observation times
result in the discovery of more driver repetition, meaning

that we expect our prediction accuracy would rise as the
driver is observed for more days.

One aspect that is immediately identifiable from the last
row of graphs is that there is a very high density of trips
where both d1 and d2 are small. This makes the problem
of correct end-to-end route prediction even more
challenging—it means that a trip often has at least two
close routes as it progresses. Distinguishing the two may
not be possible by focusing completely on their
geographic similarity. In the next section we propose
additional attributes that could be used to aid prediction
in these cases.

CONCLUSION

We begin this section by enumerating potential areas of
future work before summarizing this paper’s primary
contributions and concluding.

FUTURE WORK

There is much future work to be done. First, we only
incorporated one feature, that of geographic distance,
into our route prediction algorithm. In the future, we
would like to explore how incorporating additional
features such as frequency and recency of route travel
would allow us to make more accurate predictions earlier
in a trip’s lifetime. Other factors such as identifying the
vehicle’s driver or whether or not there are passengers
in the car may also aid prediction but are more difficult to
detect.

Figure 19. In both of these figures the correct route was

predicted using only the geographic-based trip similarity

algorithms described in the paper. Note, however, that

there is a strong temporal pattern between a trip and its

matching route as well.

In addition, we have just begun exploring route
periodicity—that is, the temporal patterns that exist in
route driving behavior (e.g., by time of day, day of week).
Although some related work [5, 7] suggests that the
temporal aspects of a route do not increase prediction
accuracy, these papers focused on near-term
predictions and not on routes as a whole. We have early

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12

%
 o

f
C

o
rr

ec
tl

y
P

re
d

ic
te

d
 T

ri
p

s

Average Start Time Difference
(minutes)

distribution of distances
between trip start times and
the correctly predicted route

start time
0

50

100

150

200

250

300

1 6 11 16 22 28

D
is

ta
n

ce
 in

 T
im

e
o

f
D

ay
 (

m
in

u
te

s)

Distance into Current Trip
(miles)

temporal distance between trip
start time and the correct route

start time

Correct Route

2nd Closest Route

(a) Approximately 50% of the time,

the correctly predicted route’s start

time is within one hour of the

current trip.

(b) Start time may be useful to

further disambiguate the

correct route from the other

geographically close routes.

evidence to suggest that time may be leveraged to
improve general route prediction (Figure 19).

Finally, correctly predicting a route that has never been
traveled is an open problem. In many cases, it is simply
not possible to predict a driver’s route once they deviate
from their trip history. We suspect, however, that a few
elements may be leveraged to increase accuracy under
certain conditions:

1. Rather than focusing all of the prediction efforts on
full route matching, for those trips that follow a new
route, it may be possible to predict at least part of
the route (e.g., if the latter part of a new trip
overlaps with an existing route like in Figure 15b).
We did not explore partial route matching in this
paper.

2. Although we have yet to investigate this in our data,
our intuition is that for many new routes, the return
route will follow the same path but in the opposite
direction. At best, this could decrease the amount
of new routes by 50% if we assume that all new
routes are driven in reverse on the return trip. If
nothing else, the return route could be weighted
higher by the prediction algorithm.

3. Finally, driver familiarity, general route popularity,
common destinations among area population,
optimal path behavior [9], etc. could all be used as
heuristics to guide new route predictions.

SUMMARY

In this paper, we showed how the regularity of a driver’s
traveling behavior could be exploited to predict the end-
to-end route for their current trip. We made three primary
contributions. First, we provided a methodology for
automatically extracting routes from raw GPS data
without knowledge of the underlying road structure.
Second, we presented a detailed discussion and
analysis of repeat trip behavior from a real world dataset
of 14,468 trips from 252 drivers. Finally, we developed
and evaluated two algorithms that used a driver’s trip
history to make route predictions of their current trip.
Although performance varies, we believe some
application areas such as improving hybrid vehicle
efficiency and dynamic traffic alert systems could still
benefit from long-term route predictions even with a
degree of uncertainty.

CONTACT

Jon Froehlich
PhD Student
University of Washington
Computer Science and Engineering
185 Stevens Way, PAC 101
Seattle, WA 98195

jfroehli@cs.washington.edu

REFERENCES

1. Deguchi, Y., et al., Hev Charge/Discharge Control
System Based on Navigation Information, in SAE
Convergence International Congress & Exposition
On Transportation Electronics. 2004: Detroit,
Michigan USA.

2. Tate, E.D. and S.P. Boyd, Finding Ultimate Limits of
Performance for Hybrid Electric Vehicles. 2001 SAE
Transactions - Journal of Passenger Car -
Mechanical Systems, 2001.

3. Karbassi, A. and M. Barth, Vehicle Route Prediction
and Time of Arrival Estimation Techniques for
Improved Transportation System Management, in
Intelligent Vehicles Symposium. 2003. p. 511-516.

4. Torkkola, K., et al., Traffic Advisories Based on
Route Prediction, in Workshop on Mobile Interaction
with the Real World (MIRW 2007). 2007: Singapore.

5. Simmons, R., et al., Learning to Predict Driver Route
and Destination Intent, in 2006 IEEE Intelligent
Transportation Systems Conference. 2006: Toronto,
Canada. p. 127-132.

6. Patterson, D., et al., Inferring High-Level Behavior
from Low-Level Sensors, in UbiComp 2003:
Ubiquitous Computing. 2003, Springer: Seattle,
Washington USA. p. 73-89.

7. Krumm, J., A Markov Model for Driver Turn
Prediction. Society of Automotive Engineers (SAE)
2008 World Congress, 2008. Paper 2008-01-0201.

8. Marmasse, N. and C. Schmandt. Location-Aware
Information Delivery with comMotion. in HUC 2K:
2nd International Symposium on Handheld and
Ubiquitous Computing. 2000. Bristol, UK: Springer.

9. Krumm, J., Real Time Destination Prediction Based
on Efficient Routes. SAE 2006 Transactions Journal
of Passenger Cars - Electronic and Electrical
Systems, 2006.

10. Hu, P.S. and T.R. Reuscher, Summary of Travel
Trends, 2001 National Household Travel Survey,
U.S.F.H.A. U.S. Department of Transportation,
Editor. 2004.

11. Huttenlocher, D.P. and W.J. Rucklidge, A Multi-
Resolution Technique for Comparing Images using
the Hausdorff Distance, in Computer Vision and
Pattern Recognition. 1993. p. 705-706.

