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Abstract—The ever increasing number of processing units
integrated on the same many-core chip delivers computational
power that can exceed the performance requirements of a
single application. The number of chips (and related power
consumption) can thus be reduced to serve multiple applications
— a practice which is called resource consolidation. However, this
solution requires techniques to partition and assign resources
among the applications and to manage unpredictable dynamic
workloads.

To provide the performance requirements in such scenarios,
we exploit application auto-tuning, based on design-time analysis,
of both application-specific dynamic knobs and computational
parallelism. Such features are implemented in a software library,
which is used to demonstrate the main contribution of this
paper: a light-weight Run-Time Resource Management — RTRM

— technique to improve resource sharing for computationally
intensive OpenCL applications.

We evaluate how much the interaction between RTRM and
application auto-tuning can become synergistic yet orthogonal.
In the proposed approach, run-time adaptation decisions are
taken by each application, autonomously. This has two main
advantages: i) a non-invasive application design, in terms of
source code, and ii) a very low run-time overhead, since it
does not require any central coordination of a supervisor nor
communication between the applications.

We carried out an experimental campaign by using a video
processing application — an OpenCL stereo-matching implemen-
tation — and stressing out resource usage. We proved that, while
RTRM is necessary to provide lower variance of the application
performance, the application auto-tuning layer is fundamental to
trade it off with respect to the computation accuracy.

I. INTRODUCTION

A new trend in programming data-parallel computationally
intensive applications is using OpenCL not only for program-
ming heterogeneous platforms (by exploiting GPU or FPGA
accelerators) but also for homogeneous platforms. OpenCL
follows an “offload” programming model, where an accelerator
is accessed via the host system and is programmed as a co-
processor, to speedup the execution of computationally inten-
sive kernels. OpenCL API [1] is designed to make efficient use
of the massive computational parallelism provided by modern
accelerators. On the contrary, there is not yet support for
efficient deployment of multiple OpenCL applications on the
same platform. However, the increasing number of process-
ing units integrated on the same chip delivers computational
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capabilities that can exceed the performance requirements of
a single application. Thus, server consolidation is a common
approach to reduce the number of machines (and therefore
the power consumption) needed to provide some services. In
this area, runtime adaptability represents a key technique for
computing systems to adjust their behaviour with respect to
operating environments, usage contexts, resource availability
and even to faults, thus enabling close-to-optimal operation in
the face of changing conditions.

In this work, we address the problem of resource sharing
in server consolidation for adaptive and computationally in-
tensive OpenCL applications. Our target application scenario
is characterized by unpredictable, variable workloads, where
applications have to serve concurrent requests and provide
a best-effort service to the users. In this context, we are
interested in evaluating the combination of: i) application
auto-tuning and ii) Run-Time Resource Management (RTRM)
techniques to improve resource sharing among computationally
intensive workloads. The lack of auto-tuning and run-time
adaptation capabilities at the application-level leads to sub-
optimal power/performance trade-offs at the system level given
by the underutilization of system resources. On one side, the
auto-tuning mechanism allows to trade off performance and
Quality-of-Result metrics directly acting on application-level
knobs; on the other side, runtime system management needs to
optimize the computing capabilities with respect to dynamic
variations of the environment conditions, computational de-
mands and resource availability.

We implemented an auto-tuning framework – the
Application-Specific Run-Time Manager (AS-RTM) – which
exploits design-time and run-time concepts to create an al-
ternative and effective way of “self-aware” computing. Our
framework aims at determining the relation between applica-
tion parameters and performance metrics (such as throughput,
accuracy) at design-time through an exploration phase based
on code profiling. This information is used to create a model
of the application behavior, characterizing the effect of the
tunable parameters (also known as dynamic knobs [2]) on
performance. Then, this model supports run-time decisions to
tune the application behavior according to available resources
and given constraints. Among the application knobs, we have
included a parameter which controls, on a multi-core platform,
the CPU quota used by the application. To this end, we
exploit the device fission OpenCL API [1] to deploy OpenCL
kernels on selected processing units of a multi-core CPU. The
drawback of this API is that OpenCL dynamic compilation
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is required each time the computing device is reconfigured.
Thus, our analysis also takes into account the benefits of
asynchronous compilation to reduce the reconfiguration over-
head. Additionally, this paper introduces an innovative light-
weight technique – called resource-aware AS-RTM – where
the AS-RTM is enabled to take autonomous decisions on
resource utilization. The resource-aware AS-RTM considers
the information of system workload gathered by platform
sensing for taking reconfiguration decisions, while minimizing
the impact on other applications that share the same resources.
However, differently from previous approaches (e.g. “invade
and retreat” [3]), applications act as autonomous agents, with-
out coordination among them. On the one hand, this solution
has the advantage of being non-intrusive from a design point of
view, since it does not require a communication infrastructure;
on the other hand, it does not provide any guarantee of fairness
nor optimality in resource allocation. To achieve system-level
objectives such as fairness, we include in the experimental
setup a configuration (called Adaptive-RTRM) which exploits a
two-level run-time management: resource allocation delegated
to a centralized resource manager and application-specific
parameters controlled by the AS-RTM.

To summarize, the main contributions of this paper can be
summarized as follows:

• We introduce an infrastructure that provides run-time
support for application adaptivity, based on design-
time analysis.

• We analyze the problem of resource allocation for
computationally intensive OpenCL applications on
multi-core OpenCL platforms.

• We evaluate different solutions for run-time manage-
ment based on our auto-tuning framework, to exploit
the orthogonality between application-specific knobs
and resource allocation.

• We propose a light-weight technique for run-time
resource management based on platform sensing at
application level.

The remainder of this paper is organized as follows. Section
II provides an overview of the related work, while Section III
introduces the target architecture for the adaptive framework,
explaining the reasons behind this solution. Use-cases and
definitions are described in Section IV, while the experimental
results are presented in Section V. Finally, Section VI con-
cludes the paper.

II. RELATED WORK

In [4], the OpenCL standard is extended to support compu-
tation offloading in the automotive industry, by exploiting IP-
based in-car networks. However, computation offloading intro-
duces the problem of resource sharing in server consolidation
[5], thus it requires Run-Time Management (RTM) techniques.

The adaptive control technique proposed in [6], called on-
line architecture tailoring, is based on control theory and
provides for continuous self-adaptation of the application.
However, this technique is demonstrated for a single appli-
cation while we target more complex workloads that would
require continuous adaptation at system level.

A distributed RTM approach for homogeneous many-core
systems based on game theory is presented in [3]. While dis-
tributed approaches suffer from communication overhead and

convergence time, centralized solutions [7] require heuristics
for optimal resource allocation within a short decision time.

In [8], the authors combine design-time and run-time
techniques in order to train a global resource manager. A step
forward made on top of the previous approach has been done
in [9] with a run-time management framework, called ARTE,
supported by DSE. Even in this case, the run-time manager
is a single one (system-wide) and, at the application level, it
provides only the possibility to change the parallelization of
the application.

More effective application-level tuning is leveraged by
software-based approximate computing, a set of techniques
to design applications to trade off accuracy with respect to
increased performance. An example is given by the Speed-
Press compiler [10], which allows to apply automatic code
perforation to insert dynamic knobs [11] into the application
code. Such knobs are application parameters that modify
the computation, for example by changing the step in loop
iterations, and impact on performance and approximation of
the application output.

The work presented in [2] combines the concept of dynamic
knobs, to support run-time adaptivity, and that of heartbeat, to
provide a way to monitor application latency and throughput.
Their framework, SEEC, uses a run-time manager with dif-
ferent levels of adaptation, from a simple closed-loop control
scheme to a more refined machine learning manager. However,
this solution lacks of design-time techniques support.

III. TARGET ADAPTIVE FRAMEWORK

The basic idea of the proposed adaptive framework con-
sists of exploiting the orthogonality between application
auto-tuning and runtime resource management for compute-
intensive OpenCL applications. To this purpose, we have envi-
sioned a twofold approach. On one side an application-oriented
self-adaptive layer uses some knobs at the application level
to trade off performance with Quality-of-Result metrics. On
the other side, system resources are partitioned and assigned
to the running applications by the resource management layer.
The runtime decisions are taken based on profiling information
gathered at design-time, which consists of a set of application
configurations, namely the Operating Points (OPs) [12], which
are optimal with respect to application performance metrics
(e.g. throughput) and resource usage.

In this section, we first highlight the application-oriented
self-adaptive layer (Section III-A), then the runtime resource
management layer (Section III-B) and finally the proposed
resource-aware extension to the Application-Specific Run-
Time Manager (Section III-C).

A. Application adaptivity through dynamic knobs

In our approach, each application is linked to the frame-
work library that provides an Application-Specific Run-Time
Manager (the AS-RTM). The main purpose of the AS-RTM is
to manage application adaptivity by tuning the dynamic knobs
[11] – application parameters that can be changed at run-time
without recompiling the application.

The AS-RTM is generic, however its behavior can be
customized for each application given a different list of run-
time configurations – the Operating Points (OPs). The OP
data structure contains a set of parameters, which represent
the values of the application dynamic knobs for a specific
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Fig. 1: Application adaptivity through the AS-RTM.

configuration, and the metric values profiled at design-time.
As shown in Figure 1, the AS-RTM allows to define one
or more application goals. A goal represents a soft-constraint
on a certain metric (such as the frame-rate or the Quality-
of-Service – QoS) or parameter (such as the number of
threads) that can be dynamically set by the user or selected
by the application itself depending on external events. Such
constraints are assumed to be strictly ordered by their priority.

Similarly to the Heartbeat framework [13], our AS-RTM
uses high-level monitors of the performance (such as a
throughput monitor, a QoS monitor or a user-defined monitor)
to sense the execution context and to react to any change in
the application requirements.

The AS-RTM integration in a third-party application is
straightforward: it does not require refactoring the application
logic to meet an execution template (such as in [7] and [8])
but only wrapping the profiled code with the monitor calls.

B. Run-Time Resource Management

The proposed approach aims at analyzing run-time re-
source management for compute-intensive workloads, such as
OpenCL applications, in multi-application scenarios.

In a plain OpenCL application, the platform resources
are managed by the OpenCL run-time at application-level, so
an application is enabled to use all devices available on an
OpenCL platform and, by default, the entire quota of each de-
vice. On a multi-core CPU, for example, the OpenCL run-time
binds each application to all compute units by default and relies
on the OS scheduler to assign CPU time to all applications
(seen as different processes by the scheduler). The drawback of
this approach is that application performance is not predictable,
as the number of deployed applications (processes) changes
over time. Moreover, it is not possible to control the amount
of resource quota for each application: while the OS scheduler
is fair in allocating user time to processes, this is unfair from
a point of view of the application, because applications might
have different resource requirements, constraints or priority.

To tackle the problem of resource sharing on multi-core
platforms, we propose a distributed approach for run-time
resource management (RTRM), by extending the AS-RTM
described in Section III-A with a monitor for sensing system
CPU usage. Since the so called Resource-Aware AS-RTM is
enabled to take local decisions on resource allocation in multi-
/many-core platforms, our solution falls into the research area
of invasive computing [14]. However, our approach does not
need communication between applications, thus each AS-RTM
is completely autonomous and has only partial information

about the platform state.

C. Proposed Resource-Aware AS-RTM

Our proposed methodology aims at extending the domain
of application knobs, to manage resource-related parameters
without the need of interacting with other actors. In this
way it is possible to avoid any synchronization/communication
delay and increase the portability of the application to a new
platform, without any additional effort, but generating the OPs
specific for that platform.

The AS-RTM introduced in Section III-A allows the user
to set a soft-constraint on the application parameters or metrics
in the OP configuration. The performance metrics in the
OP list are obtained by profiling the application in isolation
on the target platform. Thus, for computationally intensive
applications, the performance metrics – such as throughput –
are likely to benefit from increased computational parallelism,
thus higher resource usage. On the contrary, our target scenario
consists of multiple applications, with different performance
and resource requirements, deployed on the same platform.

It is possible to treat any resource-related parameter (such
as the computational parallelism) as a generic application-
specific parameter. However, a plain management of such
parameters could lead to system configurations where the total
amount of computational parallelism required by the running
applications exceeds the system resources. In turns, this would
result in a degradation of application performance since the OS
scheduler limits the process CPU usage.

To overcome this problem, we propose a resource-aware
AS-RTM, which takes into account the CPU usage (as we
target multi-core CPU platforms), for self-limiting the appli-
cation parallelism (e.g. the number of working threads). At
each application cycle, the AS-RTM monitors the goal status.
Whenever a goal is not satisfied or has been changed (e.g. the
required frame-rate has been decreased), in order to select the
most suitable OP, the AS-RTM follows this procedure:

1) The AS-RTM updates the internal constraints on the
OPs to meet the current goals.

2) If there is at least one OP that satisfies all the
constraints, the AS-RTM chooses the one with the
highest rank value. Otherwise, it chooses the OP
closest to the valid region defined by the constraints,
starting from the one with highest priority.

According to this decision policy, we add a constraint on
the process CPU usage, on top of the application-specific ones.
The value of this constraint is initialized to the maximum
system CPU quota (Γ). At run-time, by monitoring the system
CPU usage (γ) and the process CPU usage (πmeasured), the
AS-RTM selects an OP only if the profiled CPU usage of the
OP (πprofiled) satisfies the following constraint:

πprofiled ≤ Γ− γ + πmeasured (1)

If only one application is running, γ and πmeasured are
equal, thus the application is allowed to use the entire CPU
resource. Otherwise, if the platform is congested, Γ and γ have
the same value, which forces the AS-RTM to select among the
OPs whose profiled CPU usage fits the quota assigned by the
OS scheduler.

In the experimental results, our solution is compared to a
centralized approach, where resource allocation is delegated

163



and coordinated by a system-wide run-time resource manager
(SW-RTRM), while the AS-RTM takes local decisions only on
application-specific parameters. We will show that it is possible
to reach the same average performance predictability with our
framework, at the expenses of no guarantee on fairness nor
optimal resource allocation.

IV. EXPERIMENTAL SETUP

A. Use-case application

We consider a case study based on the Stereo-Matching
application [15], implemented with OpenCL APIs [1] and
designed to export a set of parameters which impact on both
application-specific and platform metrics. Stereo-Matching be-
longs to a class of applications that allow to dynamically tune
at run-time the trade-off between performance and Quality-
of-Result (QoR) metrics, by means of dynamic knobs [11].
An example of such knobs is given by those parameters that
change the number of loop cycles, by skipping some iterations
with a given step (a technique known as loop perforation [10]).
This generates a more approximate result, which we also refer
to as QoR loss, but a faster application execution.

B. Definition of metrics

The Stereo-Matching application has two metrics of in-
terest, namely the frame-rate (measured as [frames/s]) and the
disparity error, which represents a measure of the average error
associated to the application result (the pixel disparity [15]).
However, in our tests we consider only normalized metrics that
abstract from the specific application, defined as follows.

1) Normalized Actual Penalty (NAP): This metric measures
the degree of user satisfaction, with respect to a frame-rate goal
set at the application start. The frame-rate goal is a soft real-
time constraint, which should be met independently from the
machine workload and resource availability.

NAP =
GOALmeasured −GOALdemanded

GOALmeasured +GOALdemanded

(2)

2) Normalized Error: This is a measure of the output
quality normalized on the range of valid values, so that
ERR = 1 when the application runs with the configuration
that provides the lowest – but still acceptable, with respect to
design requirements – output quality; while ERR = 0 when
the quality is highest. It was obtained for Stereo-Matching
from the disparity error (DErr) as follows:

ERR =
DErrOP −DErrMIN

DErrMAX −DErrMIN

(3)

3) Difference w.r.t. to off-line profiling: Another metric
of interest is the deviation (DEV) of the metrics (e.g. cycle
period) observed at run-time with respect to the expected
values, i.e. the OP metrics profiled at design-time.

DEV =

∣

∣

∣

∣

Tcyclemeasured

TcycleOP

− 1

∣

∣

∣

∣

(4)

Since our tests consider dynamic scenarios, for the NAP
and ERR metrics we compute a synthetic value that takes into
account the temporal dimension:

NAPAV G =

∫

NAP (t) dt

∆t
, ERRAV G =

∫

ERR(t) dt

∆t
(5)

C. Definition of dynamic workload

A dynamic workload, in this paper, consists of a set of
applications with different schedules (start time), amount of
data to process (number of frames in Stereo-Matching) and
performance requirements (frame-rate). This use-case is aimed
at mimicking the workload expected in server consolidation,
specifically targeted to offloading computationally intensive
OpenCL applications [4]. Although we use only one type of
application (Stereo-Matching), we mimic a dynamic workload
by exposing the following parameters:

• Start delay: each application instance is started upon
user request, thus we use different start times.

• Amount of input data: each Stereo-Matching instance
is required to process a different number of frames.

• Frame-rate goal: soft real-time constraint to guarantee
a certain response time, as demanded by the user.

The above parameters are randomly chosen for each Stereo-
Matching run, within a range of values shown in Table I.

D. Platform description

We ran our experiments on two multi-core platforms:

1) AMD platform: NUMA machine with four nodes, each
a Quad-Core AMD Opteron Processor 8378 at 2.4 GHz, with
8 GB of RAM per node, running a Linux distribution based on
kernel 3.9. OpenCL 1.2 run-time provided by AMD OpenCL
SDK v2.8.1.

2) Intel platform: Workstation with Intel Xeon Quad-
Core CPU E5-1607 at 3.0 GHz and 8 GB RAM, running a
Linux distribution based on kernel 3.5. OpenCL 1.2 run-time
provided by Intel OpenCL SDK 2013.

The device fission API can be used to partition a multi-
core CPU device into sub-devices. The API defines several
partition schemes. We use a partitioning by count [1] to create
one sub-device of specific size, in this way controlling the
CPU resource usage. However, the OpenCL program is bound
to a context, so every time a new sub-device is selected it is
necessary to create a new context and rebuild the OpenCL
program. The OpenCL program build introduces overhead
at run-time, which might limit the benefits of application
auto-tuning if the reconfiguration rate is high. To reduce
this reconfiguration overhead, we used asynchronous dynamic
compilation, a feature of the clProgramBuild OpenCL
API [1] supported by some OpenCL run-time implementations
(e.g. Intel). By passing to clProgramBuild a function
pointer to a notification routine, this routine is called when
the program has been built, while the application can continue
running in the previous configuration. Our measurements with
Intel OpenCL SDK show that synchronous dynamic build of
the Stereo-Matching kernels takes 624ms on average, while
the reconfiguration overhead of asynchronous build is only
58ms (10x less).

Parameter AMD Intel

Number of frames 10-840

Frame-rate goal [frames/s] 1-7

Start delay [s] 0-90

Num. instances 1-6 1-4

TABLE I: Range of values for the random parameters of dynamic
workload tests.
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E. Run-Time Management description

Five Run-Time Management configurations have been con-
sidered:

1) Plain-Linux: Baseline implementation without SW-
RTRM and AS-RTM. Each application instance is deployed
as a plain OpenCL application, thus it is binded by default
to all processing elements available on the CPU. On the one
hand, since there is no SW-RTRM, this configuration relies
on the OS to schedule tasks from different applications. On
the other hand, the application runs a fixed configuration, with
50% QoS.

2) Plain-RTRM: For this test we use an open source re-
source manager, the BarbequeRTRM [7], to allocate resources
to the running applications. In BarbequeRTRM, application
requirements are mainly defined by the set of Application
Working Modes (AWMs), identified at design-time, each one
corresponding to a given amount of required resources. How-
ever, if the resource requirement gets higher at run-time, an
application can also request to the manager a higher AWM,
through a specialized API. Any change in the application
resource requirements or in the system resource availability
generates an event that triggers a system reconfiguration.
The SW-RTRM has a complete knowledge of the system
state, including dynamic resource requirements of individual
applications, which ensures optimal resource allocation w.r.t.
system-level objectives – such as fairness, execution priority,
reconfiguration overhead and congestion. Also in this case, the
AS-RTM is not used, thus the application runs with QoS fixed
to 50%.

3) AS-Linux: No SW-RTRM but the proposed AS-RTM
is enabled. The AS-RTM can switch the Operating Point
to trade-off between performance and QoS. Although the
computational parallelism can be controlled by the AS-RTM
through an application dynamic knob, the effective resource
usage depends on the allocation of CPU user time by the OS
scheduler.

4) RA-AS-Linux: Configuration implementing the pro-
posed Resource-Aware AS-RTM. Differently from the previ-
ous configuration, here the computational parallelism is used
orthogonally with respect to the application-specific knobs. It
implements the technique presented in Section III-C, based on
monitoring of the system CPU usage for smart adaptation of
the resource requirement.

5) AS-RTRM: Two-level run-time management, which uses
both the centralized resource manager and the proposed AS-
RTM. On the one hand, resource allocation is delegated to the
BarbequeRTRM, which enforces a fair allocation of platform
resources among the running applications; on the other hand,
the AS-RTM is used to control at application-level the trade-
off between performance and accuracy metrics, by tuning the
parameters orthogonal w.r.t. resource-related parameters.

V. EXPERIMENTAL RESULTS

The experiments described in this section have been carried
out to assess the benefits of the proposed framework. In
Section V-A, a single stereo-matching application, with some
constraints on resource usage, has been used to assess the
capability of the proposed AS-RTM framework of exploiting
the available trade-offs between performance metrics. In Sec-
tion V-B, we evaluate the orthogonality between the decision
space of the AS-RTM, analyzed before, and different RTRM
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Fig. 2: Observed frame-rate, normalized error and NAP by varying
the frame-rate goal and the number of cores.

techniques. We consider first an approach where resource
utilization is managed as an application parameter in a flat
configuration (AS-Linux); then, we present the two-level ap-
proach based on a centralized resource manager (AS-RTRM);
finally, we present the proposed technique for efficient resource
sharing based on platform sensing (Resource-Aware AS-Linux).
We conclude this section with a campaign of experiments
(Section V-C) with random workloads to compare the different
techniques analyzed individually in the previous experiments.

A. Application Auto-Tuning Results

This experiment aims at assessing the benefits of ap-
plication adaptivity. It consists of a single Stereo-Matching
application deployed on the Intel platform, with 200 frames
to process. The test is repeated for each possible number of
cores (4 in total on the Intel platform), with the frame-rate
goal incremented at each run from 3 to 21 frames/s.

The results are shown in the three plots of Figure 2, where
the x-axis is the goal value and y-axis represents, in order,
the average measured frame-rate (2a), the average normalized
error (2b), and the average NAP (2c). With the highest resource
availability (4-cores) the AS-RTM can provide 3 frames/s with-
out quality loss (ERR≃0%). On the contrary, configurations
with lower resource availability, show a quality loss which
ranges from 20% to 50%, depending on the number of cores.
This means that there is a range of goal values, different for
each amount of available resources, where the AS-RTM can
trade off performance and computation error to meet the goal.
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Fig. 3: Behavior of the Run-Time Management strategies, in terms of throughput and normalized error.

Figure 2 shows a similar behavior but with different
thresholds for the maximum frame-rate that they can reach:
the test with 1-core provides up to 4.3 frames/s, with 2-cores
up to 8.1 frames/s, with 3-cores up to 11.5 frames/s and with
4-cores up to 16.4 frame/s. After these frame-rate thresholds,
the AS-RTM (already in the OP with lowest quality of result)
cannot find any suitable OP to meet the goal, thus the NAP
value starts growing.

In conclusion, this test demonstrates that, for the selected
case study, our AS-RTM allows to satisfy higher throughput
demands by exploiting the possible trade-offs in the objective
space in terms of performance versus computation error. The
dynamic workloads presented in the next section will benefit
from this feature, since in a multi-application deployment
configuration each instance cannot use the full platform, but
is constrained to a subset of resources.

B. Evaluating RTM Strategies

In this section, the three RTM strategies that use the
proposed AS-RTM are compared in terms of predictability and
fairness. The experiment analyzes application adaptivity in a
sequential scenario. In such scenario, four Stereo-Matching
instances are executed on the Intel platform, with a fixed
delay between the start times. The number of frames to be
processed by each instance has been chosen to let all the
applications run together for approximately 30s, then they
complete their execution at different times. All instances have
the same throughput goal (4 frames/s) and their AS-RTM is
configured to minimize the disparity error. We can logically
partition the experiment in two phases. In the first phase new
applications are launched, so we can observe how already
running applications react when the new applications steal
resources. The second phase begins when the oldest instance
has completed its execution. In this phase, one by one, all
applications leave the execution context, so it is possible to
see how the remaining instances exploit the resources that

are released. Figure 3 represents the three evaluated RTM
strategies: AS-Linux (3a), the proposed Resource-Aware AS-
Linux (3b) and AS-RTRM (3c). For each configuration, the
plots show the throughput and disparity error profiled at run-
time, in a time window of 300 sec.

AS-Linux. When only one application is running, the
throughput is stable and the disparity error is constant. As soon
as the second application is started (t = 20s), the throughput of
both instances starts oscillating but the error remains constant.
The reason for this is that the AS-RTM does not change the
OP (the throughput is above the goal) but, since the total
amount of resources demanded doubles the number of cores,
the throughput is strongly related to the scheduler policies.
After 60s, the third application is executed and even more
resources are demanded, strengthening the relation between
the OS scheduling and the throughput oscillation. In this case,
the measured throughput can go below the goal value, forcing
the AS-RTM to select a faster OP, which in turns boosts the
oscillation. In conclusion, this configuration is not fair neither
predictable.

Proposed Resource-Aware AS-Linux. Here the behavior is
quite different: after an initial transitory period, the constraint
on the CPU utilization forces the AS-RTM to use only OPs
that match the available resources, preventing the throughput
oscillations. Whenever a new application starts or ends, the
AS-RTM waits until the CPU usage, of both the system and
the application, becomes stable before updating the CPU usage
constraint. During these periods, the number of threads might
be greater than the number of cores for short periods, then
some oscillations can be observed (e.g. t = 20s, t = 70s).
Then, such undesired oscillations end once the resources are
partitioned among the applications. The CPU monitor allows
the AS-RTM to gain predictability, however – as the disparity
error plot shows – this strategy is not fair because the resource
allocation is not coordinated among applications.

166



(a) Average Normalized Actual Penalty (NAP)

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6

N
A

P
 [

%
]

Plain-Linux
Plain-RTRM

AS-Linux
RA-AS-Linux

AS-RTRM

(b) Throughput degradation w.r.t. to offline profiling

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6

D
E

V
 [

%
]

(c) Normalized output quality loss

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6

E
R

R
 [

%
]

(d) Reconfiguration time w.r.t. total execution time

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

1 2 3 4 5 6R
e

c
o

n
fi
g

u
ra

ti
o

n
 o

v
e

rh
e

a
d

 [
%

]

Number of deployed applications

Fig. 4: Dynamic workload analysis on the AMD platform.
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Fig. 5: Dynamic workload analysis on the Intel platform.

AS-RTRM. Thanks to the centralized coordination, the
transitory periods – whenever an application starts or ends –
are drastically reduced. This configuration provides the best
performance predictability and allocation fairness. However,
except for the transitory periods, the performance achieved by
the proposed Resource-Aware AS-Linux and the AS-RTRM are
similar (see the throughput plots).

C. Dynamic Workload Results

This section describes the results obtained by deploying
a multi-application configuration on both reference platforms.
The maximum number of instances and the maximum frame-
rate goal are shown in Table I.

Figure 4 reports the results for the test on the AMD plat-
form, while Figure 5 for the Intel one. As shown in Figure 4a
and Figure 5a, Plain-Linux has the worst NAP metric: although
the single application can reach all throughput demands,
concurrent execution of applications with different resource
demands introduces high penalties on the performance metrics.
In this configuration, all applications use by default the entire
CPU (device fission is disabled). This introduces a high rate

of context-switches, which degrades the measured frame-rate.
As a consequence, the difference between the design-time and
run-time profiling is highest for this configuration and such
deviation continues increasing as we deploy more concurrent
applications. This is an expected result since the OpenCL
library relies on the OS scheduler to allocate user time to
different applications.

In Plain-RTRM the system-wide coordination of resource
allocation has the most significant impact on predictability of
application performance: indeed, the metric of performance
deviation is the lowest for this configuration. The NAP benefits
from the execution in a controlled environment, since the
allocation of CPU cores has the effect of reducing the number
of context-switches. However, the QoS of the application
output is still fixed so the reconfiguration options are limited
to the computational parallelism.

This is not the case of AS-Linux, where the QoS metric
(Figure 4c and Figure 5c) is tuned at run-time to react to
variations in the system workload. The error associated to the
application output is below Plain-RTRM in scenarios with 1-
3 instances, above for scenarios with 4-6 instances. The NAP
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benefits from the wider range of trade-offs, which is lower than
in Plain-RTRM; however, the predictability of performance
metrics is low, as shown by the performance deviation bar
(Figure 4b and Figure 5b).

This limitation is overtaken by the proposed Resource-
Aware AS-Linux, where an application is allowed to use
resources only if these are available. RA-AS-Linux performance
is better than Plain-RTRM in our tests, because the AS-RTM
is more reactive than a centralized resource manager; on the
other hand, the performance predictability is slightly worse in
high contention scenarios. It must be noticed that RA-Adaptive-
Linux cannot provide any guarantees on fairness in the resource
allocation, nor can support applications with different priority
levels whereas the BarbequeRTRM can do.

Finally, the configuration that performs best in all scenarios
is the AS-RTRM. By combining the benefits of system-wide
resource management and application-level auto-tuning, it is
possible to achieve the best performance. However, this con-
figuration requires a more complex software framework, which
might not be needed for best-effort applications.

The average Normalized Actual Penalty (NAP) (Figure 4a
and Figure 5a) is the metric that better summarizes this
analysis. We can observe, as expected, an increasing NAP for
all configurations as the workload is increased. Nevertheless,
the adaptive configurations (supported by the AS-RTM) always
reduce the NAP with respect to the plain configuration, which
means that the frame-rate goal is met much more frequently.
However, the NAP metric considers only the processing time
and not the run-time management overhead, e.g. the time
spent in reconfiguration. Thus Figure 4d and Figure 5d show
also the reconfiguration overhead, with respect to the total
execution time of each experiment. The average overhead in
the configurations with BarbequeRTRM is 0.4% on the AMD
platform and 2% on the Intel platform. In both platforms, we
use synchronous OpenCL program build (see Section IV-D),
because the application execution context is not aware of
the system state, thus it cannot control the rescheduling
events. Therefore, the difference in reconfiguration overhead
depends on the OpenCL run-time libraries: the build of Stereo-
Matching kernels takes 154ms on AMD and 624ms on Intel
platform, respectively. On the other hand, the overhead of AS-
Linux and RA-AS-Linux is different between the two platforms
for another reason: the Intel platform supports asynchronous
OpenCL program build, while AMD does not. This feature can
be exploited in the configurations with decentralized resource
management, because reconfiguration is completely managed
by the AS-RTM. On our Intel platform, this results in a 10x
reduction of the reconfiguration overhead.

VI. CONCLUSIONS

In this work, we have considered the problem of managing
multiple OpenCL applications for server consolidation on
multi-core platforms. The application we targeted in our tests,
Stereo-Matching, can achieve different performance (frame-
rate) depending on the computational capabilities of the plat-
form, however more fine-grained control of the resource usage
is done by means of the OpenCL device fission API.

We have evaluated different Run-Time Management strate-
gies, in terms of adaptability and predictability in the OpenCL
context, reproducing some approaches proposed in literature
([11], [7]). Moreover, we have introduced a light-weight
Run-Time Management technique, which extends the trade-

off space of an Application-Specific Run-Time Manager to
resource-usage control. This technique, targeted to compute-
intensive applications, allows to take local decision on resource
utilization at application level, for efficient resource sharing.
Differently from other distributed approaches, applications act
as autonomous agents, without coordination among them.

Our tests show that the average performance of the pro-
posed AS-RTM is very close to the performance achieved
with a combined approach based on a centralized resource
manager; at the same time, our approach is more portable and
less intrusive from an application design point of view.
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