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Quantum-information processing requires a high degree of isolation from the detrimental effects of the
environment as well as an extremely precise level of control of the way quantum dynamics unfolds in the
information-processing system. In this paper we show how these two goals can be ideally achieved by hybridizing
the concepts of noiseless subsystems and of holonomic quantum computation. An all-geometric universal
computation scheme based on nonadiabatic and non-Abelian quantum holonomies embedded in a four-qubit
noiseless subsystem for general collective decoherence is proposed. The implementation details of this synergistic
scheme along with the analysis of its stability against symmetry-breaking imperfections are presented.
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I. INTRODUCTION

Implementation of quantum-information processing (QIP)
poses daunting challenges. First, for most of the QIP protocols,
quantum coherence has to be maintained throughout the whole
computational process in spite of the decoherence induced
by the unavoidable coupling with environmental degrees of
freedom. Second, one has to achieve an unprecedented level
of control to enact quantum gates within the required high
accuracy.

To the aim of accomplishing these somewhat contradic-
tory tasks, several theoretical schemes have been devised
since the early days of QIP. Broadly speaking, all the
information-stabilizing strategies developed to date fall into
three categories: active techniques such as quantum-error-
correcting codes [1], symmetry-aided passive techniques such
as decoherence-free subspaces and subsystems [2–4], and
geometrical [5–7] and topological techniques [8].

Geometric QIP exploits different types of quantum
holonomies, e.g., Berry phases, to implement quantum gates.
Following the first non-Abelian [5] and Abelian [6] adiabatic
proposals, many others have been considered; see, e.g.,
Refs. [7,9–12]. The motivating idea is that the geometric nature
of the proposed quantum gates endows them with some degree
of inherent robustness against control imprecisions as well as
against environment-induced decoherence [13]. One of the
drawbacks of the original holonomic quantum computation
(HQC) [5] is its relative slowness due to the adiabaticity
constraint. This potential limitation can be circumvented by
resorting to nonadiabatic Abelian [14,15] and non-Abelian
[16,17] quantum holonomies.
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The idea of noiseless subsystem (NS) was first introduced
in Ref. [3] and experimentally demonstrated in Ref. [18].
Noiseless subsystems are a natural generalization of the
concept of noiseless quantum code or decoherence-free
subspace (DFS) [2] and are effective when the decohering
interactions possess some nontrivial algebra of symmetries.
On general theoretical grounds, NSs have been argued to
provide the unified algebraic structure underlying all the
known quantum-information protection schemes [4] including
topological quantum computation [19].

The goal of this paper is to merge synergistically ideas
from geometric QIP and NSs in order to take advantage of the
appealing features of both. More specifically, we will hybridize
nonadiabatic HQC [16], with the powerful theory of NSs [3,4].
The possibility of achieving robust quantum control of NSs
by non-Abelian quantum holonomies was first envisioned in
Refs. [20,21]; universal HQC schemes embedded in DFSs
and NSs were proposed in Refs. [9,17] and (for a strongly
dissipative case) in Ref. [22].

In this paper we extend significantly the results of Ref. [17]
by showing how a universal non-Abelian and nonadiabatic
holonomic processor can be embedded within a NS for general
collective decoherence. In this way a universal computational
scheme protected against general collective decoherence while
featuring at the same time that the robustness of HQC against
imprecisions in gate control can be ideally achieved.

II. NOISELESS SUBSYSTEM

We start by briefly recalling the basic notions concerning
NSs. LetH be the Hilbert space of a quantum system S coupled
to its environment through a set of error operators {Eα}α ⊂
B(H) [23]. The key object is provided by the interaction
algebra A ⊂ B(H), i.e., the C∗ algebra [24] generated by the
error operators. The state space of the system decomposes into
the different dJ -dimensional irreducible representations of A
(labeled by J and with multiplicity nJ ) as H ∼= ⊕JC

nJ ⊗ CdJ .
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The corresponding orthogonal decomposition of A is given by

A ∼= ⊕J 1nJ
⊗ MdJ

, (1)

where MdJ
denotes the full matrix algebra of dJ × dJ complex

matrices [24]. When dJ = 1, one recovers the concept of DFS
[2]. The interaction algebra A acts irreducibly on the CdJ

factors of H, whereas Eq. (1) shows that the error algebra
elements, responsible for decoherence, have a trivial action
on the CnJ factors. It follows that quantum information can
be protected by encoding in these virtual subsystems [20] that
are then termed noiseless subsystems [3]. In order to perform
manipulations of the NS-encoded information, one has to
resort to a nontrivial set of operations that belong to the com-
mutant algebra A′ := {X ∈ B(H)/[X,A] = 0∀A ∈ A}. This
crucial fact follows from the dual irreducible representation
decomposition A′ ∼= ⊕J MnJ

⊗ 1dJ
for which one sees that A′

has an irreducible action on the NSs and a trivial one on the
CdJ factors, now playing the role of multiplicity spaces. These
constructions are useful if at least one of the nJ is larger than or
equal to 2, which in turn gives a lower bound on the dimension
of the commutant A′. In other words, the existence of a NS
encoding relies on the existence of a sufficiently large number
of symmetries of the interaction algebra, i.e., of the noise.

The prototypical symmetric noise is provided by collective
decoherence [2] whose experimental relevance has been
demonstrated in Refs. [18,25,26]. This is also the model
that will be considered in this paper. In this collective
case the interaction algebra A is given by the algebra of
totally symmetric operators on the state space of N qubits,
i.e., H ∼= (C2)⊗N and its commutant A′ is the C∗ algebra
generated by permutations σ ∈ SN acting on H according to
the natural representation, i.e., σ : ⊗N

p=1|αp〉 → ⊗N
p=1|ασ (p)〉.

In the following, we show how to enact a universal set of
operators in A′ using nonadiabatic quantum holonomies only.

III. NONADIABATIC HOLONOMIC
QUANTUM COMPUTATION

Nonsadiabatic HQC, proposed in Ref. [16] and experimen-
tally implemented in Ref. [27], is based on the concept of
nonadiabatic non-Abelian geometric phases [28]. The key idea
is to implement a suitably designed Hamiltonian that induces
cyclic evolution of a quantum computational system encoded
in a subspace M(0) in such a way that all dynamical phases
vanish. The primitive structure is of � type, where an excited
state |e〉 is coupled by a pair of simultaneous laser pulses to
ground-state levels |g0〉 , |g1〉 according to (� = 1 from now
on)

H (t) = �(t)(ω0 |e〉 〈g0| + ω1 |e〉 〈g1| + H.c.). (2)

Here �(t) is the Rabi frequency and ω0,ω1 are complex-valued
time-independent driving frequencies satisfying |ω0|2 +
|ω1|2 = 1. The generic Hamiltonian H (t) describes transitions
between energy levels induced by oscillating laser fields in the
rotating-wave approximation and can be implemented in a
wide range of different physical systems.

The subspace spanned by

|ψj (t)〉= exp

(
−i

∫ t

0
H (t ′)dt ′

)
|gj 〉 =U (t,0) |gj 〉 , j = 0,1,

undergoes a cyclic evolution if the Rabi frequency sat-
isfies

∫ τ

0 �(t ′)dt ′ = π . The resulting time evolution op-
erator U (τ,0), projected onto the computational subspace
M(0) = Span{|g0〉 , |g1〉}, defines the traceless Hermitian
gate U (Cn) = n · σ , where n = (sin θ cos φ, sin θ sin φ, cos θ )
with ω0/ω1 = − tan(θ/2)eiφ and σ are the standard Pauli
operators acting on M(0). An arbitrary SU(2) can be realized
by sequentially applying two such gates with different n. The
evolution is purely geometric since 〈ψj (t)| H (t) |ψk(t)〉, j,k =
0,1, vanish for t ∈ [0,τ ]. Thus, U (Cn) is fully determined
by the path Cn of M(t) in the space of all two-dimensional
subspaces of the three-dimensional Hilbert space, i.e., in
the complex-valued Grassmannian G(3; 2). Together with an
entangling holonomic two-qubit gate, U (Cn) constitutes a
universal all-geometric set of quantum gates [29].

IV. QUANTUM HOLONOMY IN NOISELESS SUBSYSTEMS

The collective decoherence on a quantum system S consist-
ing of N physical qubits is characterized by the spin- 1

2 error

operators Eα = ∑N
p=1 σα

p , α = ±,z. For a fixed total spin J ,
the dimension of the noiseful part is dJ = 2J + 1. By using
angular momentum addition rules, one can prove that

nJ = (2J + 1)N !

(N/2 + 1 + J )!(N/2 − J )!
. (3)

This nJ , which is the dimension of the NS part, provides the
possibility of performing HQC.

Quantum holonomy appears when the subspace M(t) re-
turns to the original one after a nontrivial cyclic transformation.
The NS spans the total space, which is the total Hilbert space
of a HQC. In general, the NS should be larger than the
computational space in order to admit nontrivial holonomies.
A subspace of NS emerges as M(0) and the effective
Hamiltonian of NS acts as the Hamiltonian that generates the
nontrivial loop relating to the unitary transformation. Since NS
theory guarantees that the states in M(0) are never evolved out
of the NS, the subspace of NS can return to the original one
and that ensures that HQC can be conducted.

A. One-qubit gate

A nonadiabatic one-qubit holonomic gate can be imple-
mented in a NS provided there exists a J for which nJ � 3.
Four physical qubits, which contain a C3 ⊗ C3 subspace,
provides the smallest possible realization of such a gate. Here
we demonstrate how noiseless holonomic one-qubit gates can
be implemented in this C3 ⊗ C3 subspace of the four-qubit
code.

First, note that the Eα act on the C3 ⊗ C3 subspace in the
following way:

Eα = INS ⊗ Sα, α = ±,z, (4)

where Sα is the spin-1 representation of the angular momentum
operators. An important observation here is that the inherent
symmetry in the action of the decoherence operators Eα on
the basis states |i〉 |j 〉4 affects only the second part of the basis
and leaves the first part unchanged (see the Appendix for more
details on the four-qubit code). Moreover, the basis changed by
the error operators stays within |i〉 |j 〉4. Thus, the information
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being stored in this subspace depends only on the first index; it
is therefore not spoiled by the interaction between the system
and the environment.

To perform holonomic one-qubit gates with the four-qubit
code, a set of operators is needed to achieve the appropriate
transitions so that the computation stays within the subspace.
To this end, the operators that we seek should commute with the
Eα . Let us consider the permutation operator Ppq = 1

2 (Ipq +
σ p · σ q) of qubits p and q such that Ppq |x〉p |y〉q = |y〉p |x〉q
for x,y ∈ {0,1}. Here Ipq is the identity and σ p,σ q are the
Pauli operators acting on this qubit pair. It is straightforward
to check that [Ppq,Eα] = 0. Three- and four-body permutation
operators emerge as a product of two-body ones. Thus,
if the Hamiltonian is constructed using a combination of
the permutation operators, it will not destroy the subspace.
Explicitly, we may take the Hamiltonian that generates the
holonomic one-qubit gates to be

H (1)(t) = �(t)

[
J1√

3
(P23 − P13) + i

J2√
3

(P23P13 − P13P23)

+ J4

2
√

6
(P13 − P23 − 3P14 + 3P24)

]

= �(t)[(J1 − iJ2) |3〉 〈1| + J4 |3〉 〈2| + H.c.] ⊗ Inf,

(5)

where the first tensor factor corresponding to the NS is identical
to the Hamiltonian in Eq. (2) by identifying |1〉 = |g0〉,
|2〉 = |g1〉, and |3〉 = |e〉; Inf is the identity operator acting
on the noiseful subsystem. The Hamiltonian vanishes on
the noiseless qubit subspace M(1)(0) = Span{|1〉 , |2〉}, which
guarantees the geometric nature of the evolution. By setting
(J1 − iJ2)/J4 = − tan(θ/2)eiφ and defining the unit vector
n = (sin θ cos φ, sin θ sin φ, cos θ ), a traceless one-qubit holo-
nomic gate

U (1)(C) = n · σ ⊗ Inf (6)

acting nontrivially on the two-dimensional subspace of the
NS can thus be implemented by choosing

∫ τ

0 �(t)dt = π . By
combining two such gates, an arbitrary SU(2) operation acting
on the noiseless qubit subspace M(1)(0) can be realized.

B. Two-qubit gate

It is well known that universal quantum computation can be
achieved as long as all one-qubit gates and a single nontrivial
two-qubit (entangling) gate is possible [29]. Since all single-
qubit gates are possible, it remains to demonstrate that we
could construct a nontrivial two-qubit gate.

To guarantee the holonomic scheme to be scalable, we
encode each qubit in a two-dimensional subspace of a three-
level NS by using four physical qubits. In this scheme, a two-
qubit gate requires an eight-qubit code where two noiseless
qubits are represented by two sets L,L′ of four physical qubits.
By choosing an appropriate Hamiltonian for the eight physical
qubits, we demonstrate a holonomic controlled-NOT (CNOT)
gate that can entangle these noiseless qubits.

Consider the eight-qubit Hamiltonian expressed in terms of
permutation operators as

H (2)(t) = �(t)

12
(P13−P23 − 3P14 + 3P24)L

⊗
[
P23−P13− 1

2
√

2
(P13 − P23 − 3P14 + 3P24)

]
L′

.

(7)

By reexpressing the two factors in terms of the NS-noiseful
basis for each four-qubit set, we obtain

H (2)(t) = �(t)(H0 + H1) ⊗ Inf, (8)

where

H0 = 1√
2

|33〉 〈21| − 1√
2

|33〉 〈22| + H.c.,

H1 = 1√
2

|31〉 〈23| − 1√
2

|32〉 〈23| + H.c., (9)

and Inf is now the identity on the nine-dimensional noiseful
subsystem of the eight qubits. The two time-independent
operators H0 and H1 vanish on the computational two-
qubit subspace M(2)(0) = Span{|11〉 , |12〉 , |21〉 , |22〉} of the
NS, which ensures the geometric nature of the evolution.
Furthermore, H0 and H1 commute, which implies that

exp

(
−i

∫ τ

0
H (2)(t ′)dt ′

)
= e−iπH0e−iπH1 ⊗ Inf, (10)

by choosing
∫ τ

0 �(t ′)dt ′ = π . The second factor e−iπH1 acts
trivially on M(2)(0) and can therefore be ignored. The
holonomic gate U (2)(C) is the projection of the first factor
e−iπH0 onto M(2)(0) and reads

U (2)(C) = (|11〉 〈11| + |12〉 〈12|
+ |21〉 〈22| + |22〉 〈21|) ⊗ Inf . (11)

We see that U (2)(C) is a CNOT gate acting on M(2)(0), which
completes the universal set of nonadiabatic holonomic gates
in NSs.

V. ROBUSTNESS OF GATES

Our NS encoding allows for perfect protection in the
ideal collective decoherence case where the system-bath
interactions are fully invariant under arbitrary permutations of
the physical qubits. However, in realistic situations, symmetry-
breaking interactions will be unavoidably present and spoil
the ideal behavior. In order to investigate the robustness of
our scheme against such unwanted interactions we introduce
a simple decoherence model with a single parameter g that
controls the degree of symmetry breaking. The noise Lindblad
operators are given by E

′
α = ∑4

p=1 e−pgσ
p
α ; clearly when

g = 0 one recovers the permutational invariant collective
decoherence. Within the usual Born-Markov approximation
the system evolution is dictated by the Lindblad master
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equation

ρ̇(t) = −i[Hs(t),ρ] + 
(
E

′
zρE

′
z − 1

2 {E ′
zE

′
z,ρ})

+ γ (n̄ + 1)
(
E

′
−ρE

′
+ − 1

2 {E ′
+E

′
−,ρ})

+ γ n̄
(
E

′
+ρE

′
− − 1

2 {E ′
−E

′
+,ρ}), (12)

where n̄ is the temperature-dependent average number of
quanta in the environment (n̄ = 0 at zero temperature) and
 and γ are the dephasing rate and dissipation rate, respec-
tively. Here Hs(t) is the qubit system Hamiltonian, which is
generated by linear combination of the permutation operators
as described above. A square pulse with magnitude � and
duration π/� is used.

As a figure of merit to quantify the robustness of our logical
gates, we adopt the gate fidelity F defined as the Bures-

Uhlmann fidelity F (ρid,ρf ) := Tr
√

ρ
1/2
f ρidρ

1/2
f averaged over

initial conditions. Here ρid is the NS state obtained by the
ideal holonomic gate, i.e., the actual one in the presence of
collective decoherence only, and ρf is the corresponding faulty
one obtained by solving Eq. (12) and tracing over the noiseful
degrees of freedom.

We solved numerically Eq. (12) and examined the gate
fidelity as a function of g for a one-qubit holonomic gate. In
Fig. 1 it is shown that gate fidelity, both at zero temperature
(solid line, n̄ = 0) and nonzero temperature (dashed line,
n̄ = 1), decreases with increasing g as expected. However,
the inset in Fig. 1 also shows that in the physically relevant
regime of small g, the gate fidelity behaves as F ≈ 1 − ga ,
where a ≈ 2. This demonstrates that holonomic manipulations
of the NS have some degree of resilience against slight viola-
tions of the collective symmetry assumption. We would like
to stress that Eq. (12) is just a way to describe the system-bath
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FIG. 1. Gate fidelity in the presence of a noncollective environ-
ment with g controlling the degree of symmetry breaking. A square
pulse with magnitude � and duration π/� is used. The dephasing
rate  and dissipation rate γ are chosen to satisfy  = γ = 0.1�. The
logical unitary gate is the standard Pauli Z operator and the fidelity
is averaged over the six axial pure states on the Bloch sphere as
input states. The dashed line and the solid line show the gate fidelity
in the NS for mean number of environmental quanta n̄ = 0 and 1,
respectively. The inset shows the plot of log10(1 − F ) as a function
of log10 g; the dashed line and the solid line are for n̄ = 0 and 1,
respectively.

coupling that allows one to interpolate, in a simple phenomeno-
logical fashion, between the fully permutational symmet-
ric (g = 0) and increasingly nonsymmetric and unprotected
regimes (large g). However, we expect the conclusions drawn
from our simulations to be generic for mild violations of per-
mutational symmetry. Namely, gate robustness should be inde-
pendent of the details of the specific decoherence model, e.g.,
Markovianity.

VI. CONCLUSION

In this paper we have shown how to implement a
universal set of one- and two-qubit gates by nonadiabatic
and non-Abelian quantum holonomies acting entirely within
a noiseless subsystem for general collective decoherence.
Each noiseless qubit can be encoded using four physical
qubits and geometrically manipulated by Heisenberg-like two-
and four-body interactions. The requested ability to enact
four-body interactions certainly presents a major challenge
to the realization of our scheme with current experimental
techniques. In order to overcome this limitation one may
think of resorting to geometric techniques to simulate many-
body interactions in terms of simpler interactions [30] or
to the so-called perturbation gadgets [31]. In both cases
ancillary degrees of freedom are needed. Finally, by numerical
simulations, we have provided evidence of the robustness
of the proposed hybrid scheme against symmetry-breaking
interactions with the environment.
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APPENDIX

The Hilbert space of a four-qubit system can be decomposed
as

(C2)⊗4 = C2 ⊗ C
⊕

C3 ⊗ C3
⊕

C ⊗ C5.

By using the notation

|0〉 = |1/2,1/2〉 , |1〉 = |1/2,−1/2〉 ,

we find the C3 ⊗ C3 basis states

|1〉 |1〉4 = |1,1〉 = 1√
6

(2 |0010〉 − |0100〉 − |1000〉),

|1〉 |2〉4 = |1,0〉 = 1

2
√

3
(2 |0011〉 − |0101〉 − |1001〉

+ |0110〉 + |1010〉 − 2 |1100〉),
|1〉 |3〉4 = |1,−1〉 = 1√

6
(|0111〉 + |1011〉 − 2 |1101〉);
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|2〉 |1〉4 = |1,1〉 = 1

2
√

3
(3 |0001〉 − |0010〉

− |0100〉 − |1000〉),
|2〉 |2〉4 = |1,0〉 = 1√

6
(|0011〉 + |0101〉 + |1001〉

− |0110〉 − |1010〉 − |1100〉),
|2〉 |3〉4 = |1,−1〉 = 1

2
√

3
(|0111〉 + |1011〉

+ |1101〉 − 3 |1110〉);
|3〉 |1〉4 = |1,1〉 = 1√

2
(|0100〉 − |1000〉),

|3〉 |2〉4 = |1,0〉 = 1

2
(|0101〉 − |1001〉

+ |0110〉 − |1010〉),
|3〉 |3〉4 = |1,−1〉 = 1√

2
(|0111〉 − |1011〉).

The NS holonomies are realized in the first tensor factor of
these |i〉 |j 〉4 states.

The Gell-Mann matrices λ1, . . . ,λ8 on the NS in the C3 ⊗
C3 subspace can be expressed in terms of qubit permutation
operators as

λ1 ⊗ Inf = (|3〉 〈1| + H.c.) ⊗ Inf

= 1√
3

(P23 − P13),

λ2 ⊗ Inf = (−i |3〉 〈1| + H.c.) ⊗ Inf

= i
1√
3

(P23P13 − P13P23),

λ3 ⊗ Inf = (|3〉 〈3| − |1〉 〈1|) ⊗ Inf

= 1

3
(P13 + P23 − 2P12),

λ4 ⊗ Inf = (|3〉 〈2| + H.c.) ⊗ Inf

= 1

2
√

6
(P13 − P23 − 3P14 + 3P24),

λ5 ⊗ Inf = (−i |3〉 〈2| + H.c.) ⊗ Inf

= i
1

2
√

6
(2P321 − 2P231 + P342

−P432 − P341 + P431

+ 4P241 − 4P421),

λ6 ⊗ Inf = (|1〉 〈2| + H.c.) ⊗ Inf

= − 1

6
√

2
(2P13 + 2P23 − 4P12

+3P2341 + 3P3421 + 3P4321

+3P2431 − 6P3241 − 6P4231),

λ7 ⊗ Inf = (−i |1〉 〈2| + H.c.) ⊗ Inf

= i
1

2
√

2
(P341 + P342 − P432 − P431),

λ8 ⊗ Inf = 1√
3

(|3〉 〈3| + |1〉 〈1| − 2 |2〉 〈2|) ⊗ Inf

= 1√
3

(I − P12 − P13 − P23).

Note that the realization of some of the Gell-Mann matrices
(λ2,λ5,λ6,λ7) requires higher than two-body interaction.
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