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Experiments on the collective behavior and phase synchronization of weakly coupled populations
of nonidentical chaotic electrochemical oscillators are described. The weak coupling has only a
small effect on the local dynamics, i.e., through changes in frequency, but it has a strong influence
on the collective or overall behavior. With added weak global or short-range coupling, a deviation
from the law of large numbers is observed; large, irregular, and periodic mean-field oscillations
occur, along with (partial) phase synchronization.

Introduction

In chemically reacting systems, the rate of reaction
is often a function of both space and time. The spatial
scale of variations in fluid/solid or electrochemical
systems can range from nano- through micro- to mac-
roscopic, and variations at several scales can occur
simultaneously, e.g., small-scale on a catalyst surface
up to the larger scale of the reactor. The degree of
interaction among the reacting sites is influenced both
by the local reaction rate and by the strength and range
of the coupling. A number of spatiotemporal pattern
types have been observed in reaction-diffusion systems1

in which the coupling is local; in heterogeneous chemical
reactions with global coupling, such as temperature
control2 or mass or heat transfer;3-5 and in electro-
chemical systems, in which the coupling arises mainly
through the electric field.6 In the latter case, the
coupling range depends on the cell geometry and the
conductivity of the electrolyte and can be short- or long-
range. The interactions can produce not only spatial
patterns but also changes of the dynamics of the
individual sites. A classic example of a change in local
dynamics through interactions is diffusion-induced chemi-
cal turbulence in which local coupling of periodic oscil-
lators produces chaos.1 Global coupling can also induce
turbulence.3 In electrochemical systems, irregular be-
havior has been shown to occur in both simulations7,8

and experiments9,10 through the coupling of periodic
sites.

The focus of the present paper is on coupled oscillators
in which the coupling is weak, so that there are only
small quantitative effects, but no qualitative effects, on
the local dynamics produced by the coupling. Neverthe-
less, these small effects can produce significant changes
in the collective, or overall, behavior of the system. In
chemically reacting systems, this spatially averaged
reaction rate is often the quantity of interest because it
gives the overall conversion in the reactor. The collective
behavior of a reaction system is then characterized by
the overall time-dependent rate of reaction.

We consider here globally coupled chaotic chemical
oscillators. The main features of the collective behavior
of locally and globally coupled chaotic elements in mean-

field-type models of both maps and ordinary differential
equations have been explored.11,12 Without coupling, the
variance of the mean field (which corresponds to the
spatial average) must vary with N as 1/N according to
the law of large numbers. Reaction systems usually
contain very large numbers of reaction sites; because
the variance goes to zero with large numbers, such
systems will operate at steady state. In weakly coupled
systems, however, simulations have shown that the law
of large numbers is violated because of emerging small
coherence among the oscillators.12-16 Nontrivial collec-
tive behavior can also occur, i.e., at low coupling
strengths, the behavior of the individual oscillators
remains chaotic but that of the ensemble can be more
regular,11,12,14-20 even periodic.19 Some recent simula-
tions have shown that synchronization of the phases of
the chaotic oscillators21 is important in the development
of the collective motion.18,22,23

In this paper, we report the results of experiments
on arrays of weakly coupled electrochemical oscillators.
We use an array of 64 electrodes operated in the chaotic
region. The properties of the individual oscillators,
notably their frequencies, vary somewhat because of
heterogeneities; such heterogeneities occur naturally in
experimental systems, and those here are due to varia-
tions in the surface properties of the electrodes. Al-
though the number of reacting sites is much smaller
than the number of active sites on distributed reacting
surfaces, it is large enough for statistical information
to be extracted and collective effects to be seen. (A brief
account of some of the aspects of the collective effects
can be found in a recently published letter.24) The
reaction is the electrodissolution of Ni in sulfuric acid;
the rate of the electrochemical reaction is proportional
to the current, which can be measured at each electrode
to obtain local as well as overall rates of reaction. Some
diagnostic tools involving tests for the law of large
numbers and measures of phase synchronization are
used to characterize changes in dynamics with increas-
ing coupling strengths. Coupling among the elements
is added either with resistors, which produce a global
coupling through changes in the potential drop across
the electrode double layer, or with stirring, which
changes the concentrations of chemical species at the
electrode surface. The design of the resistors9,25 enables
global coupling of the electrodes to be effected without
changing other parameters in the system. The coupling
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effect of stirring in reactive systems can impose a global
coupling through the bulk solution3,5 and/or short-range
coupling through transport among sites; we analyze the
collective behavior without and with added stirring and
show that, in this electrochemical system, the short-
range effect is more important. We show that the weak
interactions imposed on the system, either through
resistive global coupling or through stirring, can have
a significant effect on the collective dynamics.

Experimental Section

A schematic of the experimental apparatus is shown
in Figure 1. A standard electrochemical cell consisting
of a nickel working electrode array (64 1-mm-diameter
electrodes in an 8 × 8 geometry), a Hg/Hg2SO4/K2SO4
reference electrode, and a platinum mesh counter
electrode was used. The array can be thought of as a
population of oscillators or as a discrete approximation
of a single continuous surface when the scale of the
coupling space is greater than the size of the elements
and the spacing among them.26 The potentials of all of
the electrodes in the array were held at the same value
(V ) 1.310 V) with a potentiostat (EG&G Princeton
Applied Research, model 273). Two different arrays,
with 1- and 2-mm spacings between the electrodes, were
used; most experiments were performed with the array
having smaller spacing, and the array with larger
spacing was used only for experiments on the effect of
stirring. For studies on smaller arrays, sections of the
64-electrode array were used; these configurations were
1 element, 2 elements (neighbors), 4 elements (2 × 2
geometry), 16 elements (4 × 4), 36 elements (6 × 6), 49
elements (7 × 7), and 64 elements (8 × 8). The working
electrodes were embedded in epoxy, and reaction took
place only at the ends. The currents of the electrodes
were measured independently at a sampling rate of 100
Hz, and thus, the rate of reaction as a function of
position and time could be obtained. Experiments were
carried out in 4.5 M H2SO4 solution at a temperature
of 11 °C.

The electrodes were connected to the potentiostat
through individual parallel resistors and through one
collective series resistor (see Figure 1). We employed a

method of altering the strength of global coupling9,25,27

while holding all other parameters constant, i.e., the
kinetics and the parameters of the individual oscillators
were not changed. The total external resistance was
held constant while the fraction dedicated to individual
currents, as opposed to the total current, was varied.
The external resistors could be added in parallel (indi-
vidually, Rind) or in series (collectively, Rcoll). A total
resistance (Rtot) can then be defined as

where N is the number of electrodes. In these experi-
ments, Rtot ) 909/N Ω. The collective resistor couples
the electrodes globally: the current on one electrode
affects the dynamics of the other electrodes because
current through any given electrode influences the
potential drop on all electrodes equally. The parameter
ε, the ratio of collective to total resistance, is a measure
of the global coupling

For ε ) 0, the external resistance furnishes no ad-
ditional global coupling; for ε ) 1, maximal external
global coupling is achieved. Short-range coupling was
added via stirring at approximately 250 rpm (revolu-
tions per minute) with a magnetic stirrer (diameter )
8 mm, length ) 39 mm) placed approximately 45 mm
below the electrode.

Results

A. Dynamics of a Single Element. We start with a
description of the dynamics of the reaction on a single
reaction site, i.e., on a single electrode. The time series
of a chaotic state of a single oscillator is shown in Figure
2a; chaos is reached via a period-doubling bifurcation
sequence as the applied potential is changed.28,29 The
chaotic attractor (Figure 2b, reconstructed from the
current by the use of time delays) is low-dimensional;
the information dimension characterizing the complex-
ity of the attractor is D1 ) 2.3 ( 0.1.29 The power
spectrum (Figure 2a, inset) is broad, typical of chaotic
systems, with a dominant peak at f ) 1.270 Hz.

A better measure of the frequency of the entire system
can be found from the rate of change of the phase. The
instantaneous phase and amplitude are obtained with
the Hilbert transform:30,31 the temporal mean of the
current is subtracted [I(t) ) i(t) - imean], and then the
Hilbert transform, H(I)

is calculated and plotted vs the current I (phase portrait,
Figure 2c). Note that the phase points encircle the
origin, but sometimes they become very close. To
increase the robustness of the phase analysis, the origin
was moved to the square shown in Figure 2c. Such
replacement of the origin makes the definition of phase
arbitrary; however, it is still capable of describing the

Figure 1. Schematic of the experimental setup.
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dynamics of the phases in a satisfactory way.31 Thus,
at time t, the phase (φ) is obtained from the angle, i.e.

and the amplitude (A) gives the length

In Figure 2d, the phase is shown as a function of time.
As expected, the phase is a nearly linear function of
time; some small deviations from the straight line arise
because of the chaotic nature of the signal. The fre-
quency ω is calculated from the slope as

The frequency for the single element was found to be ω
) 1.275 Hz, which is close to the frequency of the
dominant peak in the power spectrum.

B. Sixty-Four Elements without Added Cou-
pling. We now turn to the array of 64 electrodes. As a
base state for the experiments, we chose a state with
very weak coupling that was attained by adding indi-
vidual external resistances to each of the electrodes and
using a highly conductive electrolyte so that the poten-
tial drop in the electrolyte was very small relative to
that in the external circuit.

Variations in surface properties occur on polycrystal-
line electrode surfaces, both for single large electrodes

and for arrays of smaller electrodes. Thus, the rate of
reaction and the dynamics of the individual elements
vary somewhat. The currents of most of the individual
electrodes exhibit low-dimensional chaotic behavior. A
typical time series is shown in Figure 3a. The power
spectrum (Figure 3b) has a dominant peak at f ) 1.240
Hz, and the reconstructed attractor (Figure 3c) is low-
dimensional (D1 ) 2.3 ( 0.1). The dynamics of most of
the other oscillators are similar. However, because of
the surface heterogeneities in a typical experiment, the
behaviors of 5-10 elements differ from that shown and
exhibit either banded chaotic or noisy periodic behavior.
(With added coupling, the number of banded or periodic
elements decreases and eventually becomes zero; that
is, with small coupling, all of the elements exhibit the
dynamics shown in Figure 3a-c.) Because the experi-
ment was designed so that the coupling strength was
low, the elements in the array were not synchronized.25

At any given time, the currents of the elements and the
positions in state space differed. Thus, a snapshot of the
64 elements on the attractor (not shown) would yield
points distributed over the attractor of Figure 3c. In a
similar manner, as seen in Figure 3d, a stroboscopic plot
of all 64 electrodes obtained using the mean frequency
of the oscillators yields a distribution of points covering
the attractor.

We see that, as a result of the very weak inherent
coupling between the elements, the oscillators do not
show synchronous behavior. The differences among the
oscillators can be seen in the instantaneous phases and
in the frequency distribution. In Figure 3e, the frequen-
cies of the elements on the array are shown; the middle

Figure 2. Chaotic dynamics of a single element. (a) Time series of current and power spectrum (inset). (b) Reconstructed attractor using
time delay coordinates. (c) Phase portrait obtained with Hilbert transform. (d) Phase vs time.
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sites have, on average, somewhat higher frequencies
than the overall mean. The histogram of frequencies
(Figure 3f) shows a rather flat distribution with a mean
frequency of 1.219 Hz and a standard deviation of 18
mHz.

A snapshot of the phase portrait shows that the phase
points are fairly uniformly distributed (Figure 3g). The
cyclic phase differences (∆φj,k mod 2π, where ∆φj,k ) φj
- φk) have been calculated for all possible pairs in the
array [there are (64 × 63)/2 ) 2016 such pairs], and
the distribution is shown in Figure 3h. The distribution
has a shallow maximum that is likely due to the very
weak coupling through the electrolyte.

C. Effect of Weak Global Coupling on Individual
Elements and Their Interactions. We now consider
the addition of a weak global coupling, ε ) 0.1. With
this added coupling, there is only a slight change in the
qualitative dynamics of the individual elements. The
time series of current for an individual element (Figure
4a), its power spectrum (Figure 4b, fmax ) 1.230 Hz),
and the reconstructed attractor (Figure 4c) and its
dimension (2.3 ( 0.1) are similar to those in Figure 3,
i.e., similar to those obtained without added coupling.
As we shall see below, however, the collective behavior
of the elements changes dramatically with the added
coupling. These changes in the collective behavior are

Figure 3. Dynamics of 64 electrodes without added coupling. (a) Representative time series of current of individual element. (b) Power
spectrum of time series from individual element. (c) Reconstructed attractor from individual current using time delays. (d) Stroboscopic
plot (using mean frequency, ω ) 1.219 Hz) of the phase points of the 64 elements. (e) Distribution of the frequencies of the oscillators on
the array. (f) Histogram of the frequencies. (g) Phase portrait snapshot of the 64 oscillators. (h) Cyclic phase difference distribution of all
pairs in the array.
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associated with a phase synchronization of the indi-
vidual elements. The added weak coupling narrows the
frequency distribution of the elements. In the example
shown here, the frequencies of 63 oscillators are
the same (Figure 4e and f, ω ) 1.230 Hz) and that
of the remaining element is 1.237 Hz. In some
experiments at this coupling strength, all of the ele-
ments had the same frequency; in others, 1-3 ele-
ments differed. The phase points in the phase portrait
(Figure 4g) are not as uniformly distributed as in Figure
3g; the points all lie on the right side of the figure.
As a result, the cyclic phase difference distribution

(Figure 4h) has a maximum around a phase difference
of zero.

The results shown in Figure 4 clearly indicate a
qualitative change in the phase dynamics as weak
coupling is added to the system. Although the coupling
is not strong enough to synchronize the elements, a
weaker form of interaction, phase synchronization, has
set in. The phase synchronization of these chaotic
oscillators is similar to the phase locking of noisy
periodic oscillators in which the phase differences are
bounded but neither zero nor constant in time.21 As a
result of this phase synchronization, the phase points

Figure 4. Dynamics of 64 electrodes with added global coupling (ε ) 0.1). (a) Representative time series of current of individual element.
(b) Power spectrum of time series from individual element. (c) Reconstructed attractor from individual current using time delays. (d)
Stroboscopic plot (using mean frequency, ω ) 1.230 Hz) of the phase points of the 64 elements. (e) Distribution of the frequencies of the
oscillators on the array. (f) Histogram of the frequencies. (g) Phase portrait snapshot of the 64 oscillators. (h) Cyclic phase difference
distribution of all pairs in the array.
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on the stroboscopic plot (Figure 4d) do not cover the
entire attractor.

The onset of phase synchronization can also be seen
in the gray-scale plots of amplitudes and phase differ-
ences of the 64 oscillators in Figure 5. A metric (sk) for
the phase differences is defined as

At ε ) 0 (Figure 5a,b), both the amplitudes and the
phase differences (sk) have a disordered structure. At
ε ) 0.1 (Figure 5c,d), the amplitudes exhibit less erratic
behavior, and the phase differences are small, with
occasional excursions close to the maximum of the time
series of the oscillators.

D. Collective Behavior with Weak Global Cou-
pling. In reaction systems, it is often the collective
behavior, or the mean rate of reaction, that is important
and sometimes the only variable that can be measured.
In electrochemistry, such a quantity is the mean current

The mean currents as a function of time are shown
in Figure 6 for three cases: without (ε ) 0), with small
(ε ) 0.1), and with large (ε ) 1) added global coupling.
Without added coupling (Figure 6a,b), the current time
series shows small, irregular variations, and the corre-

sponding attractor is of high complexity (Figure 6b). The
power spectrum still has the largest peak at close to the
average inherent frequencies, but its power is much
reduced. At ε ) 0.1, the mean current exhibits (Figure
6c,d) periodic-like oscillations. The power spectrum has
a large peak at around f ) 1.230 Hz corresponding to
the synchronized frequencies. The width of the peak is
similar to that of an individual current, but strong
superharmonics at multiples of the inherent frequencies
can be observed. Small deviations from a limit-cycle
behavior have also been found in numerical simulations
and have been attributed to finite-size effects.17 With a
further increase in the coupling strength (ε > 0.1), the
regular periodic behavior of the mean current dis-
appears, and the total current exhibits chaotic-like
behavior similar to that of the individual elements. For
comparison, we present in Figure 6e,f the behavior for
ε ) 1, i.e., for a region of identical synchronization.
Obviously, the time series of the mean current, its power
spectrum, and the reconstructed attractor are similar
to those obtained with a single, uncoupled electrode. The
power spectrum in Figure 6e is broader, and the
dominant peak has less power than that of the ε ) 0.1
case (Figure 6c). Note that, in all three cases shown in
Figure 6, the individual oscillators are undergoing
chaotic behavior.

A series of experiments was performed in which both
the number of elements (N) and the coupling strengths
were systematically varied to obtain statistical informa-
tion on the mean current. In Figure 7a, the variance of
the mean current is shown as a function of the number

Figure 5. Gray-scale plot of the amplitudes (A) and phase differences (sk) of the 64 oscillators without (ε ) 0.0) and with (ε ) 0.1) global
coupling. (a) Amplitudes at ε ) 0.0. (b) Phase differences (sk) at ε ) 0.0. (c) Amplitudes at ε ) 0.1. (d) Phase differences (sk) at ε ) 0.1.

sk ) sin2 (φk - φ1
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of elements at different coupling strengths on a loga-
rithmical plot. If there were no coherence among the
elements of the array, the variance should follow the
law of large numbers, i.e., it should depend on N as 1/N.
In our experiments, for ε ) 0, the variance of the mean
current scales with N-0.99, and therefore, the law of large
number holds. Thus, as the number of elements in-
creases, the magnitude of the temporal variations
becomes smaller, and in the infinite-size limit, the
variations would disappear. Adding weak global cou-
pling (ε ) 0.04) has a dramatic effect on the scaling
law: even for a small number of elements, there are
deviations from a line of slope -1, and for N g 36, a
saturation of the variance occurs. Such saturation has

been observed in globally coupled chaotic maps.13 At ε
) 0.1, the variance decreases only slightly with increas-
ing N. For ε ) 1, identical synchronization, the variance
is independent of N. Thus, we see that the addition of
small amounts of coupling (up to ε ) 0.1, where phase
synchronization occurs and where the mean current is
almost periodic) has a significant effect but that further
increases to the identically synchronized chaotic state
(ε ) 1) have only small effects on the variance.

We characterize the extent of phase synchronization
by the index σ1,1 ) 1 - S/Smax,32 where S is the Shannon
entropy S ) -∑ipi ln pi of the cyclic phase distribution
and Smax is the maximal entropy. Very small (close to
zero) values of σ1,1 imply no phase synchronization, and

Figure 6. Dynamics of the collective behavior (mean current, h) of the 64 electrodes at different global coupling strengths. (a) Time
series of mean current and its power spectrum (inset) without added coupling (ε ) 0.0). (b) Reconstructed attractor of the mean current
using time delays at ε ) 0.0. (c) Time series of mean current and its power spectrum (inset) with weak global coupling (ε ) 0.1, phase
synchronization). (d) Reconstructed attractor at ε ) 0.1. (e) Mean current and power spectrum (inset) with added strong global coupling
(ε ) 1.0, identical synchronization). (f) Reconstructed attractor at ε ) 1.0.
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Figure 8. Dynamics of 64 electrodes with added global coupling (ε ) 0.725) in the cluster region. In the arrangement shown, the clusters
contain 24 and 40 elements. (a) Arrangement of the elements in the two clusters. (b) Time series of the currents in each of the two
clusters. Electrode 6 (solid line) is in the cluster of 40 elements; electrode 7 is the cluster of 24 elements. (c) Phase difference between the
two clusters. (d) Time series and power spectrum (inset) of the mean current. (e) Reconstructed attractor of the mean current.

Figure 7. Dependence of variance of mean current [var(h)] on number of elements (N) and global coupling strength (ε). (a) Variance of
the mean current [log var(h)] vs the number of elements at ε ) 0 (circles), 0.04 (squares), 0.1 (triangles), and 1.0 (dashed line). At ε ) 0,
the linear fit gives a slope of -0.99. (b) Variance of the mean current and the synchronization index (σ1,1) as a function of the coupling
strength (ε) for N ) 64.

6370 Ind. Eng. Chem. Res., Vol. 41, No. 25, 2002



a value of 1 corresponds to identical variation of phases.
In our experiments, when σ1,1 was larger than 0.15, the
majority (>60) of the elements were phase-synchro-
nized. In Figure 7b, the synchronization index σ1,1 and
the variance of the mean current [var(h)] are shown at
different values of ε for the largest array (N ) 64). With
increasing global coupling strength from 0 to 0.15, both
the variance of the mean current (bottom projection) and
the synchronization index (right projection) increase in
a sigmoidal way, and the two processes occur simulta-
neously.

E. Cluster Formation with Stronger Global Cou-
pling. We have seen in the previous section that even
weak global coupling produces phase synchronization
of the elements. As the global coupling is made stronger,
the elements remain phase-synchronized for all values
of the parameter ε; in addition, other changes in the
dynamics can occur. At higher values of ε, before the
onset of identical synchronization, dynamical clustering
is obtained.25 Two stable chaotic clusters are seen;
within a cluster, all of the elements have identical
behavior except for small variations due to noise and
system heterogeneities. [We say that two elements
belong to a cluster if their separation distance in state
space is less than some value (0.05 mA).] Although the
elements within each cluster have identical chaotic
dynamics, the dynamics in the two clusters differ. Both
the number of elements in each of the two clusters and
the configuration or arrangement of the elements within
a cluster depend on the initial conditions. Representa-
tive configurations of cluster states with 40 and 24
elements in each cluster are shown in Figure 8a, and
the time series of the clusters are shown in Figure 8b.
Note that the dynamics of the two clusters are different

from the dynamics of a single oscillator (Figure 2); for
example, in Figure 8b, there are both larger and smaller
oscillations. Because all elements in the array are
phase-synchronized in this strongly coupled region, the
two clusters are themselves phase-synchronized.

Because of the more complicated dynamics, there is
no center of rotation, and thus, the use of the Hilbert
phase is no longer possible. Therefore, the Gaussian
phase33,34 is calculated with the use of FFT filtering with
a Gaussian filter function of mean frequency 1.415 Hz
and standard deviation 8 Hz. The phase analysis shows
that the two clusters are phase-synchronized with each
other; they have the same frequency, and their phase
differences are bounded. However, the phases are not
simply delayed by some constant value; rather, they
exhibit a more complicated dynamics. In Figure 8c, it
is seen that the phase difference between the two
clusters exhibits alternating positive and negative peaks
separated by zero differences; this is caused by the
alternating order of the maxima in the time series of
the currents of the two clusters as seen in Figure 8b.
Similar variations of the phase differences were ob-
served for all cluster configurations. However, during
the times at which the phase difference is close to zero,
the amplitudes of the two clusters are not the same. The
dynamics of their mean currents (Figure 8d,e) are more
chaotic-like, similar to those in the identical synchro-
nized region (ε ) 1). Furthermore, the amplitudes of the
oscillations (the weighted means of the two clusters) are
less than those of the two individual clusters but similar
to that of the single oscillator (Figure 2).

F. Local Interactions through Stirring. We in-
vestigated the effect of weak coupling imposed by
stirring. These experiments were done without added

Figure 9. Dependence of mean current on stirring. (a) Variance of the mean current [log var(h)] vs the number of elements (N) without
(circles) and with (squares) stirring on the array with 2 mm spacing. (b) Same as in a but with array spacing decreased to 1 mm. (c) Time
series of mean current (h) on 64-electrode array of 2 mm spacing with stirring. (d) Time series of mean current (h) on 64-electrode array
of 1 mm spacing with stirring.
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global coupling (ε ) 0) using two arrays with spacings
among elements of 1 and 2 mm.

First consider the statistical features of the collective
dynamics. The dependence of the variance of the mean
current on system size is shown for the 2-mm-spacing
array and the 1-mm-spacing array in Figure 9a,b,
respectively. For the array with larger spacing, the law
of large numbers is followed, and stirring has a minimal
effect on the dynamics; the slope of the line is still
approximately -1, but it is slightly above the value
obtained without stirring. The behavior for the array
with smaller spacing, however, is different, as seen in
Figure 9b. Stirring increases the variance for all system

sizes, and more significantly, there is saturation for
systems of size N g 16. The time series for the mean
current for the 2-mm-spacing array with stirring is
presented in Figure 9c; it is similar to the result
obtained without stirring, which is given for the 1-mm-
spacing array in Figure 6a. For the array with smaller
spacing, however, stirring increases coherence and
results in macroscopic oscillations as seen in Figure 9d.

The stirring has an influence not only on the macro-
scopic behavior (for the closely spaced electrode) but
also, to a lesser extent, on the degree of phase synchro-
nization. The effects are not seen with the array of
greater spacing. The individual dynamics with stirring

Figure 10. Dynamics of 64 electrodes (1 mm spacing) with stirring. (a) Representative time series of current of individual element. (b)
Power spectrum of time series from individual element. (c) Reconstructed attractor from individual current using time delays. (d)
Stroboscopic plot (using mean frequency ω ) 1.291 Hz) of the phase points of the 64 elements. (e) Distribution of the frequencies of the
oscillators on the array. (f) Histogram of the frequencies. (g) Phase portrait snapshot of the 64 oscillators. (h) Cyclic phase difference
distribution of all pairs in the array.
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for the 64-electrode array with smaller spacing are
shown in Figures 10 and 11. The time series of the
individual elements, their power spectra, and the at-
tractors do not show significant differences from the
results presented in Figure 3 that were obtained without
stirring. The standard deviation of the frequencies
decreased from 18 to 13 mHz with stirring, and the
cyclic phase difference distribution showed a slightly
larger maximum. The synchronization index increased
from 0.022 to 0.043 with stirring; however, this value
is still much smaller than that obtained with phase
synchronization (0.15). The gray-scale plot of the am-
plitudes and the phases (Figure 11a,b) show a slightly
more ordered behavior than in the uncoupled case,
especially for certain regions of the electrode array; e.g.,
the first line of eight electrodes seems more synchro-
nized than the others on both the amplitude and phase
plots.

We thus see effects of stirring on the local dynamics
and the collective behavior for the array with smaller
spacing but not for the array with greater spacing. The
space scale for the short-range coupling caused by the
stirring is apparently in the range of 1-2 mm.

Discussion

We have presented results of experiments on the
effects of weak coupling on the collective dynamics of a
set of chaotically oscillating electrochemical reaction
sites. As is usual in experimental systems, heterogene-

ities in the system produce slight differences in the
properties of the individual elements; for example, the
uncoupled oscillators have a distribution of frequencies.
We investigate the effects of coupling on both the overall
or mean reaction rate and the dynamics at the local
positions.

Weak global coupling induced phase synchronization,
where the frequencies of the oscillators became the same
but identical synchronization of the elements did not
yet occur. Along with the onset of phase synchroniza-
tion, changes in the dynamics of the mean current
occurred. Deviations from the law of large numbers were
observed, i.e., the variance of the mean current did not
decrease with increasing system size but rather reached
a saturation value. Thus, in complex systems, the
variation of averaged quantities cannot be made arbi-
trarily small with increasing system size because of
inherent coherence. We see also that it is not always
possible to infer even the qualitative behavior of local
dynamics from global or mean measurements. For
example, a periodic-like mean current is seen with weak
coupling although the individual elements are chaotic.
A complete description of such reaction systems would
require high-frequency local measurements, which are
often not available. Some indications of the extent of
interactions can be obtained from analyses of the mean
behavior; one indication of interaction and the effect on
collective behavior is saturation of the variance of the
mean rate with increasing system size.

The experiments also show a short-range coupling
through the effect of stirring. The effects of stirring have
not been as thoroughly explored in electrochemical
systemsswhere coupling through the potential field
often dominates6sas it has in other types of fluid/solid
reaction systems. Although the coupling through trans-
port imposed by stirring is very weak, its effect can be
seen through the analysis of the collective oscillations,
i.e., deviations from the law of large numbers, and, to a
lesser extent, via an analysis of phase synchronization.

We have thus shown that very weak coupling in a
chemically reacting system can lead to coherence and
have a major effect on the overall rate of reaction, even
though the effects on local dynamics are small. A
characterization of such weak coupling can be obtained
from a statistical analysis of macroscopic quantities.
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