
Predicting Execution Readiness of MPI Binaries with

FEAM, a Framework for Efficient Application

Migration

Karolina Sarnowska-Upton and Andrew Grimshaw

Department of Computer Science

University of Virginia

Charlottesville, VA

Abstract—As computational science becomes increasingly

relevant for performing research, shared computing resources

made accessible by cyberinfrastructures emerge as especially

valuable for the majority of scientists who have not traditionally

been the dominant users of such resources. However, in order to

provide these newer computational scientists the opportunities to

do great research, the ease-of-use of shared computing resources

needs to be increased. In this paper, we present techniques that

aim to make the migration to (and between) shared computing

resources more efficient. Specifically, we focus on determining

whether a computing site is a good fit for running an MPI binary.

We present our methods and a Linux-based implementation

called FEAM (a Framework for Efficient Application Migration).

FEAM predicts execution readiness, resolves missing shared

libraries, and composes site-specific configurations. We show that

FEAM is more than 90% accurate at predicting execution

readiness of MPI application binaries from the NAS Parallel and

SPEC MPI2007 benchmark suites. In our evaluation, only half of

the migrated binaries execute successfully at sites only configured

with a matching MPI implementation. We show that by

automatically resolving shared libraries requirements, FEAM is

able to increase the number of successful executions by a third.

Index Terms—execution prediction, environment

configuration, MPI, migration

I. INTRODUCTION

Although digital techniques permeate all disciplines, the
majority of scientists have not traditionally been the users of
shared computing resources provided by cyberinfrastructures
like XSEDE [1]. Such resources have historically been used
predominantly by participants in “big science,” i.e., projects
with large budgets, extensive collaborations, large data
generation, complex instruments, and/or lengthy timescales.
As computational science becomes increasingly relevant for
performing research, shared computing resources emerge as
especially valuable for the majority of scientists. However, in
order to provide these newer computational scientists the
opportunities to do great research, the ease-of-use of shared
computing resources needs to be increased.

As scientists naturally want to maximize efficiency, they
often turn to parallel computing to perform more computations
in a given amount of time or to perform a given amount of
computation in less time. When running computations in
parallel, scientists generally use shared computing resources to
get more computing capability, whether in terms of processing

power or memory capacity. Typically, parallel computations
employ the Message Passing Interface (MPI) standard, the de
facto standard for running parallel programs on distributed
memory systems. Indeed, many community applications use
MPI to enable parallel execution. However, running an MPI
application on shared computing resources requires that the
execution environment be configured correctly (e.g. with
dependencies related to MPI, libraries, and other software).
This can be a tedious and time consuming process to do
manually, especially for the majority of scientists who are not
traditional users of shared computing resources.

In this paper, we present techniques that aim to make the
migration to (and between) shared computing resources more
efficient. Specifically, we focus on determining whether a
computing site is a good fit for running an application. We
present a framework that predicts whether an application will
execute without being modified, thus enabling scientists to
know how much effort will be required to get their
applications running at new sites. In particular, we focus on
the execution readiness of MPI application binaries. Migrating
binaries instead of source code can be beneficial when optimal
performance is not a concern. In this manner, scientists can
avoid long compile times or compiling unfamiliar codes like
community applications. Scientists can also gain quicker
access to sites with more resources or sites experiencing
shorter queuing delays.

Our work helps bridge the knowledge gap and lessen the
learning curve encountered by new users of shared computing
resources and users of new shared computing resources. We
leverage techniques that may be familiar to more experienced
computational scientists and system administrators to compose
a framework that can aid any scientist in beginning the
migration process. In this paper, we present our methods and a
Linux-based implementation called FEAM (a Framework for
Efficient Application Migration). FEAM predicts execution
readiness, resolves missing shared libraries, and composes
site-specific configurations. We also present an evaluation of
FEAM using MPI binaries from the NAS Parallel and MPI
SPEC2007 benchmark suites. Our evaluation finds that FEAM
can predict an application’s execution readiness with more
than 90% accuracy. Our evaluation also finds that by ensuring
the presence of shared libraries at computing sites, FEAM
increases the number of successful executions by more than
30% as compared to when a user only selects a compatible
MPI implementation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357628757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To the best of our knowledge, our implementation is the
first to automatically predict execution readiness and compose
site-specific configurations. In contrast, existing technologies
assume that developers or users are able to fully describe
application characteristics that are relevant for deployment.
Other solutions also assume that developers or users will
create configuration procedures for new computing sites.

The remainder of this paper is organized as follows. We
begin with a discussion of related work in the next section. We
then present our proposed methods and their implementation.
In Section III, we describe our prediction model of execution
readiness. In Section IV, we describe our resolution scheme for
handling missing shared library dependencies. Then, in Section
V, we explain how FEAM implements our methods. Finally,
Section VI presents our evaluation of FEAM’s effectiveness
using binaries from the NAS Parallel and MPI SPEC2007
benchmark suites. Section VII discusses future work and
Section VIII concludes.

II. RELATED WORK

Various technologies exist to aid in the preparation of
computing sites for the execution of applications. Commonly
used HPC resource managers, like PBS [2], SGE [3], and
SLURM [4], ensure applications are run on compute nodes
with specified hardware characteristics like size of memory
and number of nodes. They provide a mechanism with which
users can deploy scripts to configure an environment further.
Representation formats, such as SDD [5] and CDDLM [6],
can be used to describe application information related to
deployment. Frameworks, such as GLARE [7] and
DistributedAnt [8], can be used to describe deployment
instructions and perform them at new computing sites. There
are also other technologies that utilize related methods while
addressing different problems. Build tools, like Autoconf [9],
gather information about execution environments to aid with
resolving compile dependencies. Package managers provide
tools for administrative management of software on
computing systems [10,11,12]. Virtual machines mask the
heterogeneity of execution environments while posing their
own deployment limitations and incurring a performance
overheard for many parallel applications [10]. However,
unlike our solution, existing technologies do not automatically
identify and describe the application information related to
deploying an application at a new site. It is assumed that
application developers or users will describe application
characteristics as relevant for deployment. Similarly, unlike
our resolution techniques, existing technologies do not
automatically compose site-specific configuration instructions.
It is assumed that application developers or users will develop
the deployment procedures for new computing sites. Existing
technologies cannot be utilized as efficiently by scientists
trying to run their application binaries in new environments as
the automated methods we present in this paper.

III. EXECUTION PREDICTION MODEL

We have created a model to predict whether an MPI
application is likely to execute at a new computing site. To
make a prediction, our model considers the following
questions: 1) Does the new computing site have a compatible
and functioning MPI stack? 2) Does the new computing site

meet the application’s shared library requirements, including
its C library version requirements? 3) Was the application
compiled for a compatible hardware architecture? In this
section, we explain how our model assesses whether these
determinants are met. (For implementation details of our
model, see Section V.)

Please note our use of the following terms:

• Target site: a computing site to where an application is
being migrated

• Execution readiness: an application’s ability to run
successfully

• Guaranteed execution site: a site where an application
runs successfully (typically this is the site from where
an application is being migrated; it may be a site where
an application was compiled)

• MPI stack: a combination of an MPI implementation,
compiler, and interconnection network

A. MPI Stack Compatibility

The main determinant of our model considers whether a
target site has a compatible and functioning MPI stack.
Matching the MPI stack is critical when dealing with
applications that use the MPI standard, as MPI is only an
interface specification: the MPI standard specifies a library
interface, not a specific library. An implementation of the MPI
standard consists of a library (i.e. Open MPI, MPICH,
MVAPICH) that can have various dependencies. Accordingly,
an application compiled with a particular MPI implementation
inherits the specific set of dependencies related to that MPI
implementation type. Therefore, to predict execution of a
dynamically-linked application at a target site, our model
considers whether the necessary MPI library and its
dependencies are available. Similarly, matching the associated
compiler (i.e. GNU, Intel, or PGI) and, if applicable, the
interconnection network (i.e. Ethernet or Infiniband) is
important in order to match other dynamically-linked shared
libraries.

We define a compatible MPI implementation as any
implementation of the same type (i.e. an application compiled
with Open MPI is only compatible with Open MPI and not
MVAPICH or MPICH). In determining compatibility, our
model does not consider the MPI implementation version
because we have found that different version numbers do not
necessarily imply incompatibility or compatibility. For
example, we have found that an application compiled with
Open MPI version 1.4 executes on a system using Open MPI
version 1.3 in some instances but not in others. We do,
however, consider version compatibly between shared library
dependencies of MPI libraries. This compatibility is
determined using the same methods as for any other shared
library (described in Section III.B).

In addition to considering whether a compatible MPI stack
exists, our model also takes into account whether the stack is
functioning. For our purposes, an MPI stack is considered
functioning if a basic MPI program is able execute using that
stack. We have found that available MPI stacks may not be
functioning due to misconfiguration. For example, an MPI
implementation or compiler version may have been updated or
a network may have been reconfigured; in both of these

 User Input
(application location, phase, submission syntax)

FEAM’s Source Phase (optional)

Environment

Description Component

Binary Description

Component

FEAM’s Target Phase (required)

Environment

Description Component

Binary Description

Component

User Input
(application location, phase, submission syntax)

Source Phase

Output

Target Evaluation

Component

Site-Specific

Configuration

Execution Readiness

Prediction

Fig. 1. The Phases and Components of FEAM
FEAM, our Framework for Efficient Application Migration, consists of

two phases and three components. The source phase is optionally run a

guaranteed execution site while the target phase must always be run at a

target site. Running both phases enables our resolution methods and

additional compatibility tests to be applied.

situations, a particular combination of MPI library, compiler,
and interconnection network may no longer be compatible.

B. Shared Library Compatibility

Another key determinant of our prediction model is the
presence of required shared libraries. If an application’s shared
library requirements are not met at a new computing site, the
application will not execute. Thus, our model considers
whether target sites are equipped with compatible versions of
required shared libraries. Shared library compatibility is
assessed based on library naming and version conventions as
well as word-length (32 vs. 64-bit). Shared libraries are named
using the following format convention that indicates the
library name as well as the major and minor release version
numbers:

lib<name>.so.<major_version>.<minor_version>

Compatibility is guaranteed for shared libraries with the same
major version.

In assessing shared library compatibility, our model pays
particular attention to the C library. As is well known, C
library compatibility is a major determinant in the ability of an
application to execute at a new computing site. Most
applications, as well as their shared library dependencies, are
dynamically-linked against a system’s C library. Different
versions of the C library exist at sites as a result of
administrators updating their computer systems’ C library
versions at different times during the lifetime of a system. In
our model, we assess C library compatibility based on the
highest version of the C library that is used by an application.
We call this an application’s required C library version. Our
model considers a target site’s C library version to be
compatible if it is equal to or greater than an application’s
required C library version.

C. Hardware Architecture Compatibility

The most basic determinant our model considers is
hardware architecture compatibility. Our model evaluates
compatibilities related to instruction set architectures (i.e. PPC,
X86) and word-length to determine whether the format into
which an application was compiled is executable at a target
site.

IV. RESOLUTION SCHEME

In addition to a prediction model, we have created a
scheme to determine whether some execution blocking issues
can be resolved. In creating this scheme, we considered how
the determinants of our execution prediction model could be
influenced to enable execution. We recognized that, in
general, execution readiness can be influenced by modifying
an application or by modifying a target site. As our work
assumes access to only an application binary, we were not
interested in modifying the application. Thus, we investigated
how a target site could be adapted to enable application
execution. We found that resolving shared library
requirements can often be accomplished in an unobtrusive
manner. As a result, we created a scheme that focuses on the
resolution of shared library requirements.

In creating our resolution scheme, we recognized that
whenever there is access to an application’s guaranteed
execution site, there is also access to the application’s required
shared libraries. These shared libraries present at guaranteed
execution sites can be copied for use at target sites. (Licensing
issues are out of scope of our work.) Copying binaries, such as
shared libraries, requires no special privileges or
infrastructure. In contrast, influencing the other determinants
of execution readiness, such as by installing a missing MPI
stack or emulating a mismatched instruction set, would be
beyond the scope of what most users are allowed to do at
target sites.

There are two parts to our resolution scheme. First, we
determine whether copies of missing shared libraries are
available. Then, we determine whether the available library
copies will execute at the target site. To assess the execution
readiness of the library copies, we apply our execution
prediction analysis. This may include recursively resolving
missing shared libraries that a library copy requires. If our
analysis predicts that the library copies are ready to execute at
the target site, our resolution scheme concludes that the
missing shared library requirements are resolvable.

V. IMPLEMENTATION

We have realized our prediction model and resolution
scheme in FEAM, a Framework for Efficient Application
Migration. FEAM is composed of three components that

1. ISA and file format of binary

2. Library name and version, if applicable

3. Required shared libraries, with copies and

descriptions if applicable

4. C library version requirements

5. MPI stack, operating system, and C library

version used to build binary

Fig. 2. Information Gathered by the BDC

The Binary Description Component (BDC) of FEAM gathers

information about MPI application binaries.

execute in two phases (depicted in Figure 1). During a target
phase, FEAM determines an application’s execution readiness.
During a preliminary but optional source phase, FEAM
gathers information to enable resolution and support better
prediction. FEAM source phases are carried out at guaranteed
execution sites while target phases are carried out at target
sites. As part of any phase, FEAM executes its Binary
Description Component and Environment Discovery
Component. The Binary Description Component gathers
information about an application binary. The Environment
Discovery Component gathers information about a computing
environment. During a target phase, FEAM additionally
executes the Target Evaluation Component to resolve
execution issues and form the prediction about an
application’s execution readiness. After first providing an
overview of the requirements for using FEAM, this section
describes the implementation of each of its components. While
our implementation techniques are relatively simple, their
composition efficiently and automatically provides a
determination of an application’s execution readiness.

FEAM can be used to predict the execution readiness of
applications only at sites with Unix-like operating systems.
While our prediction model and resolution scheme could be
implemented for any operating system type, we have
developed the current implementation of FEAM for sites with
Unix-like operating system utilities. To use FEAM, a user
needs to provide minimal input. The user specifies the
application binary location and which FEAM phase is to be
run. If running a target phase, the user can also specify the
location of a source phase output bundle, if applicable.
Additionally, the user provides template submission scripts for
running serial and parallel jobs. This submission format is the
only site information that is not automatically determined by
FEAM. The information that FEAM discovers about a target
site, including the site-specific configuration details, are
output to the user along with a prediction of execution
readiness.

A. Binary Description

The Binary Description Component (BDC) of FEAM
gathers information about an application binary. The five
types of information collected by the BDC are listed in Figure
2. To gather this information, the BDT requires access to the
application binary during a target or source phase. As the BDT
is the only FEAM component that requires access to the
application binary, running both phases of FEAM provides the
additional benefit of not needing the application binary to be

TABLE I. IDENTIFYING LIBRARIES OF MPI IMPLEMENTATIONS

MPI Implementation Library Dependencies
MVAPICH2 libmpich/libmpichf90, libibverbs, libibumad

Open MPI libnsl, libutil

MPICH2 libmpich/libmpichf90 (and not other identifiers)

present at the target site. In this subsection, we describe how
the BDT gathers the information needed to create an
application description.

The BDT extracts the first four types of information listed
in Figure 2 using the GNU Binary Utility [14] objdump. We
call the objdump utility with the “-p” flag to view information
about a binary’s file format (i.e. the executable and linkable
format ELF). The header of the resulting description specifies
the file format of the binary as well as the instruction set
architecture and the number of bits for which the binary was
compiled. Under the description’s “Dynamic Section”, we
extract the “NEEDED” components to create a list of shared
libraries the application was linked against. We also consult
the “Dynamic Section” to extract naming and version
information for binaries that are shared libraries. Finally, using
information from the “Version Definitions” and “Version
References” sections, we find the newest version of the C
library that is listed as being used by the application.

The BDT verifies an application’s shared library
dependencies with the Unix utility ldd. We call ldd with the -v
command-line option to view a list of the shared libraries an
application has been linked against along with their locations
in the local file system and version information. We do not
rely on ldd for shared library information, as we have found
that in some cases this utility does not recognize an application
as being dynamically linked.

To gather information about the operating system and C
library version used to create an application binary, the BDT
uses the GNU Binary Utility readelf. This utility provides
information about ELF files (the standard binary format for
Unix and Unix-like system on x86). We call readelf with the
“-p .comment” flag to display a binary’s comment header
section. This optional section may contain compiler and linker
specific version control information with operating system and
C library version details.

To identify the MPI stack used to compile an application,
we examine an application’s shared library dependencies. Our
identification scheme takes advantage of the fact that MPI is
not a link-level specification. Rather, the MPI standard
specifies a library interface; consequently, implementations of
the standard have different link-level dependencies. We have
created an identification scheme for the three dominant open
source MPI implementations (Open MPI [15], MPICH2 [16],
and MVAPICH2 [17]). The shared libraries that we use as
MPI implementation identifiers are listed in Table I.

When running during a source phase, the BDC also gathers
a description and copy of all of the shared libraries against
which an application has been linked. A description of each
shared library is gathered in the same manner as the
description for any application binary. A copy of each shared
library (except for the C library) is then made by locating each
shared library in the local file system. If the ldd utility is
unable to provide this location information, we search for each
shared library using three possible methods. If available, the

1. ISA format

2. Operating system

3. C library version

4. Available or currently loaded MPI stacks

5. Missing shared libraries

Fig. 3. Information Gathered by the EDC

The Environment Description Component (EDC) of FEAM gathers

information about a computing site.

locate utility can be used to reveal the locations of files with
matching names. The find utility can be used to search
common library locations as well as locations set in the
LD_LIBRARY_PATH environment variable. Alternately, a
locally compiled “Hello World” program can be created to
reveal commonly linked against shared libraries.

B. Environment Discovery

The Environment Discovery Component (EDC) gathers
information about a computing environment. The five types of
information gathered by the EDC are listed in Figure 3. The
BDT gathers this information during target and source phases
to form descriptions of target sites and guaranteed execution
sites. In this subsection, we describe how the EDC gathers the
information needed to create an environment description.

To determine a system’s instruction set architecture
format, the EDC uses the Linux utility uname. We call uname
with the “-p” flag to view processor related information.
During target phases, we also gather information about the
operating system to provide the user with additional
information about an environment. We examine standard files
with system information under /proc and /etc to determine
which Linux distribution is running on the system. We consult
the /proc/version file to determine the OS type and version
information. We confirm this information by examining files
under /etc/*release.

To determine the version of a system’s C library, the EDC
uses the C library’s application programming interface. We
call the gnu_get_libc_version function to get a list of
available C library versions. Alternately, we determine the
version by invoking the C library binary. The binary is located
for invocation via the same methods the BDC uses to locate
shared libraries.

To determine what MPI stacks are available at a
computing site, the EDC consults user-environment
management tools. These tools support the discovery of
packages and help manage the shell environment. We search
for the presence of Environment Modules [18] or SoftEnv [19]
configuration files to assess if these user-environment
management tools are present. If one of these tools is located,
we use its search mechanism to locate MPI implementations
and compiler combinations (e.g. module avail for
Environment Modules). If no user-environment management
tools are found, we search for MPI implementation identifying
libraries (listed in Table I) using the same methods as used by
the BDC to locate shared libraries. We also search for
commonly used wrappers for compiling MPI programs (e.g.
mpicc).

To determine what MPI stacks are currently accessible in a
computing environment, the EDC examines environment

settings. If user-environment management tools are present,
we use the corresponding mechanisms to reveal these setting.
For example, if Environment Modules are present, we use the
module list command to get a listing of what MPI
implementation and compiler the shell is configured to access.
Alternately, we search for MPI implementations accessible via
the PATH and LD_LIBRARY_PATH environment variables.
We can also determine information about the currently
accessible MPI stack by identifying which commonly used
wrappers for compiling MPI programs are currently accessible
at the site.

When running during a source phase, the EDC additionally
creates two MPI “Hello World” programs, one compiled in C
and the other in Fortran. We compile these programs using the
application’s required MPI stack.

When running during a target phase, the EDC additionally
identifies whether any required shared libraries are missing at
the target site. If the application binary is present at the target
site, we use the ldd tool to get a list of missing shared libraries.
If the application binary is not present at the target site, or if
the ldd tool is not working, we perform a search using the
same methods as used by the BDC to locate shared libraries.

C. Target Evaluation

The Target Evaluation Component (TEC) evaluates the
execution readiness of an application during target phases. To
determine execution readiness, the TEC investigates the
determinants outlined by our prediction model. If following a
source phase, the TEC also applies our resolution scheme. In
this subsection, we describe the process the TEC follows to
arrive at a final prediction.

The TEC first determines whether the hardware
architecture and C library version requirements are met. To
evaluate compatibility—as outlined in our prediction model in
Section III—we analyze the application description created by
the BDC and the environment descriptions created by the
EDC.

The TEC next evaluates MPI stack compatibility. The TEC
can search for a compatible MPI stack or for a specific MPI
stack requested by the user. For each matching MPI stack, we
compile and run test MPI programs to determine if the stack is
functioning as defined by our prediction model. If a source
phase has previously occurred, we also run the test MPI
programs generated at the guaranteed execution site. The
success of these tests further shows compatibility between the
selected MPI stack and an MPI stack used to run the
application. Running these test MPI programs requires
knowing the execution command that corresponds to the
selected MPI stack. Our methods by default use the mpiexec
command unless otherwise specified by users in the template
submission format description.

Lastly, the TEC investigates whether an application’s
shared library requirements are met. The EDC has already
determined if any required shared libraries are missing at the
target site. If a source phase has previously occurred, we
attempt to resolve any missing library requirements by
applying our resolution scheme. We make copies of missing
shared libraries that have been determined to be ready to
execute at the target site accessible for use at runtime by
adding their location to the PATH environment variable.

The TEC makes the final prediction that an application is
ready for execution at a target site if all of our prediction
model determinants are evaluated to be satisfied. FEAM
outputs the prediction along with site-specific configuration
details to the user. The output includes an explanation of
general site information and any detected problems.
Additionally, the user is provided with scripts to automatically
set the determined configurations at runtime.

VI. EVALUATION

To evaluate our prediction model and resolution scheme,
we used FEAM to predict the execution readiness of MPI
application binaries from two benchmark suites across five
computing sites. To determine the effectiveness of our
prediction model, we compared FEAM’s prediction of
execution readiness with actual execution results, i.e., whether
the applications ran or not. To evaluate the impact of our
resolution scheme, we calculated the increase in successful
executions enabled by FEAM. In this section, before
discussing the evaluation results, we discuss the binaries and
sites used for our tests as well as how our tests were set up.

A. Test Set Description

For our evaluation, we used MPI applications from two
benchmark suites: the NAS Parallel Benchmarks [17] and
SPEC MPI2007 [18]. The NAS Parallel Benchmarks (NPB)
suite consists of applications derived from computational fluid
dynamics. SPEC MPI2007 benchmark suite was developed
from native MPI-parallel end-user applications. We used
version 2.4 of the MPI reference implementation of the NPB
suite and version 2.0 of the SPEC MPI2007 benchmark suite
for our evaluation.

We evaluated the execution readiness of the selected MPI
applications at five computing environments. These target
sites were chosen such that a diverse test set was created in
terms of the operating system, hardware architecture, network
interconnect, and MPI implementation. Three of the chosen
test sites are state-of-the-art high performance computing
systems available to researchers via the national XSEDE
infrastructure [22]. They represent the main types of systems
architectures available at the national supercomputing centers:
symmetric multiprocessing (SMP), massively parallel
processing (MPP), and hybrid CPU/GPU systems. The other
two test sites are mid-size university clusters. One is part of
the FutureGrid Project [23] test-bed while the other is a
University of Virginia resource [24]. The test sites run
different versions of three Linux-based operating systems and
the C library. The sites support three open source MPI
implementations. Open MPI is available at five sites,
MVAPICH2 is available at four sites, and MPICH2 is
available at two sites. Each MPI implementation is associated
with GNU, Intel, and/or PGI compilers for C and/or Fortran.
Table II details these characteristics for each computing site
and lists the MPI stack combinations that we used to create
application binaries.

To create the MPI application binaries for our tests, we
compiled the selected MPI applications with multiple MPI
stacks at each target site. Our final binary test set consisted of

TABLE II. TARGET SITE CHARACTERISTICS

Computing Site

 (Type - CPUs)

Operating

System

C Library

&

Compiler

Versions

Utilized MPI Stacks:

MPI Types & Versions

(Compilers i:Intel,

g:GNU, p:PGI)

XSEDE Ranger,

Texas Advanced

Computing

Center

(MPP – 62,976)

CentOS

4.9

LibC

v2.3.4,

GNU CC

v3.4.6,

Intel v10.1

Open MPI v1.3 (i/g/p)

MVAPICH2 v1.2 (i/g/p)

XSEDE Forge,

National Center

for

Supercomputing

Applications

(Hybrid - 576)

Red Hat

Enterprise

Linux

Server 6.1

LibC v2.12

GNU CC

v4.4.5

Intel v12

Open MPI v1.4 (g/i)

MVAPICH2 v1.7rcl (i)

XSEDE

Blacklight,

Pittsburg

Supercomputing

Center

(SMP – 4,096)

SUSE

Linux

Enterprise

Server 11

LibC

v2.11.1,

GNU CC

v4.4.3,

Intel v11.1

Open MPI v1.4 (i/g)

FutureGrid India,

Indiana

University

(Cluster - 920)

Red Hat

Enterprise

Linux

Server 5.6

LibC v2.5,

GNU CC

v4.1.2,

Intel v11.1

Open MPI v1.4 (i/g)

MVAPICH2 v1.7a2 (i/g)

MPICH2 v1.4 (i/g)

ITS Fir,

University of

Virginia

(Cluster - 1,496)

CentOS

5.6

LibC v2.5,

GNU CC

v4.1.2,

Intel v12

Open MPI v1.4 (i/g/p)

MVAPICH2 v1.7a (i/g/p)

MPICH2 v1.3 (i/g/p)

a subset of the benchmarks suites as some benchmark
applications would not compile with certain MPI stacks
combinations while others would not run at the site where they
were compiled. From the NPB suite, our test set consisted of
four kernels (integer sort, embarrassingly parallel, conjugate
gradient, and multi-grid on a sequence of meshes) as well as
three pseudo applications (block tri-diagonal solver, scalar
penta-diagonal solver, and lower-upper Gauss-Seidel solver).
From the SPEC MPI2007 benchmark suite, our test set
consisted of a quantum chromodynamics code (104.milc), two
computation fluid dynamics codes (107.leslie3d and 115.fds4),
a parallel ray tracing code (122.tachyon), a molecular
dynamics simulation code (126.lammps), a weather prediction
code (127.GAPgeofem), and a 3D Eulerian hydrodynamics
code (129.tera_tf). In total, our binary test set was comprised
of 110 NPB and 147 SPEC MPI2007 binaries.

B. Methodology

To evaluate the effectiveness of our prediction model, we
compared FEAM’s predictions with actual execution results.
Initially, we migrated each MPI application binary to all target
sites where the binary had not been compiled. We found that
our methods were 100% accurate at assessing whether a
matching MPI implementation was available for all target
sites. Thus, we chose to restrict our evaluation to sites that had
a matching MPI implementation. For example, for binaries
compiled for MVAPICH2 on Ranger, the accuracy of our
prediction was calculated only on Forge, India, and Fir. The
execution readiness of applications at such sites is more
relevant as, without a matching MPI implementation, the other
sites have no potential for successful execution. However, in
choosing to focus on this subset, we ignore accurate

TABLE III. ACCURACY OF PREDICTION MODEL

Basic Prediction Extended Prediction

NAS SPEC NAS SPEC
94% 92% 99% 93%

TABLE IV. IMPACT OF RESOLUTION MODEL

Actual Execution Result Increase in

Successful Executions

due to Resolution

Before

Resolution

After

Resolution

NAS SPEC NAS SPEC NAS SPEC

58% 47% 78% 66% 33% 39%

predictions and, as a result, present lower prediction accuracy
results than if all target sites had been considered.

Our evaluation of the effectiveness of our prediction model
also distinguishes where information is gathered to form a
prediction. We present basic prediction results formed by only
running FEAM’s required target phase at a target site. We
present extended prediction results formed by including
information from running FEAM’s optional source phase at a
guaranteed execution site. In this way, our evaluation
differentiates the effectiveness of our methods for instances
when users do not have access to or do not want to access
guaranteed execution sites. Such a situation could, in
particular, be relevant to users of community application
binaries. Table III presents the accuracy results of our
prediction model for basic and extended predictions on our
test set, broken down by benchmark suite.

To evaluate the impact of our resolution scheme, we
calculated the increase in successful executions enabled by
FEAM. As with our prediction model evaluation, our
resolution scheme evaluation focused on target sites with
matching MPI implementations. We measured the number of
successful executions before applying FEAM (Epre) and the
number of successful executions after applying the resolution
related configurations composed by FEAM (Epost). Finally, we
calculated the increase in successful executions (Eincrease) in
relation to the initial number of successful executions:

Eincrease = (Epost - Epre) / Epre

Table IV presents these three sets of calculations for each
benchmark suite as a percentage of the total number of
executions.

C. Results Analysis

To put the evaluation results of our prediction model and
resolution scheme into perspective, we first consider the
execution results that we gathered without applying FEAM.
We found that only around half (58% of the NAS binaries and
47% of the SPEC binaries) of the applications ran when the
only configuration performed was the selection of a matching
MPI implementation. These results underline the importance
of considering more than just available MPI implementations
when choosing execution sites. Again, these percentages only
consider target sites where a matching MPI implementation
was available. If all possible target sites had been considered,
the percentage of successful executions would be much lower.
Our results also confirm the importance of dealing with

missing shared libraries to ensure the execution of an
application binary without recompilation. We found that
missing shared libraries caused more than half of the
execution failures. (The remaining failures were due to C
library version requirements, floating point exceptions, and
system errors.)

Upon analysis of our evaluation results, we found that our
model was able to recognize and correctly predict the vast
majority of execution failures. FEAM’s predictions were over
90% accurate. Due to additional compatibility tests
incorporated from information gathered during FEAM’s
source phases, our extended predictions were even more
accurate than our basic predictions (99% vs. 94% for NAS
binaries and 93% vs. 92% for SPEC binaries). For example,
by running MPI test programs compiled at guaranteed
execution sites, we were able to detect floating point errors
and application binary interface (ABI) incompatibilities in
shared libraries. We found that less than 10% of the time our
model incorrectly predicted success as it was unable to
recognize failures due to system errors, such as failed MPI
daemon spawning or time-outs due to communication errors.

As for our resolution scheme, our analysis revealed that it
enabled execution for about half of the binaries that would
have otherwise failed due to missing shared libraries. In other
words, using FEAM resulted in around a third more successful
executions overall (33% for the NAS binaries and 39% for the
SPEC binaries). The other half of the missing library failures
could not be resolved mainly due to incompatibility issues. For
example, the shared libraries copies gathered at guaranteed
execution sites required incompatible C library versions and
used incompatible ABIs. The remaining resolution attempts
failed due to system errors.

To additionally asses the cost of using FEAM, we
measured how many CPU hours were required to run our
prediction model as well as how much extra space was
required to apply our resolution scheme. These quantities are
relevant for computing sites that charge for compute nodes
usage and limit storage space. We found that FEAM’s source
and target phases completed in less than five minutes. We
measured that FEAM used on average 45MB of disk space
when counting the size of a bundle of all shared libraries used
by our test set. Overall, we found that executing FEAM for
our evaluation test set required a small amount of time and
disk space.

VII. FUTURE WORK

The general direction of our future work will be to develop
more methods for efficiently migrating MPI applications to
new environments. Our next focus is on techniques to aid the
migration of MPI application source code. We are also in the
process of carrying out a study that measures the amount of
time users spend and the types of tasks users perform when
migrating to new environments [25]. Eventually, we will
evaluate the effectiveness of our techniques on a mixture of
non-benchmark codes developed by individuals and
communities.

VIII. CONCLUSIONS

This paper described our efforts to help make
computational infrastructures more usable and accessible to

any scientists who want to employ computation in doing their
research. We described a model that predicts whether MPI
application binaries will execute at new sites and a scheme
that increases the likelihood binaries will execute by resolving
shared library requirements. We presented a Linux-based
implementation of our techniques called FEAM, a Framework
for Efficient Application Migration. We evaluated FEAM
across five computing sites with applications from NAS
Parallel and MPI SPEC2007 benchmark suites compiled using
three open-source MPI implementations and three compilers.
Our evaluation found that our prediction model was more than
90% accurate, and that our resolution scheme enabled about a
third more successful executions.

There are various use cases for employing FEAM. FEAM
can be a preliminary probe for evaluating multiple target sites
by analyzing sites for execution readiness quickly without
requiring the application to be present at each site. FEAM can
gather and document basic site characteristics, such as
available MPI stacks. FEAM can also detect and document
basic execution issues. When scientists are dealing with
applications they did not create, FEAM can identify basic
requirements, such as the MPI stack and shared library
dependencies. FEAM can quickly enable execution that would
otherwise be blocked by missing shared libraries without
requiring scientists to be familiar with the management of
shared objects. Additionally, FEAM, by providing
documentation of the analysis process, can teach interested
scientists what to look for at new computing sites when
assessing execution readiness.

FEAM executes with minimal input from the user, runs
quickly, and requires little space. It relieves the user of
manually parsing various environment configurations to find
out if a shared computing resource is a good match for
execution. For scientists who do not have much experience,
time, or support to explore new computing sites or compile
MPI applications, FEAM provides an efficient automated tool
for facilitating the migration process.

ACKNOWLEDGMENT

This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by
National Science Foundation grant number OCI-1053575.
This work also used resources supported in part by the
National Science Foundation under Grant No. 0910812 to
Indiana University for “FutureGrid: An Experimental, High-
Performance Grid Testbed.”

REFERENCES

[1] XSEDE: Extreme Science and Engineering Discovery Environment.
https://www.xsede.org/.

[2] L. Bayucan, et al, “Portable Batch System External Reference
Specification”, MRJ Technology Solutions, May 1999.

[3] W. Gentzsch, “Sun Grid Engine: towards creating a compute power
grid”, Proceedings of the First IEEE/ACM International Symposium on
Cluster Computing and the Grid, 2001, pp.35-36.

[4] SLURM: Simple Linux Utility for Resource Management,
http://www.llnl.gov/linux/slurm/slurm_design.pdf

[5] J. McCarthy and B. Miller. Solution Deployment Descriptor (SDD), Part
1: An emerging standard for deployment artifacts. IBM
DeveloperWorks. 2008.

[6] A. Dantas, et al. “Using web services for configuration and deployment
according to the CDDLM standard,” International Conference on Web
Services, 2006, pp. 951-954.

[7] M. Siddiqui, et al. “GLARE: A grid activity registration, deployment
and provisioning framework,” Proceedings of the ACM/IEEE SC 2005
Conference, 2005, pp. 52 - 64.

[8] W. Goscinski and D. Abramson. “Distributed Ant: a system to support
application deployment in the grid,” Proceedings of the Fifth
IEEE/ACM International Workshop on Grid Computing, 2004, pp. 436-
443.

[9] Autoconf - GNU Project. http://www.gnu.org/software/autoconf/.

[10] E.C. Bailey. Maximum RPM: Taking the Red Hat Package Manager to
the Limit. Red Hat, Inc., 2000.

[11] Yum: Yellow Dog Update Modifier. http://yum.baseurl.org/.

[12] Smart Package Manager. http://labix.org/smart/.

[13] C. Xu, Y. Bai, and C. Luo. “Performance envalutation of parallel
programming in virtual machine environment,” Sixth IFIP International
Conference on Network and Parallel Computing, 2009, pp. 140-147.

[14] GNU Binutils. http://www.gnu.org/software/binutils/.

[15] OpenMPI: Open Source High Performance Computing.
http://www.open-mpi.org/.

[16] MPICH2: High Performance and Highly Portable MPI.
http://www.mcs.anl.gov/research/projects/mpich2/.

[17] MVAPICH2: MPI-2 over InfiniBand, 10GigE/iWARP and RoCE.
http://mvapich.cse.ohio-state.edu/overview/mvapich2/.

[18] Modules – Software Environment Management.
http://modules.sourceforge .net/.

[19] Msys - The MCS Systems Administration Toolkit.
http://www.mcs.anl.gov/hs/software /systems/msys/.

[20] R.F. Van der Wijngaart. NAS Parallel Benchmarks Version 2.4. 2002.

[21] M.S. Müller, et al. "SPEC MPI2007 - an application benchmark suite for
parallel systems using MPI." Concurrency and Computation: Practice
and Experience Vol. 22, Issue 2 (2010): 191-205.

[22] XSEDE Resources Overview.
https://www.xsede.org/resources/overview

[23] FutureGrid: A Distributed Testbed for Clouds, Grids, and HPC.
https://portal.futuregrid.org/.

[24] University of Virginia Alliance for Computation Science and
Engineering: Resources. http://www.uvacse.virginia.edu/resources/.

[25] Quantifying User Effort to Migrate MPI Applications: A Research
Study. http://www.cs.virginia.edu/~kas9ud/study/.

