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Crowding is a prominent phenomenon in peripheral vision where nearby objects impede one’s ability to identify a target of
interest. The precise mechanism of crowding is not known. We used ideal observer analysis and a noise-masking paradigm
to identify the functional mechanism of crowding. We tested letter identification in the periphery with and without flanking
letters and found that crowding increases equivalent input noise and decreases sampling efficiency. Crowding effectively
causes the signal from the target to be noisier and at the same time reduces the visual system’s ability to make use of a
noisy signal. After practicing identification of flanked letters without noise in the periphery for 6 days, subjects’ performance
for identifying flanked letters improved (reduction of crowding). Across subjects, the improvement was attributable to either
a decrease in crowding-induced equivalent input noise or an increase in sampling efficiency, but seldom both. This pattern
of results is consistent with a simple model whereby learning reduces crowding by adjusting the spatial extent of a
perceptual window used to gather relevant input features. Following learning, subjects with inappropriately large windows
reduced their window sizes; while subjects with inappropriately small windows increased their window sizes. The
improvement in equivalent input noise and sampling efficiency persists for at least 6 months.

Keywords: peripheral vision, crowding, perceptual learning, ideal observer analysis

Citation: Sun, G. J., Chung, S. T. L., & Tjan, B. S. (2010). Ideal observer analysis of crowding and the reduction of crowding
through learning. Journal of Vision, 10(5):16, 1–14, http://journalofvision.org/content/10/5/16, doi:10.1167/10.5.16.

Introduction

Human peripheral vision is limited by the visual
system’s inability to properly integrate features and
segment scenes. This inability is exemplified by a
phenomenon called crowding, where nearby items
adversely impede one’s ability to identify a target (e.g.,
Bouma, 1970; Flom, Weymouth, & Kahneman, 1963;
Townsend, Taylor, & Brown, 1971). Despite the consid-
erable amount of data on crowding, the mechanism of
crowding remains undetermined (Levi, 2008; Pelli &
Tillman, 2008). Crowding cannot be explained by the
lower spatial resolution in peripheral vision. For example,
crowding is present even when the spacing between the
target and flanking letters is larger than the size of a letter,
and the letters are above acuity (Pelli, Palomares, &
Majaj, 2004). While the psychophysical properties of
crowding share some similarities with overlap masking,
they also differ qualitatively from overlap masking in

several important ways (Chung, Levi, & Legge, 2001;
Levi, Hariharan, & Klein, 2002; Pelli et al., 2004).
To date, one account for crowding is that the attention

mechanism for peripheral vision lacks sufficient spatial
resolution to discern a target from the surrounding clutter
(He, Cavanagh, & Intriligator, 1996; Intriligator &
Cavanagh, 2001; Leat, Li, & Epp, 1999; Strasburger,
Harvey, & Rentschler, 1991; Tripathy & Cavanagh,
2002). A competing account attributes crowding to
inappropriate feature integration at the lower level visual
processing stages (Levi et al., 2002; Pelli et al., 2004).
More recent work (Freeman & Pelli, 2007; Nandy & Tjan,
2007), nevertheless, does not see these as competing and
mutually exclusive hypothesesVthe end result is that
wrong features and features from wrong locations are
being integrated, resulting in a non-veridical percept. This
feature integration error seems to be spatial (Nandy &
Tjan, 2007) and apparently not caused by any inefficiency
in the integration across spatial frequencies in the
periphery (Nandy & Tjan, 2008).
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Can we eliminate or reduce crowding? Chung (2007)
showed that, following practice, accuracy of letter
identification improves and the spatial extent of crowding
is significantly reduced. Similar to the crowding effect, the
mechanism underlying the reduction in crowding after
learning is also not known. Understanding the mechanism
of this improvement can be an important step toward
understanding crowding.
The goals of the present study are to psychophysically

determine the mechanism of crowding and that of the
reduction of crowding through perceptual learning. We do
so in the context of a simple observer model that attributes
the limitation in visual performance to two sources: (1) the
presence of noise or random spurious features that limit
the precision of sensory measurements and (2) the
reduction of the visual system’s ability to make full use of
the information available in the stimulus (Pelli, 1981; Pelli
& Farell, 1999). We can quantify the former in terms of
equivalent input noise and the latter in terms of sampling
efficiency (Chung, Levi, & Tjan, 2005; Conrey & Gold,
2006; Gold, Bennett, & Sekuler, 1999; Legge, Kersten, &
Burgess, 1987; Pelli & Farell, 1999; Tjan, Braje, Legge, &
Kersten, 1995). This approach of observer modeling,
sometimes referred to as the linear amplifier model, is a
special case of the more elaborate observer models that
include transducer non-linearity, signal-dependent noise,
and signal uncertainty (Burgess & Colborne, 1988;
Eckstein, Ahumada, & Watson, 1997; Lu & Dosher,
1999; Pelli, 1985; see also Lu & Dosher, 2008 for a
review). Since both the linear amplifier model and the
more elaborate perceptual template model of Lu and
Dosher give qualitatively similar results for perceptual
learning tasks in the periphery (Chung et al., 2005; Lu,
Chu, Dosher, & Lee, 2005), we use the simpler of the two
in the current study.
To preview, we found that crowding leads to an

elevated equivalent input noise and a reduction in
sampling efficiency both before and after perceptual
training. Training reduces the effects of crowding but
does not eliminate them. Following training, a significant
reduction in crowding-induced equivalent input noise was
observed for subjects with a high crowding-induced
equivalent input noise prior to training, while a significant
improvement in efficiency was found for individuals with
a large crowding-induced deficit in efficiency. The
increase in performance (reduction in crowding) due to
learning was retained for as long as 6 months. The pattern
of results suggests that subjects learn to optimize the size
of a perceptual window for gathering input features.

Theory

The optimal strategy to maximize accuracy in an
identification task is to select a response that is the

most probable given the input (i.e., the one that
maximizes the posterior probability). Following Pelli
(1981), we added two limiting factors to such an ideal
observer in order to model a human observer: (1) an
additive white noise at the input with a constant power
spectral density of Neq, and (2) a “device” that reduces
the available signal-to-noise ratio by effectively down-
sampling the noisy input by a factor of ) before giving it
to the ideal observer for identification (Tjan et al., 1995).
These two limiting factors, equivalent input noise (Neq)
and sampling efficiency ()), are macroscopic descriptors
of a visual system since they encompass many possible
mechanistic realizations.
The most common interpretation for Neq is to see it as

an aggregated quantity of the stochastic noises internal to
the visual system that are independent of the target signal
for a given task. Noise may exist at different stages of
visual processing and it can also be caused by other
stimuli in a visual scene. Neq represents a fundamental
limitation in the precision of measurements at different
levels of abstraction.
A theoretical interpretation of ) is that it represents the

proportion of relevant information in the form of
independent statistical samples that the visual system is
able to use when making a perceptual decision. The
mechanistic instantiation of ) can be either deterministic
or stochastic. Deterministic causes for ) G 1 include
computational steps that do not use an accurate or
complete specification of the signals to be identified
(imprecise template) or consider a variety of possible
signals that actually do not appear in the task (invariance,
uncertainty). Stochastic causes are forms of additive
internal noise with a power spectral density proportional
to the signal energy of the input. This type of noise is
often called a “multiplicative” noise.
The sampling efficiency and equivalent input noise of a

system can be determined using an external noise method
(Pelli, 1981; Pelli & Farell, 1999). For our two-factor
ideal observer model, which has a linear front end, the
required contrast energy (E) of the target to reach a given
accuracy criterion is linearly related to the power spectral
density (N) of the external noise with a non-positive
intercept at E = 0:

E ¼ mN þ E0; m 9 0; E0 Q 0: ð1Þ

The contrast energy of the target is the square of its
root mean square (rms) contrast multiplied by the image
area. The power spectral density of the noise is the
variance divided by the noise bandwidth, which is
determined by the size of the noise pixels (Appendix B).
The slope of the E vs. N (EvN) function is inversely
proportional to sampling efficiency ()) and the negative of
its horizontal intercept represents the amount of the
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equivalent input noise (Neq) (Legge et al., 1987; Tjan
et al., 1995). Specifically,

) ¼ mideal=m;

Neq ¼ E0=m;
ð2Þ

where mideal is the EvN slope of the ideal observer. This
property of the ideal observer model presents a simple
method for estimating ) and Neq: a target is masked with
white noise, and the contrast threshold for identifying the
target at a given accuracy criterion is measured at various
levels of the masking noise. The absolute value of Neq and
a relative value of ) are obtained by fitting a straight line
to the EvN data set. The value of ) is the ratio of the EvN
slope of the true ideal observer1 to that of the modeled
human observer (Equation 2). We do not need to
explicitly compute the EvN slope of the ideal observer
to assess the effects of crowding because the ideal
observer is not affected by crowding (Appendix C);
nevertheless, we provided the ideal observer slope in
Appendix C for future reference.
The main goals of the current study are to characterize

crowding in terms of sampling efficiency and equivalent
input noise and to study the effect of practice on these
quantities. For this purpose, the external noise used to
estimate ) and Neq masked only the target and not the
flankers that closely flanked the target. Moreover, the
flankers were presented at a fixed contrast, independent of
target contrast. If a component of crowding is that
erroneous spatial pooling causes random features from
the flanker positions to be neurally superimposed on the
target, then the presence of the flankers will behave like
an additional source of noise, leading to an increase in
Neq. If flanker features interact with target features more
selectively (e.g., a horizontal flanker feature suppresses
the detection of a vertical target feature) or preferentially
(e.g., a more reliably detected flanker feature is mistaken
as a target feature), or if the visual system attempts to
minimize crowding by being more stringent in its
selection of target features, the equivalent number of
target features utilized will be reduced when flankers are
present, leading to a reduction in ). Changes in ) and Neq

due to the presence of flankers as compared to the target-
alone condition thus reveal different functional compo-
nents of crowding.
It should be noted that we are interpreting the

mechanism of crowding with respect to the additive-noise
ideal observer model. ) and Neq, being macroscopic
descriptors, do not uniquely correspond to a specific
neural mechanism. The general notion of erroneous
feature integration, for example, is not a precisely defined
mechanism. An indiscriminate integration of flanker
features at a later processing stage could yield a large
Neq, while a bias toward using features that are more
reliably detected, whether appropriately from the target or

inappropriately from the flankers, would lead to a
decrease in ). As always, the most reasonable mechanistic
interpretation depends on the overall pattern of the
empirical findings and parsimony of the interpretation.
In this study, we are less interested in the actual values

of ) and Neq, although both are available (Appendices A
and C). Instead, we are more interested in how a subject’s
efficiency and equivalent noise are affected in the presence
of crowding. Therefore, we will express a subject’s
efficiency and equivalent input noise in a target-flanked
condition relative to those in a target-only (unflanked)
condition. Specifically, we define the efficiency ratio ()r)
as the ratio of the sampling efficiency between the flanked
and unflanked conditions:

)r ¼
)flanked

)unflanked

¼ munflanked

mflanked

; ð3Þ

where m is the slope of EvN line of Equation 1. We also
define the equivalent noise difference ($Neq) as the
difference between the flanked and unflanked conditions:

$Neq ¼ Neq;flankedjNeq;unflanked ¼ E0;flanked

mflanked

j
E0;unflanked

munflanked

:

ð4Þ

An intuitive interpretation of )r is the fraction of the
quantity of target features used by the visual system in
crowding relative to those used without crowding. Like-
wise, $Neq can be thought of as the amount of the random
flanker features, in units of noise, which are masking or
mistaken for target features. Any changes in )r and $Neq

after practice will inform us of the mechanistic nature of
the reduction in crowding following learning.

Methods

Procedure

The main experiment comprised eight sessions, with
one session per day. All subjects completed the eight
sessions within 10 days. The first (“pre-test”) and last
(“post-test”) sessions included eight experimental condi-
tions: two flanking conditions (unflanked and flanked)
crossed with four external noise levels. The intervening
six (“training”) sessions followed the procedures of Chung
(2007), where subjects were trained to identify closely
flanked letters in the absence of external noise. A follow-
up test was performed 1 to 6 months after the post-test to
assess any retention of learning.
During both testing and training, subjects identified

letters presented at 10- in their lower right visual
quadrant, midway between the horizontal and vertical
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meridians with a letter size (Table 1) corresponding to
2.5� the subject’s single-letter acuity. Letter acuity at the
test location was measured before commencing the
experiment: subjects identified unflanked letters, randomly
drawn from 26 lowercase letters, while the size of the
presented letter was varied using the QUEST procedure
(Watson & Pelli, 1983) to yield a threshold letter size
corresponding to 79% identification accuracy. This thresh-
old letter size was taken to represent the subject’s letter
acuity at the test location.
Pre- and post-tests consisted of eight experimental

conditions, each tested five times in separate blocks, with
60 trials per block. The blocks and conditions were
randomized with the constraint that block number (k + 1)
of any condition was tested only after all the conditions
had been tested at least k times.
For each experimental condition, a QUEST procedure,

as implemented in the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997), was used to estimate the threshold

contrast of the target letter that corresponded to an
identification accuracy of 50%. The QUEST procedure
was initialized identically for the first block of each
experimental condition. For the other four blocks of
repeated measurements of the same condition, QUEST
was initialized to the threshold contrast estimated from the
previous block; this procedure improves stability without
prematurely committing to a threshold.
The follow-up test had the exact same design as the pre-

and post-tests, except that only the noise levels, but not
the flanking conditions, were blocked. Specifically, for a
given noise level, the unflanked and flanked trials were
first randomly mixed and repartitioned into 60-trial
blocks. This was designed to determine whether the
observed post-training improvement in the flanked con-
dition was attained by learning a strategy specific for the
flanked trials that were blocked.
Training sessions were structured after those in Chung

(2007), which have proven to be effective. A training
session consisted of 1000 trials divided into 10 blocks of
100 trials. Each subject completed six training sessions,
scheduled over 6 days, for a total of 6000 trials. All
subjects completed the pre-test, training, and post-test
within 10 days.

Stimuli

The stimulus for each trial consisted of either a single
letter for the unflanked condition or a letter flanked by two

Subject Letter size in x-height

AL 1.59-
BW 1.17-
CT 1.70-
LM 1.07-
MB 1.26-
SL 1.92-

Table 1. Stimulus size in x-height used for the six subjects.

Figure 1. Stimulus examples. (a) Pre- and post-test stimuli in the unflanked and flanked conditions. The flankers, when presented, had a
fixed Weber contrast of 33% and were placed from the target at a center-to-center distance of 1.0� x-height. The masking noise was
confined to within the largest bounding box of a letter and centered at the target letter. Four noise levels, quantified here in units of rms
Weber contrast, were used in the experiment. All target letters are shown at the same Weber contrast across the four noise levels for
illustration. (b) An example of the training stimulus. The target letter and the flankers were presented at full contrast and the center-to-
center distance between target and flanker was 0.8� x-height.
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other letters for the flanked condition. All letters were
brighter than the mid-gray background. Target and
flanking letters were randomly chosen from the set of
26 lowercase Roman letters from the English alphabet in
Arial font (Mac OS 9), disregarding the proportional letter
spacing associated with the font. Flanking letters, when
present, were presented at either a center-to-center
separation of 1.0� x-height (pre- and post-tests) or 0.8�
x-height (training). The pixels of the flanking letters
replaced those of a target letter in the regions where they
overlapped; such overlaps occurred between letters of
wider width (“m”, “w”) and were relatively rare. The
Weber contrast of the flanking letters was fixed at 0.33
during the pre- and post-tests and 1.0 during training. The
contrast of the target letter in the pre- and post-tests was
adjusted with QUEST as described.
During the pre- and post-tests, a Gaussian (spectrally

white) luminance noise field, equal to the largest bounding
box of all target letters, was added to the target location.
In order to produce an adequate level of noise spectral
density, each stimulus pixel for both the letters and noise
comprised 4 � 4 actual pixels on the CRT. The rms
contrasts of the noise were 0, 0.079, 0.126, and 0.2. With

a stimulus pixel size of 0.0777- at a viewing distance of
100 cm, the corresponding noise spectral densities were 0,
37.7, 95.8, and 241 � 10j6 deg2. The mean luminance of
the noise fields and the background luminance of the
display were approximately 20 cd/m2. Figure 1 depicts a
sample of the stimuli in all eight experimental conditions
of the pre- and post-tests, along with the condition used
for training.
Stimuli were presented at the center of a calibrated

Sony CRT screen. The calibrated CRT had a corrected
gamma of 1.0 with 11 bits (2048 levels) of linearly spaced
luminance levels, achieved with a passive video attenuator
(Pelli & Zhang, 1991) and custom-built contrast calibra-
tion and control software implemented in MATLAB and
ran on a Mac G4 (OS 9.2.2). Only the green channel of the
monitor was used during the experiment.
The fixation mark was a green LED mounted at 10- to

the upper left of the center of the target letter. For each
trial, the target and flankers (if applicable) were presented
simultaneously for 250 ms. Audio feedback followed the
subject’s response (a tone for correct trials or an
announcement of the target letter for incorrect trials).
The detailed timing of a trial is shown in Figure 2.

Figure 2. Experimental design. (a) Subjects participated in a brief practice session before commencing the pre-test. Over the following
6 days, subjects underwent training and were then tested for changes during a subsequent post-test. One to six months following the post-
test, subjects participated in an additional session, which followed the same experimental routine as the pre- and post-tests except that
the trials of unflanked and flanked letters were randomly interleaved for each noise level. (b) Stimulus timing in a given trial for the pre-,
post-, and follow-up tests. A square target box marked by low-contrast dark lines and a size equal to five times the subject’s letter acuity in
x-height was shown on the screen in the absence of stimuli to indicate the expected target position in peripheral vision. After 500 ms, the
stimulus was presented for 250 ms along with a brief tone; upon giving a response, a subject was provided with auditory feedback. The
next trial followed after a 500-ms delay.
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Data analysis

The threshold contrast energy (E) in units of deg2 is
linearly related to the square of the measured threshold
Weber contrast. The proportional constant (Appendix B)
is the contrast energy, averaged over the 26 stimulus
letters, when each letter is rendered with pixel luminance
twice that of the background (a Weber contrast of 1.0).
The linear ideal observer model (Equation 1) was fitted

to the empirical data of threshold contrast energy (E) vs.
power spectral density of the masking noise (N) by
minimizing the squared residuals defined in log(E) and
scaled by the empirically determined standard error of
log(E). This is because the measurement error of E
generally increases with E, with a variance proportional
to E2. Bootstrapping was used to estimate the median and
the 95% confidence intervals for quantities of interest.

Participants

Six subjects from the University of Southern California
with normal or corrected-to-normal vision and naive to the
purpose of the experiment participated with written
informed consent and completed the main experiment.
Five of the six subjects returned for the follow-up test.

Results

Figure 3 shows the results from the pre-, post-, and
follow-up tests as well as the block-by-block accuracy for
the training sessions. Crowding was substantial. Across
the four noise levels, the threshold contrast required for
identifying letters at an accuracy criterion of 50% was
substantially higher in the flanked condition than in the
unflanked condition for pre-, post-, and follow-up tests
(pre-test: F(1,5) = 211.7, p = 0.00003; post-test: F(1,5) =
86.4, p = 0.0002; follow-up: F(1,4) = 259.1, p = 0.00009).
The key numerical values extracted from Figure 3 are
given in Table A1 in Appendix A. Training was effective
in improving the accuracy of identifying letters in a

flanked condition at full contrast without noise. The
average accuracy during the training sessions improved
from 50% in Day 1 to 61% in Day 6 (Table A2, F(1,5) =
37.6, p = 0.002), replicating a finding in Chung (2007).

Crowding

To reveal the mechanisms of crowding and the
reduction of crowding due to perceptual training, we
expressed the effects of crowding in terms of efficiency
ratio and equivalent noise difference, as defined earlier.
Figure 4 compares the efficiency ratio and equivalent
noise difference measured before and after training. Both
before and after training, the presence of flankers
significantly reduced sampling efficiency and increased
equivalent input noise for all subjects. When the data
points of Figure 4 are projected to either the abscissa or
the ordinate, the efficiency ratio never approached 1.0
(mean )r was 0.22 before training and 0.36 after training),
and the equivalent noise difference was never close to
zero (mean $Neq was 211 � 10j6 deg2 before training and
133 � 10j6 deg2 after training; in comparison, the
strongest external noise used in the experiments was
241 � 10j6 deg2 in power spectral density). The reduction
in efficiency and increase in equivalent input noise due to
crowding corresponds to the findings of Nandy and Tjan
(2007) in that fewer appropriate features and more
inappropriate features are being utilized in crowding,
respectively.

Effect of practice on crowding

Across the group of six subjects, perceptual training
over 6 days and 6000 trials appeared to yield only a
marginal increase in the efficiency ratio (a mean of 0.22
pre-test vs. 0.36 post-test, F(1,5) = 6.46, p = 0.052) and no
significant reduction in the equivalent noise difference
(a mean of 211 � 10j6 deg2 pre-test vs. 133 � 10j6 deg2

post-test, F(1,5) = 1.36, p = 0.30). Such group analyses
are misleading, however, because each individual subject
did have a significant reduction in crowding as shown in
Figures 3 and 4. Table 2 summarizes the improvements in
the efficiency ratio and equivalent noise difference for
individual subjects. With the exception of subjects AL and
CT, who improved in both efficiency and equivalent input
noise, a majority of the subjects (four out of six) improved
in only one of the two quantities. Furthermore, if we
perform a median split on the data, we find that all three
subjects with equivalent noise differences above the
median improved by reducing their equivalent input noise,
while all three subjects with efficiency ratios below the
median improved by increasing their efficiency. The data
suggest that these two forms of improvements can be
mutually exclusive. We postulate that the practice-induced

Figure 3. Training performance (first column) and threshold
contrast energy (E) versus noise power spectral density (N) for
the flanked (second column) and unflanked (third column)
conditions for each subject. Note that the ordinates for E differ
by a factor of 10 between the flanked and unflanked conditions.
Circles and triangles represent the threshold contrast energy
measured during the pre- and post-tests, respectively; asterisks
represent the threshold contrast energy during the follow-up test.
Solid and dotted lines represent fits of Equation 1 to pre- and
post-test data, respectively; dash-dotted lines represent fits to
follow-up test data. Error bars are TSE. Note that subject BW did
not participate in the follow-up test.
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improvement may affect only a single perceptual factor.
We shall return to this point in the Discussion section.
The effects of perceptual training on crowding, quanti-

fied above, are assessed relative to the respective
unflanked condition. Consequently, our findings are less
dependent on general task learning. To measure the
amount of general task learning, we compare efficiency
and equivalent input noise of the unflanked condition
before and after the 6 days of training with flanked letters.
Specifically, we calculated the efficiency ratio and
equivalent noise difference of the unflanked condition
after training with respect to the unflanked condition
before training. Figure 5 shows that training with flanked
letters improved sampling efficiency in the unflanked
condition without any consistent effect on equivalent input
noise. For the unflanked condition, this finding of
improved efficiency, and not equivalent input noise,
reproduces the pattern of results obtained with similar
perceptual training tasks (Chung et al., 2005; Gold et al.,
1999). This is, however, different from the effect of
training on crowding, which improves efficiency or
equivalent input noise in a subject-dependent manner.

Retention of learning

Figure 6 shows the results of the follow-up test as
compared to pre-test. The improvements seen in the post-
test are generally retained after 1–6 months. Chung,
Legge, and Cheung (2004) reported a similar retention
effect when they trained subjects to identify letter triplets
in the periphery. Unlike during pre- and post-tests, we
randomly interleaved the flanked and unflanked conditions
during the follow-up test. The similarity in subjects’

performance between the post- and follow-up tests shows
that it is unlikely that subjects learned to use different
perceptual strategies for the two conditions.

Discussion

Irrespective of any improvements due to learning,
crowding reduces sampling efficiency and elevates equiv-
alent input noise in peripheral vision. This is most evident
in Figure 4 by projecting the data points to the abscissa
and the ordinate. As compared to the unflanked condition,
the efficiency ratio for identifying a flanked letter was
significantly less than 1.0 and the equivalent noise difference
was significantly greater than 0 for every subject before
and after training. This agrees with the finding of Nandy
and Tjan (2007) that crowding is caused by a reduction

Subject

Improvement in

)r $Neq

AL ( (

BW � (

CT ( (

LM ( �
MB ( �
SL � (

Table 2. Training-induced improvements for each subject. A
significant (per confidence intervals of Figure 4) increase in the
efficiency ratio ()r) or a significant decrease in the equivalent
noise difference ($Neq) is considered an improvement.

Figure 4. Effects of training on crowding. (a) Median efficiency ratio ()r) in the post-test versus that in the pre-test. (b) Median equivalent
noise difference ($Neq) in the post-test versus that in the pre-test. Error bars are the bootstrapped 95% confidence intervals.
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in the utilization of valid features and an increase in the
utilization of invalid features. Nandy and Tjan reached
their conclusion by comparing classification images
between human and ideal observers, whereas our current
finding was based on measuring contrast thresholds while

masking the peripheral target with various levels of white
noise.
The external noise used in the current study masked

only the target, sparing the flankers. The utilization of any
invalid features, either from the flanker locations due to

Figure 6. Retention of learning. (a) Median efficiency ratio ()r) in the follow-up test versus that in the pre-test. (b) Median equivalent noise
difference ($Neq) in the follow-up test versus that in the pre-test. Error bars are the bootstrapped 95% confidence interval for each value.
(c) Number of days after post-test that the follow-up test was performed. Note that subject BW did not participate in the follow-up test, and
CT, who had the lowest equivalent noise difference in the post-test, did not have a positive median value of equivalent noise difference for
the follow-up test (Neq,unflanked 9 Neq,flanked).

Figure 5. Effects of training on the unflanked condition. (a) Median unflanked efficiency ratio. (b) Median unflanked equivalent noise
difference. Error bars are the bootstrapped 95% confidence intervals.
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positional uncertainty or otherwise induced by the
flankers, is analogous to adding another masking noise,
thus revealing itself as an increase in equivalent input
noise. A reduction in the use of valid features is
equivalent to the reduction of target contrast energy in
proportion to the power of the masking noiseVhence a
reduction in sampling efficiency. Our finding that crowding
is caused by using fewer valid features and more invalid
features is a modest elaboration of the commonly assumed
faulty integration model of crowding (Levi, 2008; Levi
et al., 2002; Pelli et al., 2004; Pelli & Tillman, 2008).
Learning reduces crowding. Chung (2007) showed that

subjects improved in their accuracy following 6000 trials
of identifying crowded letters at an eccentricity of 10-
without any masking noise. We replicated this finding and
showed that practice with noiseless stimuli transfers to
conditions when the target was masked by luminance
noise. This is consistent with the finding of Dosher and Lu
(2005) that learning in the no-noise conditions transferred
to the high-noise conditions.
Most importantly, we found that for the majority of our

subjects, the effect of learning on reducing crowding is
either due to an increase in sampling efficiency (by an
average factor of 2.3) or a decrease in equivalent input
noise (by an average factor of 3.7) but not both. Moreover,
with an identical training regimen, those subjects who
began with a lower sampling efficiency primarily
improved in sampling efficiency, and those who began
with a higher equivalent input noise primarily reduced
their equivalent input noise. This was not due to any
ceiling or floor effect since the unimproved dimension still
had plenty of room for improvement. Training with no
external noise does not disproportionally benefit the low-
noise conditionsVhad that been the case, most of the
improvements would have been found in equivalent input
noise and not in sampling efficiency.
A parsimonious explanation of these findings, both in

regard to crowding and the effect of learning on reducing
crowding, is that a primary mode of learning is to adjust
the size of a perceptual window. We assume that visual
features within the window are integrated with little
regard to their precise spatial location, and thus the visual
system is unable to differentiate target features from
surround features. Subjects with an inappropriately large
window, which let in many flanker features in addition to
the target features, had high equivalent input noise. These
subjects improved by appropriately reducing their window
sizes, which reduced the equivalent input noise without
affecting sampling efficiency. Subjects with an inappropri-
ately small or misplaced window, which did not have
sufficient coverage of the target, had low sampling
efficiency. They improved by increasing their window
sizes appropriately to increase target coverage, leading to
an increase in efficiency without changing the equivalent
input noise. In theory, a subject can also improve by
repositioning the perceptual window to maximize its

coverage of the target while minimizing any coverage of
the surround. This mode of learning would lead to both an
increase in efficiency and a decrease in equivalent input
noise. Our data show that this mode of learning is in the
minority.
Our notion of the perceptual window is consistent with

what Pelli et al. (2007) referred to as an “isolation field”,
which was later renamed “combination field” (Pelli &
Tillman, 2008). Pelli et al. showed that the shape and
eccentricity of the isolation field, measured with non-
reading tasks, determine reading speed in the periphery.
They did not specify how feature integration is performed
within the isolation field, except that feature integration
within the field is mandatory regardless of whether the
features are from the target or flankers. They also implied
that the size of the combination field was fixed and
possibly dictated by low-level cortical circuitry. Our data
suggest that the size of this combination field is malleable
to some extent via learning. This is consistent with the
finding of Chung (2007) that perceptual training led to a
38% reduction of the spatial extent of crowding.
The current study was designed to characterize the

effects of crowding in terms of sampling efficiency and
equivalent noise before and after perceptual training by
measuring contrast thresholds at various external noise
levels. Thresholds improved as a result of practice, but
threshold alone provides only a partial quantification of
crowding. It has been argued that crowding should be
described with two values: one that measures performance
(accuracy or threshold) and another that measures the
spatial extent of crowding (Chung & Bedell, 1995; Pelli &
Tillman, 2008, online supplement). It is conceivable that
practice improves performance without reducing its
spatial extent. Nevertheless, data from the current study
are such that a single parameterVthe size of a perceptual
window for feature processingVprovides a concise
explanation of an otherwise complex pattern of results.
The current study, however, was not designed to directly
measure the size of this window. A new study will be
required to test this prediction and to refine the definition
of such a perceptual window, including the relationship
between the spatial extent of the perceptual window and
that of crowding, which are not necessarily the same.

Conclusion

Consistent with the findings of Chung (2007), practicing
identification of crowded letters in peripheral vision
improves letter identification performance both in the
flanked and unflanked conditions. We found that the
improvement in the unflanked condition following practice
was mostly attributable to an improvement in sampling
efficiency, suggesting an increased utilization of valid
letter features. Relative to the improved performance in
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the unflanked condition, improvement in the flanked con-
dition was attributed to either an increase in the efficiency
or a decrease in the equivalent input noise. This pattern
of results is consistent with a corresponding adjustment
in the spatial extent of a perceptual window for feature
processing toward an optimal size. While crowding was
significantly reduced after 6 days of training, the level of
crowding remained substantial.

Appendix A

Estimated parameters for individual subjects

Tables A1 and A2.

Appendix B

Contrast energy and noise power spectral
density

Contrast energy of a stimulus is defined as the sum of
the squared pixel contrast over the signal region of the
stimulus multiplied by the area of a stimulus pixel. The
“signal region” for the current experiment is defined to be
the same as the rectangular region masked by the external
noise. The threshold contrast energy (E) reported in the
current study is the contrast energy at threshold contrast (c)
averaged over the 26 letter stimuli. Specifically,

E ¼ c2
1

26

X26
j¼1

X
iZS

t2j;i$x$y; ðB1Þ

where $x = $y = 0.0777- is the width and height of a
stimulus pixel, S is the signal region, and tj,i is the contrast
of pixel i of letter j when the letter is presented at a
contrast of 1.0. For the letter stimuli used in the cur-

rent experiment, the scaling constant 1
26
~
26

j¼1
~
iZS

t2j;i$x$y

� �

between E and c2 varies with letter size and was numeri-
cally determined for each subject (in units of deg2):
3.3441 (AL), 2.1874 (BW), 4.3254 (CT), 1.9462 (LM),
2.3135 (MB), and 5.2404 (SL).
Noise power spectral density (N) for the white noise

used in the experiments (pixel-wise contrast noise of
independent and identically distributed (iid) Gaussian with
zero mean) is equal to the variance of a noise pixel

divided by the 2-sided bandwidth of the noise; the 2-sided
bandwidth of the noise is equal to the reciprocal of the
area of a stimulus pixel. That is,

N ¼ c2noise$x$y; ðB2Þ
where cnoise is the rms contrast of the noise.

Appendix C

Ideal observer and the ideal observer
EvN slope

The ideal observer for the task in the current study can
be derived from first principles. Given an image I, the
statistically optimal decision rule is to make the response
that “center letter is r” for the most probable r:

r ¼ arg max
r

PrðrjIÞ

¼ arg max
r

PrðrjItargetÞ;
ðC1Þ

where Itarget is the region of the image where the target
letter is presented. Whether the target letter is flanked is
irrelevant because the ideal observer does not have spatial
uncertainty and the target letter and flankers do not
overlap spatially. Applying Bayes’ rule, ignoring scaling
factors that do not depend on r, and knowing that (1) each
letter is equally likely to be the target, and (2) the masking
contrast noise comprises of an independent and identically
distributed Gaussian on each pixel with a mean of 0 and a
standard deviation of cnoise, we have

r ¼ arg max
r

PrðrkItarget Þ

¼ arg max
r

exp j
kkItargetj cTr kk

2

2cnoise2

� �
ðC2Þ

¼ arg min
r

kkItargetjcTr kk
2;

where kkIkk is the L2 norm of a vector, c is the test contrast
of the target letter, and Tr is the template of letter r at a
contrast of 1.0.
The EvN function for this ideal observer is analytically

a straight line passing through the origin (Tjan et al.,
1995). To compute the EvN slope of the ideal observer,
we used numerical simulation and binary search to look
for c that led to letter identification accuracy of 50% with
cnoise set at a convenient value of 1.0 (luminance is
unbounded in numerical simulation, hence no issue of
noise clipping). Using an efficient implementation of the
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Unflanked

Subject m (unitless)

95% Confidence interval

Neq (deg2) � 10j5

95% Confidence interval

Lower bound Upper bound Lower bound � 10j5 Upper bound � 10j5

Pre-test
AL 452 401 511 3.21 2.67 3.74
BW 555 489 844 1.89 j1.24 2.05
CT 647 582 720 2.06 1.95 2.54
LM 469 421 519 3.22 2.70 3.32
MB 432 383 510 3.11 2.50 3.90
SL 655 561 1115 2.30 j1.46 2.48

Post-test
AL 359 319 402 3.71 3.25 4.66
BW 514 458 804 2.18 j1.41 2.45
CT 477 426 537 2.33 2.17 2.87
LM 404 353 462 4.11 3.71 5.59
MB 310 280 344 2.83 2.32 2.90
SL 394 351 444 3.22 2.74 3.76

Follow-up test
AL 326 285 373 4.51 3.82 4.71
BW NA NA NA NA NA NA
CT 488 431 551 2.39 2.05 2.38
LM 526 457 601 2.59 2.10 3.06
MB 288 256 328 3.91 3.27 4.46
SL 593 524 867 1.40 j1.04 1.59

Flanked

Subject m (unitless)

95% Confidence interval

Neq (deg2) � 10j5

95% Confidence interval

Lower bound Upper bound Lower bound � 10j5 Upper bound � 10j5

Pre-test
AL 1756 725 2585 27.5 15.4 73.0
BW 2523 1312 3988 35.9 20.6 79.7
CT 6596 4154 9021 10.1 7.38 18.1
LM 2051 1645 2512 10.9 8.57 18.8
MB 2612 2133 3115 6.59 4.28 8.44
SL 2019 997 3109 39.0 25.7 99.4

Post-test
AL 660 530 801 14.7 12.3 18.5
BW 3658 3097 4227 4.44 3.68 5.65
CT 1461 1196 1785 4.49 2.86 7.08
LM 1269 786 1709 20.2 15.8 40.8
MB 769 648 910 7.08 5.32 8.28
SL 871 686 1070 10.7 7.63 14.3

Follow-up test
AL 998 826 1174 7.13 5.19 9.27
BW NA NA NA NA NA NA
CT 2247 1836 3768 2.17 j1.23 2.61
LM 1731 1334 2147 9.72 8.01 14.8
MB 775 640 927 9.13 7.11 11.0
SL 1865 1587 2166 3.12 2.90 4.37

Table A1. Estimated parameters of Equation 1 from data for each subject in each condition and test: slope of EvN line (m), equivalent
input noise (Neq = E0/m), and their 95% confidence interval. The lines corresponding to these parameters are shown in Figure 3.
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ideal observer described in Tjan and Legge (1998),2 we
ran 20 simulations, each consisting of 7800 trials to test
each letter 300 times with different noise samples per
simulation. Corresponding to the letter stimuli used with
each subject in the experiment, the ideal observer slopes
(mideal) were found to be (TSE): 8.126 T 0.025 (AL), 8.336 T
0.029 (BW), 8.192 T 0.028 (CT), 8.488 T 0.030 (LM),
8.103 T 0.031 (MB), and 8.201 T 0.025 (SL). The ratio
mideal/m is the sampling efficiency for a human observer
with an EvN slope ofm. The subjects’ EvN slopes from all
the test conditions are provided in Table A1. (The same
mideal for a subject applies to all conditions for that
subject.)
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Footnotes

1
We distinguish between an ideal observer, which is the

statistically optimal observer for the given stimuli and
task, and an ideal observer model, which is a model of a
human observer based on an ideal observer with respect to
the stimuli, task, and the explicitly stated limiting factors,
such as internal noise and down-sampling.

2
The last line of Equation A3 in Tjan and Legge (1998)

should read: j2a2XT j 2aANT + a2TT. The error was
typographical and did not affect their implementation.
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