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Abstract— Today’s scientific computing infrastructures 
provide scientists with easy access to a wide variety of 
computing resources. However, migrating applications to 
new computing sites can be tedious and time consuming. 
When optimal performance is not a concern, scientists can 
benefit by moving binaries instead of source code. Our 
work aims to make migration of MPI application binaries 
more efficient by automation. We present general methods 
that assess if binaries are a good match for execution at 
computing sites. We also present methods for increasing 
execution readiness by resolving missing shared libraries. 
Our work aims to free scientists from extensive manual 
preparation at new sites. To evaluate the effectiveness of 
our methods, we present an automated Linux-based 
implementation called FEAM, a Framework for Efficient 
Application Migration. We show that FEAM is more than 
90% accurate at predicting execution readiness of MPI 
application binaries from the NAS Parallel and SPEC 
MPI2007 benchmark suites. In our evaluation, only half of 
the migrated binaries execute successfully at sites 
configured with a matching MPI implementation. We 
show that by automatically resolving shared libraries 
requirements, FEAM is able to increase the number of 
successful executions by a third. 
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I. INTRODUCTION 
Today’s scientific computing infrastructures, such as 

the Extreme Science and Discovery Environment 
(XSEDE) [1], provide scientists with easy access to a 
wide variety of computing resources. However, in order 
to use these diverse resources, scientists must ensure that 
their applications can execute at new computing sites. 
Today, the main users of these infrastructures are 
participants in “big science,” i.e., projects with large 
budgets, extensive collaborations, large data generation, 
complex instruments and/or lengthy timescales. 
Although these communities are more likely to have 
experience with and support for application migration, 
they represent a minority of scientists. To enable more 
scientists to use various computational resources, ease-

of-use needs to be increased. Our work aims to free 
scientists from extensive manual preparation at new 
computing sites. 

Scientists can migrate application source code or 
binaries. When optimal performance is not a concern, 
scientists can benefit by moving binaries instead of 
source code. They can avoid long compile times or 
compiling community codes they did not author. They 
can gain quicker access to sites with more cores or sites 
experiencing shorter queuing delays. In this paper, we 
focus on the case when scientists migrate application 
binaries.  

Before application binaries can run at new computing 
sites, the sites need to be configured with dependencies 
such as libraries, run-time environments, or other 
software required by the applications. Applications 
compiled with an MPI stack -- the combination of the 
MPI implementation, associated compilers, and 
interconnection network -- have an additional layer of 
dependencies. Without experience or support, scientists 
may need many hours to familiarize themselves with just 
one new environment, determine its configuration, and 
resolve dependencies. Considering this time 
requirement, preparing multiple sites manually does not 
scale well. These scientists would benefit from methods 
that make migration to otherwise easily accessible 
computing resources less tedious and less time 
consuming. 

Our work aims to make migration of application 
binaries more efficient by automation. We describe 
general methods that assess if MPI application binaries 
are a good match for executing at computing sites. We 
also describe methods for increasing execution readiness 
by resolving missing shared libraries. We present and 
evaluate a Linux-based implementation of our methods 
called FEAM, a Framework for Efficient Application 
Migration. FEAM predicts execution readiness, resolves 
missing shared libraries, and automates site 
configuration. 



Our results show that we can predict an application’s 
execution readiness with more than 90% accuracy by 
only considering four basic characteristics of an 
application binary. We also show that ensuring the 
presence of shared libraries at computing sites increases 
the number of successful executions by more than 30% 
as compared to only ensuring a compatible MPI 
implementation is selected. Our results were gathered 
using MPI binaries from the NAS Parallel and MPI 
SPEC2007 benchmark suites. To the best of our 
knowledge, our implementation is the first to 
automatically predict application migration readiness 
and compose site-specific configurations. Existing 
technologies assume that developers or users can fully 
describe application characteristics as relevant for 
deployment. Other solutions assume that developers or 
users will create configuration procedures for new 
computing sites.  

The remainder of this paper is organized as follows. 
We begin with a discussion of related work in the next 
section. We then present our proposed methods and their 
implementation. We describe our prediction model of 
execution readiness in Section III. We describe our 
resolution model for handling missing shared library 
dependencies in Section IV. We then explain how we 
implemented our methods in FEAM, our Framework for 
Efficient Application Migration, in Section V. We 
discuss our evaluation of FEAM’s effectiveness using 
binaries from the NAS Parallel and MPI SPEC2007 
benchmark suites in Section VI before concluding in 
Section VII. 

II. RELATED WORK 
Various technologies exist to aid in the preparation of 

computing sites for the execution of applications. 
Commonly used HPC resource managers, like PBS [2], 
SGE[3], and SLURM [4], ensure applications are run on 
compute nodes with specified hardware characteristics 
like size of memory and number of nodes. They provide 
a mechanism with which users can deploy scripts to 
configure an environment further. Representation 
formats, such as SDD [5] and CDDLM [6], can be used 
to describe application information related to 
deployment. Frameworks, such as GLARE [7] and 
DistributedAnt [8], can be used to describe deployment 
instructions and perform them at new computing sites. 
There are also other technologies that utilize related 
methods while addressing different problems. Build 
tools, like Autoconf [9], gather information about 
execution environments to aid with resolving compile 
dependencies. Package managers provide tools for 
administrative management of software on computing 
systems [10,11,12]. Virtual machines mask the 

heterogeneity of execution environments while posing 
their own deployment limitations and incurring a 
performance overheard for many parallel applications 
[10]. H3wever, unlike our solution, existing technologies 
do not automatically identify and describe the 
application information related to deploying an 
application at a new site. It is assumed that application 
developers or users will describe application 
characteristics as relevant for deployment. Similarly, 
unlike our resolution techniques, existing technologies 
do not automatically compose site-specific configuration 
instructions. It is assumed that application developers or 
users will develop the deployment procedures for new 
computing sites. Existing technologies cannot be utilized 
as efficiently by scientists trying to run their application 
binaries in new environments as the automated methods 
we present in this paper. 

III. EXECUTION PREDICTION MODEL 
To predict whether an application is ready for 

execution, we have created a model that attempts to 
answer four key questions: 1) Was an application 
compiled for a compatible ISA? 2) Is there a compatible 
MPI stack functioning at a new computing site? 3) Are an 
application’s C library requirements met at a new 
computing site? 4) Are all the correct versions of the 
shared libraries an application was linked against 
available at a new computing site? The answers to these 
four questions compose the determining factors for our 
prediction model. Figure 1 visually presents these 
determinants and the information that needs to be 
gathered to make a prediction. All but one of the 
determinants is general and could be used to predict the 
execution readiness of any application. It is the question 
of the MPI stack compatibility that is specific to parallel 
applications that use MPI. In this section, we explain our 
model for determining if an application is ready for 
execution.  

 First we define terminology used throughout this 
paper. We use the term target site to refer to a new 
computing site where an application is migrated and 
execution readiness is to be predicted. Usually, there will 
also be at least one site where an application already runs 
successfully (the site from where the application is being 
migrated). We call this a guaranteed execution 
environment as successful execution is guaranteed to be 
able to occur in this environment. A guaranteed execution 
site can be but does not have to be the site where an 
application was compiled. To make a prediction, our 
methods only require access to an application binary and 
a target site. However, access to a guaranteed execution 
environment can provide information for making a better 
prediction.  



Figure 1. Prediction Model Determinants 
Our prediction model determines an application binary’s readiness to execute at a new computing site by answering four 

questions: 1) Does a compatible ISA exist? 2) Is there a compatible MPI stack functioning? 3) Are an application’s C library 
requirements met? 4) Are all the correct versions of the shared libraries an application was linked against available? 
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A. ISA Compatibility 
The most basic question we investigate is whether an 

application was compiled for an ISA that is compatible 
with a target site’s architecture. Compatibility in this case 
refers to an application binary being compiled into a 
format that is executable at a target site from the 
hardware perspective. This investigation allows us to 
uncover incompatibilities between ISAs (i.e. ppc vs x86) 
as well as word-length (32 vs. 64-bit). The bitness 
information is also used when selecting between 32-bit 
and 64-bit shared libraries.  

B. MPI Stack Compatibility 
Since our work targets parallel applications that use 

MPI, we investigate if there is a compatible MPI stack - 
the combination of the MPI implementation, associated 
compilers, and interconnection network – functioning at a 
target site. When an application is not being recompiled 
at a target site or when an application has been 
dynamically linked, matching the MPI stack is critical 
because MPI is only an interface specification. The MPI 
standard specifies a library interface and not a library. 
Implementations of the standard have produced various 
libraries (i.e. Open MPI, MPICH, MVAPICH) that are 
not interchangeable because the MPI specification is not 
a link-level specification. As a result, each library has 
different dependencies. Similarly, matching the 
associated compiler (i.e. GNU, Intel, or PGI) and, if 
applicable, the interconnection network (i.e. Ethernet or 
Infiniband) is important in order to match other 
dynamically linked shared libraries. 

We define a compatible MPI implementation as any 
implementation of the same type (i.e. an application 
compiled with Open MPI is only compatible with Open 
MPI and not MVAPICH or MPICH). In determining 
compatibility, the version of the MPI implementation is 
not considered as we have not found any guaranteed 
guidelines for backwards compatibility between different 

versions of the same MPI implementation. For example, 
we have found that an application compiled with Open 
MPI version 1.4 executes on a system using Open MPI 
version 1.3 in some instances but not others. However, 
we do consider version compatibly between shared 
library dependencies of MPI libraries. This compatibility 
is determined using the same methods as for any other 
shared library (described in Section III.D).  

Our methods not only investigate the existence of a 
compatible MPI stack but also determine if the MPI stack 
combination is useable. We have found that even when 
an MPI stack combination (i.e. MVAPICH2 with the 
Intel compiler) is advertised by a target site, it is possible 
for the MPI stack combination to not be useable. 
Consequently, no programs are able to execute when that 
MPI stack is selected. One cause of these types of failures 
is misconfiguration by system administrators. For 
example, an MPI implementation or compiler version 
may be updated or a network may be reconfigured 
without testing all possible MPI stack combinations to 
ensure they still function. Our methods decide an MPI 
stack is useable if a basic MPI program is able to be 
executed when the MPI stack is selected. We attempt to 
compile the program natively but if that is not possible, 
we use basic MPI programs compiled at other sites to 
perform the test. 

C. C Library Compatibility 
C library compatibility is a major determinant in the 

ability of an application to execute at a new computing 
site. Most applications, as well as their shared library 
dependencies, are dynamically linked against a system’s 
C library. Site administrators update their systems’ C 
library versions at different times during the lifetime of a 
system resulting in various versions of the C library 
existing at target sites. Our prediction model examines 
whether an application’s C library requirements are met 
at a target site. 
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Figure 2.  The Phases and Components of FEAM 
FEAM, our Framework for Efficient Application 

Migration, consists of two phases and three components. 
The source phase is optionally run a guaranteed execution 
environment while the target phase must always be run at 
a target site. Running both phases enables our resolution 
methods and additional compatibility tests to be applied. 

 

An application binary has been compiled with a 
particular version of the C library. However, this is not 
necessarily the C library version that an application 
requires for execution. Rather, usually only the highest 
version of the C library that is actually used by an 
application must be available at a target site. We call this 
an application’s required C library version. Our model 
considers a target site’s C library version to be 
compatible if it is equal to or greater than an application’s 
required C library version. 

D. Shared Library Compatibility 
The presence of shared libraries is the final 

determinant of our prediction model. Our methods 
ascertain if all shared libraries required by an application 
binary are available at a target site. Shared libraries 
compatibility is based on library naming and version 
conventions. Shared library names include major and 
minor release version numbers. The naming convention 
is of the format 
lib<name>.so.<major_version>.<minor_version>. Only 
shared libraries with the same major versions are 
guaranteed to have compatible APIs. 

IV. RESOLUTION MODEL 
The determinants of our prediction model are a result 

of the environment where an application was compiled. 
They cannot be changed without recompiling an 
application. However, a target site may be able to be 
altered to match the requirements of each determinant. 
This would be an involved process for the first three 
determinants. Matching an ISA would require emulation. 
Matching an MPI stack would require administrative 
privileges on a system to setup an MPI implementation. 
Matching a C library version requirement would involve 
installing the specific required version. However, 
matching a required shared library can often be 
accomplished by simply making a copy of the missing 
library available at runtime. This is the aim of our 
resolution model. 

Our resolution methods copy shared libraries from an 
application’s guaranteed execution environment. 
(Licensing issues are out of scope of our work.) If any 
required shared libraries are missing at a target site, our 
methods determine if the library copies can be installed 
to resolve the issue. To determine if a shared library 
copy can be used, we determine if a given library will 
execute at a target site. We apply the same analysis to 
these missing shared libraries as to any application 
binary. Our prediction methods are applied recursively to 
determine if a shared library copy is able to execute at a 
target site. This may include recursively resolving any 
missing shared libraries that the library copy requires. If 
a library copy is determined to be useable at a target site, 
our resolution methods make the library accessible at 

runtime by setting the appropriate environment 
variables.  

V. IMPLEMENTATION 
We present the implementation of FEAM, a 

Framework for Efficient Application Migration. FEAM 
realizes our prediction and resolution models in an 
automated fashion. FEAM is composed of three 
components and two phases as illustrated in Figure 2. 
The Binary Description Component gathers information 
about an application binary and its dependencies. The 
Environment Discovery Component gathers information 
about a computing environment. The output from these 
two components is used by the Target Evaluation 
Component to determine whether execution can occur at 
a target site without recompilation. FEAM can be run in 
one or two phases. The target phase, which is required, is 
run at each target site. The source phase, which is 
optional, is run only once per application binary at a 
guaranteed execution environment. However, if the 
source phase does not occur, our resolution methods and 
the extended compatibility tests cannot be applied. 



• ISA and file format of binary 
• Library name and version, if applicable 
• Required shared libraries, with copies and 

descriptions if applicable 
• C library version requirements 
• MPI stack, operating system, and C library 

version used to build binary 
 

Figure 3.  Information Gathered by the BDC 
The Binary Description Component (BDC) of FEAM 
gathers information about MPI application binaries. 

 
Running both phases of FEAM provides the additional 
benefit of not requiring the application binary to be 
present at a target site. 

Before running FEAM, a user needs to specify (via a 
configuration file) a serial and parallel submission script 
for the site. The submission format is the only 
information about a new site our methods require the 
user to determine. The user also specifies what FEAM 
phase is to be run and the location of the application 
binary if applicable. The output from a source phase is 
bundled for the user and must be copied to each target 
site if it is to be used in a target phase. The output from a 
target phase is a prediction of execution readiness along 
with a matched configuration of a target site if execution 
is predicted to be possible.  

In this section, we describe the techniques that each of 
the FEAM components applies. Our methods are 
implemented using various standard Unix-like operating 
system utilities. This limits the current version of FEAM 
to working on Unix-like operating system but in general 
our methods could be implemented for any system. The 
information needed by our prediction and resolution 
models is gathered in multiple ways by FEAM in case 
some tools are not present or functioning at a particular 
target site. While our techniques are relatively simple, 
their composition efficiently and automatically provides a 
determination of whether a migrated application is ready 
to execute without recompilation along with the matching 
site configuration details. 

A. Binary Description 
The Binary Description Component (BDC) of FEAM 

gathers information about an application binary and its 
dependencies. It expects as input the location of the 
binary. To be able to apply all of our methods, the BDC 
needs to execute in a guaranteed execution environment 
and at a target site. However, only execution at a target 
site is required to enable a basic prediction. The 
information collected by the BDC is listed in Figure 3. In 
this subsection, we explain how we gather this 
information. 

TABLE I.  IDENTIFYING LIBRARIES OF MPI IMPLEMENTATIONS 

MPI Implementation Library Dependencies 
MVAPICH2 libmpich/libmpichf90, libibverbs, libibumad 
Open MPI libnsl, libutil 
MPICH2 libmpich/libmpichf90 (and not other identifiers) 

 

Most of the information about a binary can be 
extracted with the GNU Binary Utility [14] objdump. 
The BDT calls the GNU Binary Utility objdump with 
the “-p” flag to view information that is specific to the 
file format of a binary. The format description specifies 
the file format (i.e. ELF) of a binary as well as for what 
ISA and for how may bits an application was compiled. 
We create a list of any shared libraries an application 
binary has been linked against from the “NEEDED” 
components under the “Dynamic Section” of the 
description. We calculate an application’s C library 
version requirement by determining the newest version 
listed under the “Version Definitions” and “Version 
References” sections of the description.  If a binary being 
analyzed is actually a shared library, we additionally 
capture the library’s official shared object name from the 
“Dynamic Section” and extract from it the embedded 
version information.  

The Unix utility ldd, when called with the -v 
command-line option, can also be used to view the shared 
library dependencies of dynamically linked binaries 
along with their C library version requirements. 
However, there are cases for which this tool does not 
recognize an application as being dynamically linked 
and, thus, cannot be relied on to always provide this 
information. 

If an application binary is an ELF file (the standard 
binary format for Unix and Unix-like system on x86), the 
BDT calls the GNU Binary Utility readelf with the “-
p .comment” flag to display the contents of the comments 
section. The optional comments section may contain 
compiler and linker specific version control information. 
This information is used to indicate under what OS and 
with what C library version an application binary was 
created.  

To identify the MPI implementation used to compile 
an application, we examine the list of shared libraries that 
an application was linked against. Our identification 
scheme takes advantage of the fact that MPI is not a link-
level specification. Rather, the MPI standard specifies a 
library interface and consequently implementations of the 
standard have different link-level dependencies. We have 
created an identification scheme for the three dominant 
open source MPI implementations (Open MPI [15], 
MPICH2 [16], and MVAPICH2 [17]). The shared 
libraries that we use as MPI implementation identifiers 
are listed in Table I.  



• ISA format 
• Operating system 
• C library version 
• Available or currently loaded MPI stacks 
• Missing shared libraries 

Figure 4.  Information Gathered by the EDC 
The Environment Description Component (EDC) of 
FEAM gathers information about a computing site. 

When running at a guaranteed execution site, the BDC 
also gathers a description and copy of all of the shared 
libraries an application has been linked against. Each 
library goes through the same description process as an 
application binary. To locate the shared libraries for 
copying, we use the ldd utility. This utility lists the 
shared libraries an application has been linked against 
along with their locations in the local file system. We 
copy each shared library except for the C library. If the 
ldd utility is unable to provide location information, 
then we perform a search for each shared library. We 
apply three search methods to locate each library from 
the list gathered using objdump. If available, the 
locate utility is used to reveal the locations of files 
with matching names. The find utility is used to search 
common library locations as well as locations set in the 
LD_LIBRARY_PATH environment variable. If a locally 
compiled “hello world” program is available, the ldd 
utility is used to reveal the locations of commonly linked 
against shared libraries. 

B. Environment Discovery 
The Environment Discovery Component (EDC) 

gathers information about a computing environment after 
the BDC has created a description of an application. The 
EDC can gather information about a target site or a 
guaranteed execution environment. The type of 
environment must be identified by the user as it affects 
the discovery process. The information gathered by the 
EDC is listed in Figure 4. The EDC determines what 
operating system and hardware architecture is present at a 
computing site. The EDC also determines what version of 
the C library and what types of MPI stacks are configured 
on a system. The EDC may also compile and run “Hello 
World” programs to test the environment. In this 
subsection, we explain what techniques are used to 
discover this information. 

The EDC calls the Linux utility uname with the “-p” 
flag to determine the system’s ISA format details. We 
also examine standard files with system information 
under /proc and /etc to determine which Linux 
distribution is running on the system. We consult the 
/proc/version file to determine the OS type and 
version information. We confirm this information by 

examining files under /etc/*release. The 
distribution information is gathered only to provide the 
user with more information about a system. 

The EDC determines the version of a system’s C 
library by parsing the general library information that is 
output when C library binary is executed. The location of 
the library is found by using the same methods used by 
the BDC to search for shared library locations. If the C 
library binary cannot be run on the command line, the 
EDC attempts to determine the version using the C 
library API. 

The type of information we gather about the local 
MPI stack depends on what type of site where the EDC 
is being run. At a target site, we search for available MPI 
stacks. In a guaranteed execution environment, we 
confirm if the MPI stack currently selected to run an 
application matches the stack combination that was 
discovered by the BDC. We also generate MPI “hello 
world” programs for later testing. 

To determine what MPI stacks are available in a 
computing environment, user-environment management 
tools are consulted. These tools support the discovery of 
packages and help manage the shell environment. We 
specifically search for the presence of Environment 
Modules [18] or SoftEnv [19] configuration files to 
assess if these user-environment management tools are 
present. If one of these tools is located, then we use their 
search mechanisms to locate MPI implementations and 
compiler combinations. If no user-environment 
management tools are found, then we use the same 
search methods as used by the BDC to locate shared 
libraries. We search for libraries that are distributed with 
each MPI implementation such as libmpi or libmpich. 
We also search for commonly used wrappers for 
compiling MPI programs (i.e. mpicc, mpif90). Often 
information about compilers associated with a particular 
MPI implementation is revealed by the naming scheme 
of a location path as well as by compiler wrapper version 
information. For example, the path /opt/openmpi-
1.4.3-intel/lib/libmpi.so reveals that Open 
MPI is available for the Intel compiler. Running 
/opt/openmpi-1.4.3-intel/bin/mpicc –v 
reveals that version 11.1 of the Intel compiler is used for 
compilation. 

To determine what MPI stacks are currently 
accessible in a computing environment, we examine the 
environment settings. If user-environment management 
tools are present, we use the corresponding mechanisms 
to reveal these setting. For example, if Environment 
Modules are present, we use the module list 
command to get a listing of what MPI implementation 
and compiler the shell is configured to access. 



Alternately, we can search for MPI implementations that 
are accessible via the PATH and LD_LIBRARY_PATH 
environment variables. We can also determine what MPI 
implementation and compiler is referred to by commonly 
used wrappers for compiling MPI programs. 

We use the ldd tool to identify if any shared libraries 
that an application was linked against are missing at a 
target site. If the ldd tool is unable to produce this 
information, we search for the libraries using the same 
methods as used to locate shared libraries by the BDC. 

C. Target Evaluation 
The Target Evaluation Component (TEC) uses the 

information gathered by the BDC and EDC to determine 
whether execution can occur at a target site without 
recompilation. The TEC determines the outcomes of our 
prediction and resolution models by using the 
information gathered by the BDC and EDC. The TEC 
executes at a target site.  

The information gathered about an application’s ISA 
format, C library version, and MPI stack requirements is 
matched with the information about what is available at a 
target site to determine compatibility as outlined by our 
prediction model. If the ISA and C library version 
determinants are found to be compatible, we proceed to 
evaluating the MPI stack and shared library determinants. 
If at any point we determine that execution cannot occur, 
the reasons are detailed to the user via an output file.  

For each compatible MPI stack that is detected, we 
run a series of “hello world” programs to test if the stack 
is functioning as described by our prediction model. We 
compile “hello world” programs at a target site and test 
for successful execution to confirm the functionality of 
the MPI stack. If “hello world” programs from a 
guaranteed execution environment are available, we run 
them to confirm the compatibility between the selected 
MPI stack and the MPI stack used to compile an 
application. Running these tests assumes knowing the 
execution command for a particular MPI stack. Our 
methods by default will use the mpiexec command for 
execution while allowing the user to specify otherwise 
(per MPI type if necessary) via a configuration file.  

Finally, if a compatible MPI stack has been 
determined to be functioning, we attempt to resolve any 
missing shared libraries. Resolution can proceed if a 
Source Phase has occurred. In phase I, our framework 
runs the BDC and EDC at a guaranteed execution site to 
gather copies and descriptions of required shared 
libraries. With this information, our resolution model can 
be applied. For any missing shared library, we 
recursively apply our prediction model to determine if the 
library copy can be used. If a library copy is determined 
to be useable at a target site, we make the library 

accessible at runtime by adding its location to the PATH 
environment variable. If our resolution techniques 
succeed for all missing libraries or if there were no 
missing libraries, then we predict that a target site is 
ready for application execution. We provide a description 
of the matching configuration details to the user along 
with a script that will set them up automatically on 
execution. 

VI. EVALUATION 
In this section, we present an evaluation of our 

prediction and resolution methods as implemented in 
FEAM. We predict the execution readiness of MPI 
application binaries from two benchmark suites across 
five computing sites. To determine the effectiveness of 
our prediction model, we compare our prediction of 
execution readiness with whether an application was 
actually able to execute. We evaluate the impact of our 
resolution model by comparing how many binaries are 
able to execute when our techniques are and are not 
applied.  

A. Test Set Description 
We created MPI application binaries for the 

evaluation tests from two benchmark suites: the NAS 
Parallel Benchmarks and SPEC MPI2007. The NAS 
Parallel Benchmarks (NPB) suite [17] consists of 
applications derived from computational fluid dynamics. 
We used version 2.4 of the MPI reference 
implementation of the NPB suite. SPEC MPI2007 [18] is 
a benchmark suite developed from native MPI-parallel 
end-user applications. To create the MPI application 
binaries for our tests, we compiled the benchmarks with 
multiple MPI stacks at each target site as indicated in 
Table II. Some benchmarks would not compile with 
certain MPI stacks combinations while other binaries 
would not run at the site where they were compiled. This 
is why our final test set, with 110 NPB binaries and 147 
SPEC MPI2007 binaries, is composed of a subset of the 
benchmarks suites. From the NPB suite, our test set 
consisted of four kernels (integer sort, embarrassingly 
parallel, conjugate gradient, and multi-grid on a sequence 
of meshes) as well as three pseudo applications (block tri-
diagonal solver, scalar penta-diagonal solver, and lower-
upper Gauss-Seidel solver). From the SPEC MPI2007 
benchmark suite, our test set consisted of a quantum 
chromodynamics code (104.milc), two computation fluid 
dynamics codes (107.leslie3d and 115.fds4), a parallel 
ray tracing code (122.tachyon), a molecular dynamics 
simulation code (126.lammps), a weather prediction code 
(127.GAPgeofem), and a 3D Eulerian hydrodynamics 
code (129.tera_tf).  

Five computing environments were chosen as target 
sites for the evaluation tests. The target sites were chosen 



such that a diverse test set was created in terms of the 
operating system, hardware architecture, network 
interconnect, and MPI implementation. Three of the 
chosen test sites are state-of-the-art high performance 
computing systems available to researchers via the 
national XSEDE infrastructure [22]. They represent the 
main types of systems architectures available at the 
national supercomputing centers: symmetric 
multiprocessing (SMP), massively parallel processing 
(MPP), and hybrid CPU/GPU systems. The other two 
test sites are mid-size university clusters. One is part of 
the FutureGrid Project [23] test-bed while the other is a 
University of Virginia resource [24]. Table II details the 
characteristics of each of these computing sites as well 
as the MPI stack combinations used to create application 
binaries. The test sites run different versions of three 
Linux-based operating systems and the C library. The 
sites support three open source MPI implementations. 
Open MPI is available at five sites, MVAPICH2 is 
available at four sites, and MPICH2 is available at two 
sites. Each MPI implementation is associated with GNU, 
Intel, and/or PGI compilers for C and/or Fortran.  

B. Methodology 

To evaluate the effectiveness of our prediction 
methods, we compared predictions with actual execution 
results. These results are presented in Table III. We 
migrated each MPI application binary to all target sites 
where the binary had not been compiled. Our methods 
were 100% accurate at assessing whether a matching 
MPI implementation was available for all target set. 
However, we only report prediction results for sites with 
matching MPI implementations. Only at such sites is 
there potential for successful execution. For example, 
binaries compiled for MVAPICH2 on Ranger were tested 
only on Forge, India, and Fir while binaries compiled for 
MPICH2 on India were tested only on Fir. If results for 
all sites were reported, our prediction accuracy would be 
much higher. However, it is more interesting to focus on 
the accuracy of our model at sites where there is a 
potential for successful execution. 

We formed predictions using information gathered at 
guaranteed execution environments and target sites. The 
results in Table III distinguish how predictions were 
made. Our basic prediction results were formed by only 
running FEAM’s required target phase at a target site. 
Our extended prediction results were formed by also 
running FEAM’s optional Source Phase at guaranteed 
execution environments. In this way, the results 
differentiate the effectiveness of our methods for 
instances when users do not have access to or do not want 
to access guaranteed execution sites. This situation in 
particular applies to community codes distributed as 
binaries.  

TABLE II.  TARGET SITE CHARACTERISTICS 

Computing Site 
 (Type - CPUs) 

Operating 
System 

C Library 
& 

Compiler 
Versions 

Utilized MPI Stacks: 
MPI Types & Versions 

(Compilers i:Intel, 
g:GNU, p:PGI) 

XSEDE Ranger, 
Texas Advanced 

Computing 
Center 

(MPP – 62,976) 

CentOS 
4.9 

LibC 
v2.3.4, 

GNU CC 
v3.4.6, 

Intel v10.1 

Open MPI v1.3 (i/g/p ) 
MVAPICH2 v1.2 (i/g/p) 

XSEDE Forge, 
National Center 

for 
Supercomputing 

Applications 
(Hybrid - 576) 

Red Hat 
Enterprise 

Linux 
Server 6.1 

LibC v2.12 
GNU CC 

v4.4.5 
Intel v12 

Open MPI v1.4 (g/i) 
MVAPICH2 v1.7rcl (i) 

XSEDE 
Blacklight, 
Pittsburg 

Supercomputing 
Center 

(SMP – 4,096) 

SUSE 
Linux 

Enterprise 
Server 11 

LibC 
v2.11.1, 

GNU CC 
v4.4.3, 

Intel v11.1 

Open MPI v1.4  (i/g) 
 

FutureGrid India, 
Indiana 

University 
(Cluster - 920) 

Red Hat 
Enterprise 

Linux 
Server 5.6 

LibC v2.5, 
GNU CC 

v4.1.2, 
Intel v11.1 

Open MPI v1.4 (i/g) 
MVAPICH2 v1.7a2 (i/g) 
MPICH2 v1.4 (i/g) 
 

ITS Fir, 
University of 

Virginia  
(Cluster - 1,496) 

CentOS 
5.6 

LibC v2.5, 
GNU CC 

v4.1.2, 
Intel v12 

Open MPI v1.4 (i/g/p) 
MVAPICH2 v1.7a (i/g/p) 
MPICH2 v1.3 (i/g/p) 

TABLE III.  ACCURACY OF PREDICTION MODEL 

Basic Prediction Extended Prediction  
NAS SPEC NAS SPEC 
94% 92% 99% 93% 

TABLE IV.  IMPACT OF RESOLUTION MODEL 

Actual Execution Successes Increase in 
Successful Executions 

due to Resolution 
Before 

Resolution 
After 

Resolution 
NAS SPEC NAS SPEC NAS SPEC 
58% 47% 78% 66% 33% 39% 

 

To evaluate the impact of our resolution methods, we 
calculated the percentage of successful executions 
occurring before and after applying our resolution 
methods. These results are presented in Table IV. The 
table also presents the overall increase in successful 
executions. This percentage was calculated as the 
increase in successful executions after applying our 
methods divided by the number of successful executions 
before applying our methods. As with our prediction 
results, we only report resolution results for sites with 
matching MPI implementations where there is a 
potential for successful execution. 

C. Results Analysis 
Our predictions were over 90% accurate for both 

basic and extended prediction schemes. The extended 
prediction created from running FEAM at guaranteed 
execution environments along with target sites increased 



prediction accuracy due to additional compatibility tests. 
In particular, by testing the execution of MPI “hello 
world” programs compiled at guaranteed execution 
environments, we were able to detect floating point errors 
and application binary interface (ABI) incompatibilities 
in shared libraries. Our model was unable to predict 
failures due to system errors such as failed MPI daemon 
spawning or time-outs due to communication errors. If 
execution was not successful after five execution 
attempts, we classified the actual execution result as 
failed. We spaced retries in time to avoid errors caused 
by an overload in the system.  

Around half of the MPI application binaries were 
able to execute at target sites after migration (58% of the 
NAS binaries and 47% of the SPEC binaries). These 
percentages do not include the large number of target 
sites where binaries could not execute due to lack of a 
matching MPI implementation. Our results illustrate that 
more than just the MPI implementation determines 
whether a binary can execute at a target site. Of the 
failing jobs, more than half were missing shared 
libraries. Scientists compiling their own or community 
MPI applications at sites where MPI implementations 
have not been installed with static libraries do not have 
the option to prepare statically linked binaries for 
migration. The remaining jobs failed due to C library 
version requirements, floating point exceptions, and 
system errors. 

Our resolution techniques automatically enabled 
execution for about half of the binaries that would have 
otherwise failed due to missing shared libraries. This 
resulted in enabling around a third more successful 
executions overall (33% for the NAS binaries and 39% 
for the SPEC binaries). The other half of the missing 
library failures could not be resolved mainly due to 
incompatibility issues. The shared libraries copies we 
had gathered at guaranteed execution sites for use in 
resolution required incompatible C library versions and 
used incompatible application binary interfaces. The 
remaining resolution attempts failed due to system 
errors. 

Since running on compute nodes does use allocation 
hours (if any usage accounting is in place at a site), we 
measured how many CPU hours were used by running 
FEAM. We found that both FEAM’s source and target 
phases always took less than five minutes to complete. 
This makes FEAM ideal for submission via a debug 
queue at sites. We also measured that a bundle of shared 
library copies composed by FEAM’s source phase 
averaged 45M in size. This bundle consisted of all the 
shared libraries required by all of our test binaries at a 
site. Thus, the size of a bundle for just one MPI 
application binary would be much smaller. 

VII. CONCLUSIONS 
In this paper we presented methods that provide an 

automated and efficient means of determining where MPI 
applications can run without recompilation. We described 
methods that can be used to assess whether MPI 
application binaries can execute at new computing sites. 
We also described methods that increase the likelihood 
an application binary will execute at a new computing 
site by gathering and resolving shared library 
requirements. We presented a Linux-based 
implementation of these methods called FEAM, a 
Framework for Efficient Application Migration. We 
evaluated FEAM across five computing sites. A test set 
of MPI binaries was created by compiling applications 
from NAS Parallel and MPI SPEC2007 benchmark suites 
with three open-source MPI implementations and three 
compilers. Overall, our prediction results were more than 
90% accurate. We found that choosing an execution site 
only by matching the MPI implementation resulted in 
half of the binaries failing due to other errors. More than 
half of these failures were caused by missing shared 
libraries. FEAM enabled about a third more successful 
executions at our test sites by automatically resolving 
missing shared libraries. FEAM was able run our 
prediction and resolution techniques in less than five 
minutes, making it a good candidate for running via a 
debug queue when available.  

FEAM executes with minimal input from the user, 
runs quickly, and requires little space. It relieves the user 
of manually parsing various environment configurations 
to find out if a site is a good match for execution. For 
scientists who do not have much experience, time, or 
support to explore new computing sites or recompile their 
MPI applications, FEAM provides an efficient automated 
solution for quickly assessing many new computing sites. 

The general direction of our future work will be to 
develop more methods for efficiently migrating MPI 
applications to new environments. This will include 
migrating MPI application binaries as well as MPI 
application source code. We are also interested in 
quantifying the amount of user effort required to perform 
migration tasks so that we can more concretely compute 
the efficiency gains of using our methods. 
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