
Predicting Execution Readiness of MPI Binaries with
FEAM, a Framework for Efficient Application

Migration
Karolina Sarnowska-Upton and Andrew Grimshaw

Department of Computer Science
University of Virginia

Charlottesville, VA

Abstract— Today’s scientific computing infrastructures
provide scientists with easy access to a wide variety of
computing resources. However, migrating applications to
new computing sites can be tedious and time consuming.
When optimal performance is not a concern, scientists can
benefit by moving binaries instead of source code. Our
work aims to make migration of MPI application binaries
more efficient by automation. We present general methods
that assess if binaries are a good match for execution at
computing sites. We also present methods for increasing
execution readiness by resolving missing shared libraries.
Our work aims to free scientists from extensive manual
preparation at new sites. To evaluate the effectiveness of
our methods, we present an automated Linux-based
implementation called FEAM, a Framework for Efficient
Application Migration. We show that FEAM is more than
90% accurate at predicting execution readiness of MPI
application binaries from the NAS Parallel and SPEC
MPI2007 benchmark suites. In our evaluation, only half of
the migrated binaries execute successfully at sites
configured with a matching MPI implementation. We
show that by automatically resolving shared libraries
requirements, FEAM is able to increase the number of
successful executions by a third.

Keywords- execution prediction, environment
configuration; automated methods; MPI; migration

I. INTRODUCTION
Today’s scientific computing infrastructures, such as

the Extreme Science and Discovery Environment
(XSEDE) [1], provide scientists with easy access to a
wide variety of computing resources. However, in order
to use these diverse resources, scientists must ensure that
their applications can execute at new computing sites.
Today, the main users of these infrastructures are
participants in “big science,” i.e., projects with large
budgets, extensive collaborations, large data generation,
complex instruments and/or lengthy timescales.
Although these communities are more likely to have
experience with and support for application migration,
they represent a minority of scientists. To enable more
scientists to use various computational resources, ease-

of-use needs to be increased. Our work aims to free
scientists from extensive manual preparation at new
computing sites.

Scientists can migrate application source code or
binaries. When optimal performance is not a concern,
scientists can benefit by moving binaries instead of
source code. They can avoid long compile times or
compiling community codes they did not author. They
can gain quicker access to sites with more cores or sites
experiencing shorter queuing delays. In this paper, we
focus on the case when scientists migrate application
binaries.

Before application binaries can run at new computing
sites, the sites need to be configured with dependencies
such as libraries, run-time environments, or other
software required by the applications. Applications
compiled with an MPI stack -- the combination of the
MPI implementation, associated compilers, and
interconnection network -- have an additional layer of
dependencies. Without experience or support, scientists
may need many hours to familiarize themselves with just
one new environment, determine its configuration, and
resolve dependencies. Considering this time
requirement, preparing multiple sites manually does not
scale well. These scientists would benefit from methods
that make migration to otherwise easily accessible
computing resources less tedious and less time
consuming.

Our work aims to make migration of application
binaries more efficient by automation. We describe
general methods that assess if MPI application binaries
are a good match for executing at computing sites. We
also describe methods for increasing execution readiness
by resolving missing shared libraries. We present and
evaluate a Linux-based implementation of our methods
called FEAM, a Framework for Efficient Application
Migration. FEAM predicts execution readiness, resolves
missing shared libraries, and automates site
configuration.

Our results show that we can predict an application’s
execution readiness with more than 90% accuracy by
only considering four basic characteristics of an
application binary. We also show that ensuring the
presence of shared libraries at computing sites increases
the number of successful executions by more than 30%
as compared to only ensuring a compatible MPI
implementation is selected. Our results were gathered
using MPI binaries from the NAS Parallel and MPI
SPEC2007 benchmark suites. To the best of our
knowledge, our implementation is the first to
automatically predict application migration readiness
and compose site-specific configurations. Existing
technologies assume that developers or users can fully
describe application characteristics as relevant for
deployment. Other solutions assume that developers or
users will create configuration procedures for new
computing sites.

The remainder of this paper is organized as follows.
We begin with a discussion of related work in the next
section. We then present our proposed methods and their
implementation. We describe our prediction model of
execution readiness in Section III. We describe our
resolution model for handling missing shared library
dependencies in Section IV. We then explain how we
implemented our methods in FEAM, our Framework for
Efficient Application Migration, in Section V. We
discuss our evaluation of FEAM’s effectiveness using
binaries from the NAS Parallel and MPI SPEC2007
benchmark suites in Section VI before concluding in
Section VII.

II. RELATED WORK
Various technologies exist to aid in the preparation of

computing sites for the execution of applications.
Commonly used HPC resource managers, like PBS [2],
SGE[3], and SLURM [4], ensure applications are run on
compute nodes with specified hardware characteristics
like size of memory and number of nodes. They provide
a mechanism with which users can deploy scripts to
configure an environment further. Representation
formats, such as SDD [5] and CDDLM [6], can be used
to describe application information related to
deployment. Frameworks, such as GLARE [7] and
DistributedAnt [8], can be used to describe deployment
instructions and perform them at new computing sites.
There are also other technologies that utilize related
methods while addressing different problems. Build
tools, like Autoconf [9], gather information about
execution environments to aid with resolving compile
dependencies. Package managers provide tools for
administrative management of software on computing
systems [10,11,12]. Virtual machines mask the

heterogeneity of execution environments while posing
their own deployment limitations and incurring a
performance overheard for many parallel applications
[10]. H3wever, unlike our solution, existing technologies
do not automatically identify and describe the
application information related to deploying an
application at a new site. It is assumed that application
developers or users will describe application
characteristics as relevant for deployment. Similarly,
unlike our resolution techniques, existing technologies
do not automatically compose site-specific configuration
instructions. It is assumed that application developers or
users will develop the deployment procedures for new
computing sites. Existing technologies cannot be utilized
as efficiently by scientists trying to run their application
binaries in new environments as the automated methods
we present in this paper.

III. EXECUTION PREDICTION MODEL
To predict whether an application is ready for

execution, we have created a model that attempts to
answer four key questions: 1) Was an application
compiled for a compatible ISA? 2) Is there a compatible
MPI stack functioning at a new computing site? 3) Are an
application’s C library requirements met at a new
computing site? 4) Are all the correct versions of the
shared libraries an application was linked against
available at a new computing site? The answers to these
four questions compose the determining factors for our
prediction model. Figure 1 visually presents these
determinants and the information that needs to be
gathered to make a prediction. All but one of the
determinants is general and could be used to predict the
execution readiness of any application. It is the question
of the MPI stack compatibility that is specific to parallel
applications that use MPI. In this section, we explain our
model for determining if an application is ready for
execution.

 First we define terminology used throughout this
paper. We use the term target site to refer to a new
computing site where an application is migrated and
execution readiness is to be predicted. Usually, there will
also be at least one site where an application already runs
successfully (the site from where the application is being
migrated). We call this a guaranteed execution
environment as successful execution is guaranteed to be
able to occur in this environment. A guaranteed execution
site can be but does not have to be the site where an
application was compiled. To make a prediction, our
methods only require access to an application binary and
a target site. However, access to a guaranteed execution
environment can provide information for making a better
prediction.

Figure 1. Prediction Model Determinants
Our prediction model determines an application binary’s readiness to execute at a new computing site by answering four

questions: 1) Does a compatible ISA exist? 2) Is there a compatible MPI stack functioning? 3) Are an application’s C library
requirements met? 4) Are all the correct versions of the shared libraries an application was linked against available?

compiled MPI stack combination

newest version required by binary

compiled format

compiler linked shared libraries

functional MPI stack combinations

available version

supported format

available shared library versions Shared Library Compatibility

APPLICATION BINARY
DESCRIPTION

NEW COMPUTING SITE
DESCRIPTION

PREDICTION
DETERMINANTS

ISA Compatibility

MPI Stack Compatibility

C Library Compatibility

A. ISA Compatibility
The most basic question we investigate is whether an

application was compiled for an ISA that is compatible
with a target site’s architecture. Compatibility in this case
refers to an application binary being compiled into a
format that is executable at a target site from the
hardware perspective. This investigation allows us to
uncover incompatibilities between ISAs (i.e. ppc vs x86)
as well as word-length (32 vs. 64-bit). The bitness
information is also used when selecting between 32-bit
and 64-bit shared libraries.

B. MPI Stack Compatibility
Since our work targets parallel applications that use

MPI, we investigate if there is a compatible MPI stack -
the combination of the MPI implementation, associated
compilers, and interconnection network – functioning at a
target site. When an application is not being recompiled
at a target site or when an application has been
dynamically linked, matching the MPI stack is critical
because MPI is only an interface specification. The MPI
standard specifies a library interface and not a library.
Implementations of the standard have produced various
libraries (i.e. Open MPI, MPICH, MVAPICH) that are
not interchangeable because the MPI specification is not
a link-level specification. As a result, each library has
different dependencies. Similarly, matching the
associated compiler (i.e. GNU, Intel, or PGI) and, if
applicable, the interconnection network (i.e. Ethernet or
Infiniband) is important in order to match other
dynamically linked shared libraries.

We define a compatible MPI implementation as any
implementation of the same type (i.e. an application
compiled with Open MPI is only compatible with Open
MPI and not MVAPICH or MPICH). In determining
compatibility, the version of the MPI implementation is
not considered as we have not found any guaranteed
guidelines for backwards compatibility between different

versions of the same MPI implementation. For example,
we have found that an application compiled with Open
MPI version 1.4 executes on a system using Open MPI
version 1.3 in some instances but not others. However,
we do consider version compatibly between shared
library dependencies of MPI libraries. This compatibility
is determined using the same methods as for any other
shared library (described in Section III.D).

Our methods not only investigate the existence of a
compatible MPI stack but also determine if the MPI stack
combination is useable. We have found that even when
an MPI stack combination (i.e. MVAPICH2 with the
Intel compiler) is advertised by a target site, it is possible
for the MPI stack combination to not be useable.
Consequently, no programs are able to execute when that
MPI stack is selected. One cause of these types of failures
is misconfiguration by system administrators. For
example, an MPI implementation or compiler version
may be updated or a network may be reconfigured
without testing all possible MPI stack combinations to
ensure they still function. Our methods decide an MPI
stack is useable if a basic MPI program is able to be
executed when the MPI stack is selected. We attempt to
compile the program natively but if that is not possible,
we use basic MPI programs compiled at other sites to
perform the test.

C. C Library Compatibility
C library compatibility is a major determinant in the

ability of an application to execute at a new computing
site. Most applications, as well as their shared library
dependencies, are dynamically linked against a system’s
C library. Site administrators update their systems’ C
library versions at different times during the lifetime of a
system resulting in various versions of the C library
existing at target sites. Our prediction model examines
whether an application’s C library requirements are met
at a target site.

 User Input
(application location, phase, submission syntax)

FEAM’s Source Phase (optional)

Environment
Description Component

Binary Description
Component

FEAM’s Target Phase (required)

Environment
Description Component

Binary Description
Component

User Input
(application location, phase, submission syntax)

Source Phase
Output

Target Evaluation
Component

Site Configuration Execution Readiness
Prediction

Figure 2. The Phases and Components of FEAM
FEAM, our Framework for Efficient Application

Migration, consists of two phases and three components.
The source phase is optionally run a guaranteed execution
environment while the target phase must always be run at
a target site. Running both phases enables our resolution
methods and additional compatibility tests to be applied.

An application binary has been compiled with a
particular version of the C library. However, this is not
necessarily the C library version that an application
requires for execution. Rather, usually only the highest
version of the C library that is actually used by an
application must be available at a target site. We call this
an application’s required C library version. Our model
considers a target site’s C library version to be
compatible if it is equal to or greater than an application’s
required C library version.

D. Shared Library Compatibility
The presence of shared libraries is the final

determinant of our prediction model. Our methods
ascertain if all shared libraries required by an application
binary are available at a target site. Shared libraries
compatibility is based on library naming and version
conventions. Shared library names include major and
minor release version numbers. The naming convention
is of the format
lib<name>.so.<major_version>.<minor_version>. Only
shared libraries with the same major versions are
guaranteed to have compatible APIs.

IV. RESOLUTION MODEL
The determinants of our prediction model are a result

of the environment where an application was compiled.
They cannot be changed without recompiling an
application. However, a target site may be able to be
altered to match the requirements of each determinant.
This would be an involved process for the first three
determinants. Matching an ISA would require emulation.
Matching an MPI stack would require administrative
privileges on a system to setup an MPI implementation.
Matching a C library version requirement would involve
installing the specific required version. However,
matching a required shared library can often be
accomplished by simply making a copy of the missing
library available at runtime. This is the aim of our
resolution model.

Our resolution methods copy shared libraries from an
application’s guaranteed execution environment.
(Licensing issues are out of scope of our work.) If any
required shared libraries are missing at a target site, our
methods determine if the library copies can be installed
to resolve the issue. To determine if a shared library
copy can be used, we determine if a given library will
execute at a target site. We apply the same analysis to
these missing shared libraries as to any application
binary. Our prediction methods are applied recursively to
determine if a shared library copy is able to execute at a
target site. This may include recursively resolving any
missing shared libraries that the library copy requires. If
a library copy is determined to be useable at a target site,
our resolution methods make the library accessible at

runtime by setting the appropriate environment
variables.

V. IMPLEMENTATION
We present the implementation of FEAM, a

Framework for Efficient Application Migration. FEAM
realizes our prediction and resolution models in an
automated fashion. FEAM is composed of three
components and two phases as illustrated in Figure 2.
The Binary Description Component gathers information
about an application binary and its dependencies. The
Environment Discovery Component gathers information
about a computing environment. The output from these
two components is used by the Target Evaluation
Component to determine whether execution can occur at
a target site without recompilation. FEAM can be run in
one or two phases. The target phase, which is required, is
run at each target site. The source phase, which is
optional, is run only once per application binary at a
guaranteed execution environment. However, if the
source phase does not occur, our resolution methods and
the extended compatibility tests cannot be applied.

• ISA and file format of binary
• Library name and version, if applicable
• Required shared libraries, with copies and

descriptions if applicable
• C library version requirements
• MPI stack, operating system, and C library

version used to build binary

Figure 3. Information Gathered by the BDC
The Binary Description Component (BDC) of FEAM
gathers information about MPI application binaries.

Running both phases of FEAM provides the additional
benefit of not requiring the application binary to be
present at a target site.

Before running FEAM, a user needs to specify (via a
configuration file) a serial and parallel submission script
for the site. The submission format is the only
information about a new site our methods require the
user to determine. The user also specifies what FEAM
phase is to be run and the location of the application
binary if applicable. The output from a source phase is
bundled for the user and must be copied to each target
site if it is to be used in a target phase. The output from a
target phase is a prediction of execution readiness along
with a matched configuration of a target site if execution
is predicted to be possible.

In this section, we describe the techniques that each of
the FEAM components applies. Our methods are
implemented using various standard Unix-like operating
system utilities. This limits the current version of FEAM
to working on Unix-like operating system but in general
our methods could be implemented for any system. The
information needed by our prediction and resolution
models is gathered in multiple ways by FEAM in case
some tools are not present or functioning at a particular
target site. While our techniques are relatively simple,
their composition efficiently and automatically provides a
determination of whether a migrated application is ready
to execute without recompilation along with the matching
site configuration details.

A. Binary Description
The Binary Description Component (BDC) of FEAM

gathers information about an application binary and its
dependencies. It expects as input the location of the
binary. To be able to apply all of our methods, the BDC
needs to execute in a guaranteed execution environment
and at a target site. However, only execution at a target
site is required to enable a basic prediction. The
information collected by the BDC is listed in Figure 3. In
this subsection, we explain how we gather this
information.

TABLE I. IDENTIFYING LIBRARIES OF MPI IMPLEMENTATIONS

MPI Implementation Library Dependencies
MVAPICH2 libmpich/libmpichf90, libibverbs, libibumad
Open MPI libnsl, libutil
MPICH2 libmpich/libmpichf90 (and not other identifiers)

Most of the information about a binary can be
extracted with the GNU Binary Utility [14] objdump.
The BDT calls the GNU Binary Utility objdump with
the “-p” flag to view information that is specific to the
file format of a binary. The format description specifies
the file format (i.e. ELF) of a binary as well as for what
ISA and for how may bits an application was compiled.
We create a list of any shared libraries an application
binary has been linked against from the “NEEDED”
components under the “Dynamic Section” of the
description. We calculate an application’s C library
version requirement by determining the newest version
listed under the “Version Definitions” and “Version
References” sections of the description. If a binary being
analyzed is actually a shared library, we additionally
capture the library’s official shared object name from the
“Dynamic Section” and extract from it the embedded
version information.

The Unix utility ldd, when called with the -v
command-line option, can also be used to view the shared
library dependencies of dynamically linked binaries
along with their C library version requirements.
However, there are cases for which this tool does not
recognize an application as being dynamically linked
and, thus, cannot be relied on to always provide this
information.

If an application binary is an ELF file (the standard
binary format for Unix and Unix-like system on x86), the
BDT calls the GNU Binary Utility readelf with the “-
p .comment” flag to display the contents of the comments
section. The optional comments section may contain
compiler and linker specific version control information.
This information is used to indicate under what OS and
with what C library version an application binary was
created.

To identify the MPI implementation used to compile
an application, we examine the list of shared libraries that
an application was linked against. Our identification
scheme takes advantage of the fact that MPI is not a link-
level specification. Rather, the MPI standard specifies a
library interface and consequently implementations of the
standard have different link-level dependencies. We have
created an identification scheme for the three dominant
open source MPI implementations (Open MPI [15],
MPICH2 [16], and MVAPICH2 [17]). The shared
libraries that we use as MPI implementation identifiers
are listed in Table I.

• ISA format
• Operating system
• C library version
• Available or currently loaded MPI stacks
• Missing shared libraries

Figure 4. Information Gathered by the EDC
The Environment Description Component (EDC) of
FEAM gathers information about a computing site.

When running at a guaranteed execution site, the BDC
also gathers a description and copy of all of the shared
libraries an application has been linked against. Each
library goes through the same description process as an
application binary. To locate the shared libraries for
copying, we use the ldd utility. This utility lists the
shared libraries an application has been linked against
along with their locations in the local file system. We
copy each shared library except for the C library. If the
ldd utility is unable to provide location information,
then we perform a search for each shared library. We
apply three search methods to locate each library from
the list gathered using objdump. If available, the
locate utility is used to reveal the locations of files
with matching names. The find utility is used to search
common library locations as well as locations set in the
LD_LIBRARY_PATH environment variable. If a locally
compiled “hello world” program is available, the ldd
utility is used to reveal the locations of commonly linked
against shared libraries.

B. Environment Discovery
The Environment Discovery Component (EDC)

gathers information about a computing environment after
the BDC has created a description of an application. The
EDC can gather information about a target site or a
guaranteed execution environment. The type of
environment must be identified by the user as it affects
the discovery process. The information gathered by the
EDC is listed in Figure 4. The EDC determines what
operating system and hardware architecture is present at a
computing site. The EDC also determines what version of
the C library and what types of MPI stacks are configured
on a system. The EDC may also compile and run “Hello
World” programs to test the environment. In this
subsection, we explain what techniques are used to
discover this information.

The EDC calls the Linux utility uname with the “-p”
flag to determine the system’s ISA format details. We
also examine standard files with system information
under /proc and /etc to determine which Linux
distribution is running on the system. We consult the
/proc/version file to determine the OS type and
version information. We confirm this information by

examining files under /etc/*release. The
distribution information is gathered only to provide the
user with more information about a system.

The EDC determines the version of a system’s C
library by parsing the general library information that is
output when C library binary is executed. The location of
the library is found by using the same methods used by
the BDC to search for shared library locations. If the C
library binary cannot be run on the command line, the
EDC attempts to determine the version using the C
library API.

The type of information we gather about the local
MPI stack depends on what type of site where the EDC
is being run. At a target site, we search for available MPI
stacks. In a guaranteed execution environment, we
confirm if the MPI stack currently selected to run an
application matches the stack combination that was
discovered by the BDC. We also generate MPI “hello
world” programs for later testing.

To determine what MPI stacks are available in a
computing environment, user-environment management
tools are consulted. These tools support the discovery of
packages and help manage the shell environment. We
specifically search for the presence of Environment
Modules [18] or SoftEnv [19] configuration files to
assess if these user-environment management tools are
present. If one of these tools is located, then we use their
search mechanisms to locate MPI implementations and
compiler combinations. If no user-environment
management tools are found, then we use the same
search methods as used by the BDC to locate shared
libraries. We search for libraries that are distributed with
each MPI implementation such as libmpi or libmpich.
We also search for commonly used wrappers for
compiling MPI programs (i.e. mpicc, mpif90). Often
information about compilers associated with a particular
MPI implementation is revealed by the naming scheme
of a location path as well as by compiler wrapper version
information. For example, the path /opt/openmpi-
1.4.3-intel/lib/libmpi.so reveals that Open
MPI is available for the Intel compiler. Running
/opt/openmpi-1.4.3-intel/bin/mpicc –v
reveals that version 11.1 of the Intel compiler is used for
compilation.

To determine what MPI stacks are currently
accessible in a computing environment, we examine the
environment settings. If user-environment management
tools are present, we use the corresponding mechanisms
to reveal these setting. For example, if Environment
Modules are present, we use the module list
command to get a listing of what MPI implementation
and compiler the shell is configured to access.

Alternately, we can search for MPI implementations that
are accessible via the PATH and LD_LIBRARY_PATH
environment variables. We can also determine what MPI
implementation and compiler is referred to by commonly
used wrappers for compiling MPI programs.

We use the ldd tool to identify if any shared libraries
that an application was linked against are missing at a
target site. If the ldd tool is unable to produce this
information, we search for the libraries using the same
methods as used to locate shared libraries by the BDC.

C. Target Evaluation
The Target Evaluation Component (TEC) uses the

information gathered by the BDC and EDC to determine
whether execution can occur at a target site without
recompilation. The TEC determines the outcomes of our
prediction and resolution models by using the
information gathered by the BDC and EDC. The TEC
executes at a target site.

The information gathered about an application’s ISA
format, C library version, and MPI stack requirements is
matched with the information about what is available at a
target site to determine compatibility as outlined by our
prediction model. If the ISA and C library version
determinants are found to be compatible, we proceed to
evaluating the MPI stack and shared library determinants.
If at any point we determine that execution cannot occur,
the reasons are detailed to the user via an output file.

For each compatible MPI stack that is detected, we
run a series of “hello world” programs to test if the stack
is functioning as described by our prediction model. We
compile “hello world” programs at a target site and test
for successful execution to confirm the functionality of
the MPI stack. If “hello world” programs from a
guaranteed execution environment are available, we run
them to confirm the compatibility between the selected
MPI stack and the MPI stack used to compile an
application. Running these tests assumes knowing the
execution command for a particular MPI stack. Our
methods by default will use the mpiexec command for
execution while allowing the user to specify otherwise
(per MPI type if necessary) via a configuration file.

Finally, if a compatible MPI stack has been
determined to be functioning, we attempt to resolve any
missing shared libraries. Resolution can proceed if a
Source Phase has occurred. In phase I, our framework
runs the BDC and EDC at a guaranteed execution site to
gather copies and descriptions of required shared
libraries. With this information, our resolution model can
be applied. For any missing shared library, we
recursively apply our prediction model to determine if the
library copy can be used. If a library copy is determined
to be useable at a target site, we make the library

accessible at runtime by adding its location to the PATH
environment variable. If our resolution techniques
succeed for all missing libraries or if there were no
missing libraries, then we predict that a target site is
ready for application execution. We provide a description
of the matching configuration details to the user along
with a script that will set them up automatically on
execution.

VI. EVALUATION
In this section, we present an evaluation of our

prediction and resolution methods as implemented in
FEAM. We predict the execution readiness of MPI
application binaries from two benchmark suites across
five computing sites. To determine the effectiveness of
our prediction model, we compare our prediction of
execution readiness with whether an application was
actually able to execute. We evaluate the impact of our
resolution model by comparing how many binaries are
able to execute when our techniques are and are not
applied.

A. Test Set Description
We created MPI application binaries for the

evaluation tests from two benchmark suites: the NAS
Parallel Benchmarks and SPEC MPI2007. The NAS
Parallel Benchmarks (NPB) suite [17] consists of
applications derived from computational fluid dynamics.
We used version 2.4 of the MPI reference
implementation of the NPB suite. SPEC MPI2007 [18] is
a benchmark suite developed from native MPI-parallel
end-user applications. To create the MPI application
binaries for our tests, we compiled the benchmarks with
multiple MPI stacks at each target site as indicated in
Table II. Some benchmarks would not compile with
certain MPI stacks combinations while other binaries
would not run at the site where they were compiled. This
is why our final test set, with 110 NPB binaries and 147
SPEC MPI2007 binaries, is composed of a subset of the
benchmarks suites. From the NPB suite, our test set
consisted of four kernels (integer sort, embarrassingly
parallel, conjugate gradient, and multi-grid on a sequence
of meshes) as well as three pseudo applications (block tri-
diagonal solver, scalar penta-diagonal solver, and lower-
upper Gauss-Seidel solver). From the SPEC MPI2007
benchmark suite, our test set consisted of a quantum
chromodynamics code (104.milc), two computation fluid
dynamics codes (107.leslie3d and 115.fds4), a parallel
ray tracing code (122.tachyon), a molecular dynamics
simulation code (126.lammps), a weather prediction code
(127.GAPgeofem), and a 3D Eulerian hydrodynamics
code (129.tera_tf).

Five computing environments were chosen as target
sites for the evaluation tests. The target sites were chosen

such that a diverse test set was created in terms of the
operating system, hardware architecture, network
interconnect, and MPI implementation. Three of the
chosen test sites are state-of-the-art high performance
computing systems available to researchers via the
national XSEDE infrastructure [22]. They represent the
main types of systems architectures available at the
national supercomputing centers: symmetric
multiprocessing (SMP), massively parallel processing
(MPP), and hybrid CPU/GPU systems. The other two
test sites are mid-size university clusters. One is part of
the FutureGrid Project [23] test-bed while the other is a
University of Virginia resource [24]. Table II details the
characteristics of each of these computing sites as well
as the MPI stack combinations used to create application
binaries. The test sites run different versions of three
Linux-based operating systems and the C library. The
sites support three open source MPI implementations.
Open MPI is available at five sites, MVAPICH2 is
available at four sites, and MPICH2 is available at two
sites. Each MPI implementation is associated with GNU,
Intel, and/or PGI compilers for C and/or Fortran.

B. Methodology

To evaluate the effectiveness of our prediction
methods, we compared predictions with actual execution
results. These results are presented in Table III. We
migrated each MPI application binary to all target sites
where the binary had not been compiled. Our methods
were 100% accurate at assessing whether a matching
MPI implementation was available for all target set.
However, we only report prediction results for sites with
matching MPI implementations. Only at such sites is
there potential for successful execution. For example,
binaries compiled for MVAPICH2 on Ranger were tested
only on Forge, India, and Fir while binaries compiled for
MPICH2 on India were tested only on Fir. If results for
all sites were reported, our prediction accuracy would be
much higher. However, it is more interesting to focus on
the accuracy of our model at sites where there is a
potential for successful execution.

We formed predictions using information gathered at
guaranteed execution environments and target sites. The
results in Table III distinguish how predictions were
made. Our basic prediction results were formed by only
running FEAM’s required target phase at a target site.
Our extended prediction results were formed by also
running FEAM’s optional Source Phase at guaranteed
execution environments. In this way, the results
differentiate the effectiveness of our methods for
instances when users do not have access to or do not want
to access guaranteed execution sites. This situation in
particular applies to community codes distributed as
binaries.

TABLE II. TARGET SITE CHARACTERISTICS

Computing Site
 (Type - CPUs)

Operating
System

C Library
&

Compiler
Versions

Utilized MPI Stacks:
MPI Types & Versions

(Compilers i:Intel,
g:GNU, p:PGI)

XSEDE Ranger,
Texas Advanced

Computing
Center

(MPP – 62,976)

CentOS
4.9

LibC
v2.3.4,

GNU CC
v3.4.6,

Intel v10.1

Open MPI v1.3 (i/g/p)
MVAPICH2 v1.2 (i/g/p)

XSEDE Forge,
National Center

for
Supercomputing

Applications
(Hybrid - 576)

Red Hat
Enterprise

Linux
Server 6.1

LibC v2.12
GNU CC

v4.4.5
Intel v12

Open MPI v1.4 (g/i)
MVAPICH2 v1.7rcl (i)

XSEDE
Blacklight,
Pittsburg

Supercomputing
Center

(SMP – 4,096)

SUSE
Linux

Enterprise
Server 11

LibC
v2.11.1,

GNU CC
v4.4.3,

Intel v11.1

Open MPI v1.4 (i/g)

FutureGrid India,
Indiana

University
(Cluster - 920)

Red Hat
Enterprise

Linux
Server 5.6

LibC v2.5,
GNU CC

v4.1.2,
Intel v11.1

Open MPI v1.4 (i/g)
MVAPICH2 v1.7a2 (i/g)
MPICH2 v1.4 (i/g)

ITS Fir,
University of

Virginia
(Cluster - 1,496)

CentOS
5.6

LibC v2.5,
GNU CC

v4.1.2,
Intel v12

Open MPI v1.4 (i/g/p)
MVAPICH2 v1.7a (i/g/p)
MPICH2 v1.3 (i/g/p)

TABLE III. ACCURACY OF PREDICTION MODEL

Basic Prediction Extended Prediction
NAS SPEC NAS SPEC
94% 92% 99% 93%

TABLE IV. IMPACT OF RESOLUTION MODEL

Actual Execution Successes Increase in
Successful Executions

due to Resolution
Before

Resolution
After

Resolution
NAS SPEC NAS SPEC NAS SPEC
58% 47% 78% 66% 33% 39%

To evaluate the impact of our resolution methods, we
calculated the percentage of successful executions
occurring before and after applying our resolution
methods. These results are presented in Table IV. The
table also presents the overall increase in successful
executions. This percentage was calculated as the
increase in successful executions after applying our
methods divided by the number of successful executions
before applying our methods. As with our prediction
results, we only report resolution results for sites with
matching MPI implementations where there is a
potential for successful execution.

C. Results Analysis
Our predictions were over 90% accurate for both

basic and extended prediction schemes. The extended
prediction created from running FEAM at guaranteed
execution environments along with target sites increased

prediction accuracy due to additional compatibility tests.
In particular, by testing the execution of MPI “hello
world” programs compiled at guaranteed execution
environments, we were able to detect floating point errors
and application binary interface (ABI) incompatibilities
in shared libraries. Our model was unable to predict
failures due to system errors such as failed MPI daemon
spawning or time-outs due to communication errors. If
execution was not successful after five execution
attempts, we classified the actual execution result as
failed. We spaced retries in time to avoid errors caused
by an overload in the system.

Around half of the MPI application binaries were
able to execute at target sites after migration (58% of the
NAS binaries and 47% of the SPEC binaries). These
percentages do not include the large number of target
sites where binaries could not execute due to lack of a
matching MPI implementation. Our results illustrate that
more than just the MPI implementation determines
whether a binary can execute at a target site. Of the
failing jobs, more than half were missing shared
libraries. Scientists compiling their own or community
MPI applications at sites where MPI implementations
have not been installed with static libraries do not have
the option to prepare statically linked binaries for
migration. The remaining jobs failed due to C library
version requirements, floating point exceptions, and
system errors.

Our resolution techniques automatically enabled
execution for about half of the binaries that would have
otherwise failed due to missing shared libraries. This
resulted in enabling around a third more successful
executions overall (33% for the NAS binaries and 39%
for the SPEC binaries). The other half of the missing
library failures could not be resolved mainly due to
incompatibility issues. The shared libraries copies we
had gathered at guaranteed execution sites for use in
resolution required incompatible C library versions and
used incompatible application binary interfaces. The
remaining resolution attempts failed due to system
errors.

Since running on compute nodes does use allocation
hours (if any usage accounting is in place at a site), we
measured how many CPU hours were used by running
FEAM. We found that both FEAM’s source and target
phases always took less than five minutes to complete.
This makes FEAM ideal for submission via a debug
queue at sites. We also measured that a bundle of shared
library copies composed by FEAM’s source phase
averaged 45M in size. This bundle consisted of all the
shared libraries required by all of our test binaries at a
site. Thus, the size of a bundle for just one MPI
application binary would be much smaller.

VII. CONCLUSIONS
In this paper we presented methods that provide an

automated and efficient means of determining where MPI
applications can run without recompilation. We described
methods that can be used to assess whether MPI
application binaries can execute at new computing sites.
We also described methods that increase the likelihood
an application binary will execute at a new computing
site by gathering and resolving shared library
requirements. We presented a Linux-based
implementation of these methods called FEAM, a
Framework for Efficient Application Migration. We
evaluated FEAM across five computing sites. A test set
of MPI binaries was created by compiling applications
from NAS Parallel and MPI SPEC2007 benchmark suites
with three open-source MPI implementations and three
compilers. Overall, our prediction results were more than
90% accurate. We found that choosing an execution site
only by matching the MPI implementation resulted in
half of the binaries failing due to other errors. More than
half of these failures were caused by missing shared
libraries. FEAM enabled about a third more successful
executions at our test sites by automatically resolving
missing shared libraries. FEAM was able run our
prediction and resolution techniques in less than five
minutes, making it a good candidate for running via a
debug queue when available.

FEAM executes with minimal input from the user,
runs quickly, and requires little space. It relieves the user
of manually parsing various environment configurations
to find out if a site is a good match for execution. For
scientists who do not have much experience, time, or
support to explore new computing sites or recompile their
MPI applications, FEAM provides an efficient automated
solution for quickly assessing many new computing sites.

The general direction of our future work will be to
develop more methods for efficiently migrating MPI
applications to new environments. This will include
migrating MPI application binaries as well as MPI
application source code. We are also interested in
quantifying the amount of user effort required to perform
migration tasks so that we can more concretely compute
the efficiency gains of using our methods.

ACKNOWLEDGMENT
This work used the Extreme Science and Engineering

Discovery Environment (XSEDE), which is supported by
National Science Foundation grant number OCI-
1053575. This work also used resources supported in part
by the National Science Foundation under Grant No.
0910812 to Indiana University for “FutureGrid: An
Experimental, High-Performance Grid Testbed.”

REFERENCES
[1] XSEDE: Extreme Science and Engineering Discovery

Environment. https://www.xsede.org/.
[2] L. Bayucan, et al, “Portable Batch System External

Reference Specification”, MRJ Technology Solutions,
May 1999.

[3] W. Gentzsch, “Sun Grid Engine: towards creating a
compute power grid”, Proceedings of the First
IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2001, pp.35-36.

[4] SLURM: Simple Linux Utility for Resource Management,
http://www.llnl.gov/linux/slurm/slurm_design.pdf

[5] J. McCarthy and B. Miller. Solution Deployment
Descriptor (SDD), Part 1: An emerging standard for
deployment artifacts. IBM DeveloperWorks. 2008.

[6] A. Dantas, et al. “Using web services for configuration
and deployment according to the CDDLM standard,”
International Conference on Web Services, 2006, pp. 951-
954.

[7] M. Siddiqui, et al. “GLARE: A grid activity registration,
deployment and provisioning framework,” Proceedings of
the ACM/IEEE SC 2005 Conference, 2005, pp. 52 - 64.

[8] W. Goscinski and D. Abramson. “Distributed Ant: a
system to support application deployment in the grid,”
Proceedings of the Fifth IEEE/ACM International
Workshop on Grid Computing, 2004, pp. 436-443.

[9] Autoconf - GNU Project.
http://www.gnu.org/software/autoconf/.

[10] E.C. Bailey. Maximum RPM: Taking the Red Hat
Package Manager to the Limit. Red Hat, Inc., 2000.

[11] Yum: Yellow Dog Update Modifier.
http://yum.baseurl.org/.

[12] Smart Package Manager. http://labix.org/smart/.
[13] C. Xu, Y. Bai, and C. Luo. “Performance envalutation of

parallel programming in virtual machine environment,”
Sixth IFIP International Conference on Network and
Parallel Computing, 2009, pp. 140-147.

[14] GNU Binutils. http://www.gnu.org/software/binutils/.
[15] OpenMPI: Open Source High Performance Computing.

http://www.open-mpi.org/.
[16] MPICH2: High Performance and Highly Portable MPI.

http://www.mcs.anl.gov/research/projects/mpich2/.
[17] MVAPICH2: MPI-2 over InfiniBand, 10GigE/iWARP

and RoCE. http://mvapich.cse.ohio-
state.edu/overview/mvapich2/.

[18] Modules – Software Environment Management.
http://modules.sourceforge .net/.

[19] Msys - The MCS Systems Administration Toolkit.
http://www.mcs.anl.gov/hs/software /systems/msys/.

[20] R.F. Van der Wijngaart. NAS Parallel Benchmarks
Version 2.4. 2002.

[21] M.S. Müller, et al. "SPEC MPI2007 - an application
benchmark suite for parallel systems using MPI."
Concurrency and Computation: Practice and Experience
Vol. 22, Issue 2 (2010): 191-205.

[22] XSEDE Resources Overview.
https://www.xsede.org/resources/overview

[23] FutureGrid: A Distributed Testbed for Clouds, Grids, and
HPC. https://portal.futuregrid.org/.

[24] University of Virginia Alliance for Computation Science
and Engineering: Resources.
http://www.uvacse.virginia.edu/resources/.

