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Abstract—As computational science becomes increasingly 

relevant for performing research, shared computing resources 

made accessible by cyberinfrastructures emerge as especially 

valuable for the majority of scientists who have not traditionally 

been the dominant users of such resources. However, in order to 

provide these newer computational scientists the opportunities to 

do great research, the ease-of-use of shared computing resources 

needs to be increased. In this paper, we present techniques that 

aim to make the migration to (and between) shared computing 

resources more efficient. Specifically, we focus on determining 

whether a computing site is a good fit for running an MPI binary. 

We present our methods and a Linux-based implementation 

called FEAM (a Framework for Efficient Application Migration). 

FEAM predicts execution readiness, resolves missing shared 

libraries, and composes site-specific configurations. We show that 

FEAM is more than 90% accurate at predicting execution 

readiness of MPI application binaries from the NAS Parallel and 

SPEC MPI2007 benchmark suites. In our evaluation, only half of 

the migrated binaries execute successfully at sites only configured 

with a matching MPI implementation. We show that by 

automatically resolving shared libraries requirements, FEAM is 

able to increase the number of successful executions by a third. 

Index Terms—execution prediction, environment 

configuration, MPI, migration 

I.  INTRODUCTION 

Although digital techniques permeate all disciplines, the 
majority of scientists have not traditionally been the users of 
shared computing resources provided by cyberinfrastructures 
like XSEDE [1]. Such resources have historically been used 
predominantly by participants in “big science,” i.e., projects 
with large budgets, extensive collaborations, large data 
generation, complex instruments, and/or lengthy timescales. 
As computational science becomes increasingly relevant for 
performing research, shared computing resources emerge as 
especially valuable for the majority of scientists. However, in 
order to provide these newer computational scientists the 
opportunities to do great research, the ease-of-use of shared 
computing resources needs to be increased. 

As scientists naturally want to maximize efficiency, they 
often turn to parallel computing to perform more computations 
in a given amount of time or to perform a given amount of 
computation in less time. When running computations in 
parallel, scientists generally use shared computing resources to 
get more computing capability, whether in terms of processing 

power or memory capacity. Typically, parallel computations 
employ the Message Passing Interface (MPI) standard, the de 
facto standard for running parallel programs on distributed 
memory systems. Indeed, many community applications use 
MPI to enable parallel execution. However, running an MPI 
application on shared computing resources requires that the 
execution environment be configured correctly (e.g. with 
dependencies related to MPI, libraries, and other software). 
This can be a tedious and time consuming process to do 
manually, especially for the majority of scientists who are not 
traditional users of shared computing resources. 

In this paper, we present techniques that aim to make the 
migration to (and between) shared computing resources more 
efficient. Specifically, we focus on determining whether a 
computing site is a good fit for running an application. We 
present a framework that predicts whether an application will 
execute without being modified, thus enabling scientists to 
know how much effort will be required to get their 
applications running at new sites. In particular, we focus on 
the execution readiness of MPI application binaries. Migrating 
binaries instead of source code can be beneficial when optimal 
performance is not a concern. In this manner, scientists can 
avoid long compile times or compiling unfamiliar codes like 
community applications. Scientists can also gain quicker 
access to sites with more resources or sites experiencing 
shorter queuing delays.  

Our work helps bridge the knowledge gap and lessen the 
learning curve encountered by new users of shared computing 
resources and users of new shared computing resources. We 
leverage techniques that may be familiar to more experienced 
computational scientists and system administrators to compose 
a framework that can aid any scientist in beginning the 
migration process. In this paper, we present our methods and a 
Linux-based implementation called FEAM (a Framework for 
Efficient Application Migration). FEAM predicts execution 
readiness, resolves missing shared libraries, and composes 
site-specific configurations. We also present an evaluation of 
FEAM using MPI binaries from the NAS Parallel and MPI 
SPEC2007 benchmark suites. Our evaluation finds that FEAM 
can predict an application’s execution readiness with more 
than 90% accuracy. Our evaluation also finds that by ensuring 
the presence of shared libraries at computing sites, FEAM 
increases the number of successful executions by more than 
30% as compared to when a user only selects a compatible 
MPI implementation.  
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To the best of our knowledge, our implementation is the 
first to automatically predict execution readiness and compose 
site-specific configurations. In contrast, existing technologies 
assume that developers or users are able to fully describe 
application characteristics that are relevant for deployment. 
Other solutions also assume that developers or users will 
create configuration procedures for new computing sites.  

The remainder of this paper is organized as follows. We 
begin with a discussion of related work in the next section. We 
then present our proposed methods and their implementation. 
In Section III, we describe our prediction model of execution 
readiness. In Section IV, we describe our resolution scheme for 
handling missing shared library dependencies. Then, in Section 
V, we explain how FEAM implements our methods. Finally, 
Section VI presents our evaluation of FEAM’s effectiveness 
using binaries from the NAS Parallel and MPI SPEC2007 
benchmark suites. Section VII discusses future work and 
Section VIII concludes. 

II. RELATED WORK 

Various technologies exist to aid in the preparation of 
computing sites for the execution of applications. Commonly 
used HPC resource managers, like PBS [2], SGE [3], and 
SLURM [4], ensure applications are run on compute nodes 
with specified hardware characteristics like size of memory 
and number of nodes. They provide a mechanism with which 
users can deploy scripts to configure an environment further. 
Representation formats, such as SDD [5] and CDDLM [6], 
can be used to describe application information related to 
deployment. Frameworks, such as GLARE [7] and 
DistributedAnt [8], can be used to describe deployment 
instructions and perform them at new computing sites. There 
are also other technologies that utilize related methods while 
addressing different problems. Build tools, like Autoconf [9], 
gather information about execution environments to aid with 
resolving compile dependencies. Package managers provide 
tools for administrative management of software on 
computing systems [10,11,12]. Virtual machines mask the 
heterogeneity of execution environments while posing their 
own deployment limitations and incurring a performance 
overheard for many parallel applications [10]. However, 
unlike our solution, existing technologies do not automatically 
identify and describe the application information related to 
deploying an application at a new site. It is assumed that 
application developers or users will describe application 
characteristics as relevant for deployment. Similarly, unlike 
our resolution techniques, existing technologies do not 
automatically compose site-specific configuration instructions. 
It is assumed that application developers or users will develop 
the deployment procedures for new computing sites. Existing 
technologies cannot be utilized as efficiently by scientists 
trying to run their application binaries in new environments as 
the automated methods we present in this paper. 

III. EXECUTION PREDICTION MODEL 

We have created a model to predict whether an MPI 
application is likely to execute at a new computing site. To 
make a prediction, our model considers the following 
questions: 1) Does the new computing site have a compatible 
and functioning MPI stack? 2) Does the new computing site 

meet the application’s shared library requirements, including 
its C library version requirements? 3) Was the application 
compiled for a compatible hardware architecture? In this 
section, we explain how our model assesses whether these 
determinants are met. (For implementation details of our 
model, see Section V.)  

Please note our use of the following terms: 

• Target site: a computing site to where an application is 
being migrated 

• Execution readiness: an application’s ability to run 
successfully  

• Guaranteed execution site: a site where an application 
runs successfully (typically this is the site from where 
an application is being migrated; it may be a site where 
an application was compiled) 

• MPI stack: a combination of an MPI implementation, 
compiler, and interconnection network 

A. MPI Stack Compatibility 

The main determinant of our model considers whether a 
target site has a compatible and functioning MPI stack. 
Matching the MPI stack is critical when dealing with 
applications that use the MPI standard, as MPI is only an 
interface specification: the MPI standard specifies a library 
interface, not a specific library. An implementation of the MPI 
standard consists of a library (i.e. Open MPI, MPICH, 
MVAPICH) that can have various dependencies. Accordingly, 
an application compiled with a particular MPI implementation 
inherits the specific set of dependencies related to that MPI 
implementation type. Therefore, to predict execution of a 
dynamically-linked application at a target site, our model 
considers whether the necessary MPI library and its 
dependencies are available. Similarly, matching the associated 
compiler (i.e. GNU, Intel, or PGI) and, if applicable, the 
interconnection network (i.e. Ethernet or Infiniband) is 
important in order to match other dynamically-linked shared 
libraries.  

We define a compatible MPI implementation as any 
implementation of the same type (i.e. an application compiled 
with Open MPI is only compatible with Open MPI and not 
MVAPICH or MPICH). In determining compatibility, our 
model does not consider the MPI implementation version 
because we have found that different version numbers do not 
necessarily imply incompatibility or compatibility. For 
example, we have found that an application compiled with 
Open MPI version 1.4 executes on a system using Open MPI 
version 1.3 in some instances but not in others. We do, 
however, consider version compatibly between shared library 
dependencies of MPI libraries. This compatibility is 
determined using the same methods as for any other shared 
library (described in Section III.B).  

In addition to considering whether a compatible MPI stack 
exists, our model also takes into account whether the stack is 
functioning. For our purposes, an MPI stack is considered 
functioning if a basic MPI program is able execute using that 
stack. We have found that available MPI stacks may not be 
functioning due to misconfiguration.  For example, an MPI 
implementation or compiler version may have been updated or 
a network may have been reconfigured; in both of these 
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FEAM, our Framework for Efficient Application Migration, consists of 

two phases and three components. The source phase is optionally run a 

guaranteed execution site while the target phase must always be run at a 

target site. Running both phases enables our resolution methods and 

additional compatibility tests to be applied. 

 

situations, a particular combination of MPI library, compiler, 
and interconnection network may no longer be compatible.  

B. Shared Library Compatibility 

Another key determinant of our prediction model is the 
presence of required shared libraries. If an application’s shared 
library requirements are not met at a new computing site, the 
application will not execute. Thus, our model considers 
whether target sites are equipped with compatible versions of 
required shared libraries. Shared library compatibility is 
assessed based on library naming and version conventions as 
well as word-length (32 vs. 64-bit). Shared libraries are named 
using the following format convention that indicates the 
library name as well as the major and minor release version 
numbers: 

lib<name>.so.<major_version>.<minor_version> 

Compatibility is guaranteed for shared libraries with the same 
major version.  

In assessing shared library compatibility, our model pays 
particular attention to the C library. As is well known, C 
library compatibility is a major determinant in the ability of an 
application to execute at a new computing site. Most 
applications, as well as their shared library dependencies, are 
dynamically-linked against a system’s C library. Different 
versions of the C library exist at sites as a result of 
administrators updating their computer systems’ C library 
versions at different times during the lifetime of a system. In 
our model, we assess C library compatibility based on the 
highest version of the C library that is used by an application. 
We call this an application’s required C library version. Our 
model considers a target site’s C library version to be 
compatible if it is equal to or greater than an application’s 
required C library version. 

C. Hardware Architecture Compatibility 

The most basic determinant our model considers is 
hardware architecture compatibility. Our model evaluates 
compatibilities related to instruction set architectures (i.e. PPC, 
X86) and word-length to determine whether the format into 
which an application was compiled is executable at a target 
site. 

IV. RESOLUTION SCHEME 

In addition to a prediction model, we have created a 
scheme to determine whether some execution blocking issues 
can be resolved. In creating this scheme, we considered how 
the determinants of our execution prediction model could be 
influenced to enable execution. We recognized that, in 
general, execution readiness can be influenced by modifying 
an application or by modifying a target site. As our work 
assumes access to only an application binary, we were not 
interested in modifying the application. Thus, we investigated 
how a target site could be adapted to enable application 
execution. We found that resolving shared library 
requirements can often be accomplished in an unobtrusive 
manner. As a result, we created a scheme that focuses on the 
resolution of shared library requirements. 

In creating our resolution scheme, we recognized that 
whenever there is access to an application’s guaranteed 
execution site, there is also access to the application’s required 
shared libraries. These shared libraries present at guaranteed 
execution sites can be copied for use at target sites. (Licensing 
issues are out of scope of our work.) Copying binaries, such as 
shared libraries, requires no special privileges or 
infrastructure. In contrast, influencing the other determinants 
of execution readiness, such as by installing a missing MPI 
stack or emulating a mismatched instruction set, would be 
beyond the scope of what most users are allowed to do at 
target sites. 

There are two parts to our resolution scheme. First, we 
determine whether copies of missing shared libraries are 
available. Then, we determine whether the available library 
copies will execute at the target site. To assess the execution 
readiness of the library copies, we apply our execution 
prediction analysis. This may include recursively resolving 
missing shared libraries that a library copy requires. If our 
analysis predicts that the library copies are ready to execute at 
the target site, our resolution scheme concludes that the 
missing shared library requirements are resolvable. 

V. IMPLEMENTATION 

We have realized our prediction model and resolution 
scheme in FEAM, a Framework for Efficient Application 
Migration. FEAM is composed of three components that 
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Fig. 2.  Information Gathered by the BDC 

The Binary Description Component (BDC) of FEAM gathers 

information about MPI application binaries. 

execute in two phases (depicted in Figure 1). During a target 
phase, FEAM determines an application’s execution readiness. 
During a preliminary but optional source phase, FEAM 
gathers information to enable resolution and support better 
prediction. FEAM source phases are carried out at guaranteed 
execution sites while target phases are carried out at target 
sites. As part of any phase, FEAM executes its Binary 
Description Component and Environment Discovery 
Component. The Binary Description Component gathers 
information about an application binary. The Environment 
Discovery Component gathers information about a computing 
environment. During a target phase, FEAM additionally 
executes the Target Evaluation Component to resolve 
execution issues and form the prediction about an 
application’s execution readiness. After first providing an 
overview of the requirements for using FEAM, this section 
describes the implementation of each of its components. While 
our implementation techniques are relatively simple, their 
composition efficiently and automatically provides a 
determination of an application’s execution readiness. 

FEAM can be used to predict the execution readiness of 
applications only at sites with Unix-like operating systems. 
While our prediction model and resolution scheme could be 
implemented for any operating system type, we have 
developed the current implementation of FEAM for sites with 
Unix-like operating system utilities. To use FEAM, a user 
needs to provide minimal input. The user specifies the 
application binary location and which FEAM phase is to be 
run. If running a target phase, the user can also specify the 
location of a source phase output bundle, if applicable. 
Additionally, the user provides template submission scripts for 
running serial and parallel jobs. This submission format is the 
only site information that is not automatically determined by 
FEAM. The information that FEAM discovers about a target 
site, including the site-specific configuration details, are 
output to the user along with a prediction of execution 
readiness. 

A. Binary Description 

The Binary Description Component (BDC) of FEAM 
gathers information about an application binary. The five 
types of information collected by the BDC are listed in Figure 
2. To gather this information, the BDT requires access to the 
application binary during a target or source phase. As the BDT 
is the only FEAM component that requires access to the 
application binary, running both phases of FEAM provides the 
additional  benefit  of not  needing the application  binary to be 

TABLE I.  IDENTIFYING LIBRARIES OF MPI IMPLEMENTATIONS 

MPI Implementation Library Dependencies 
MVAPICH2 libmpich/libmpichf90, libibverbs, libibumad 

Open MPI libnsl, libutil 

MPICH2 libmpich/libmpichf90 (and not other identifiers) 

 

present at the target site. In this subsection, we describe how 
the BDT gathers the information needed to create an 
application description. 

The BDT extracts the first four types of information listed 
in Figure 2 using the GNU Binary Utility [14] objdump. We 
call the objdump utility with the “-p” flag to view information 
about a binary’s file format (i.e. the executable and linkable 
format ELF). The header of the resulting description specifies 
the file format of the binary as well as the instruction set 
architecture and the number of bits for which the binary was 
compiled. Under the description’s “Dynamic Section”, we 
extract the “NEEDED” components to create a list of shared 
libraries the application was linked against. We also consult 
the “Dynamic Section” to extract naming and version 
information for binaries that are shared libraries. Finally, using 
information from the “Version Definitions” and “Version 
References” sections, we find the newest version of the C 
library that is listed as being used by the application.  

The BDT verifies an application’s shared library 
dependencies with the Unix utility ldd. We call ldd with the -v 
command-line option to view a list of the shared libraries an 
application has been linked against along with their locations 
in the local file system and version information. We do not 
rely on ldd for shared library information, as we have found 
that in some cases this utility does not recognize an application 
as being dynamically linked. 

To gather information about the operating system and C 
library version used to create an application binary, the BDT 
uses the GNU Binary Utility readelf. This utility provides 
information about ELF files (the standard binary format for 
Unix and Unix-like system on x86). We call readelf with the 
“-p .comment” flag to display a binary’s comment header 
section. This optional section may contain compiler and linker 
specific version control information with operating system and 
C library version details.  

To identify the MPI stack used to compile an application, 
we examine an application’s shared library dependencies. Our 
identification scheme takes advantage of the fact that MPI is 
not a link-level specification. Rather, the MPI standard 
specifies a library interface; consequently, implementations of 
the standard have different link-level dependencies. We have 
created an identification scheme for the three dominant open 
source MPI implementations (Open MPI [15], MPICH2 [16], 
and MVAPICH2 [17]). The shared libraries that we use as 
MPI implementation identifiers are listed in Table I.  

When running during a source phase, the BDC also gathers 
a description and copy of all of the shared libraries against 
which an application has been linked. A description of each 
shared library is gathered in the same manner as the 
description for any application binary. A copy of each shared 
library (except for the C library) is then made by locating each 
shared library in the local file system. If the ldd utility is 
unable to provide this location information, we search for each 
shared library using three possible methods. If available, the 
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Fig. 3.  Information Gathered by the EDC 

The Environment Description Component (EDC) of FEAM gathers 

information about a computing site. 

locate utility can be used to reveal the locations of files with 
matching names. The find utility can be used to search 
common library locations as well as locations set in the 
LD_LIBRARY_PATH environment variable. Alternately, a 
locally compiled “Hello World” program can be created to 
reveal commonly linked against shared libraries. 

B. Environment Discovery 

The Environment Discovery Component (EDC) gathers 
information about a computing environment. The five types of 
information gathered by the EDC are listed in Figure 3. The 
BDT gathers this information during target and source phases 
to form descriptions of target sites and guaranteed execution 
sites. In this subsection, we describe how the EDC gathers the 
information needed to create an environment description. 

To determine a system’s instruction set architecture 
format, the EDC uses the Linux utility uname.  We call uname 
with the “-p” flag to view processor related information. 
During target phases, we also gather information about the 
operating system to provide the user with additional 
information about an environment.  We examine standard files 
with system information under /proc and /etc to determine 
which Linux distribution is running on the system. We consult 
the /proc/version file to determine the OS type and version 
information. We confirm this information by examining files 
under /etc/*release.  

To determine the version of a system’s C library, the EDC 
uses the C library’s application programming interface. We 
call the gnu_get_libc_version function to get a list of 
available C library versions. Alternately, we determine the 
version by invoking the C library binary. The binary is located 
for invocation via the same methods the BDC uses to locate 
shared libraries. 

To determine what MPI stacks are available at a 
computing site, the EDC consults user-environment 
management tools. These tools support the discovery of 
packages and help manage the shell environment. We search 
for the presence of Environment Modules [18] or SoftEnv [19] 
configuration files to assess if these user-environment 
management tools are present. If one of these tools is located, 
we use its search mechanism to locate MPI implementations 
and compiler combinations (e.g. module avail for 
Environment Modules). If no user-environment management 
tools are found, we search for MPI implementation identifying 
libraries (listed in Table I) using the same methods as used by 
the BDC to locate shared libraries. We also search for 
commonly used wrappers for compiling MPI programs (e.g. 
mpicc). 

To determine what MPI stacks are currently accessible in a 
computing environment, the EDC examines environment 

settings. If user-environment management tools are present, 
we use the corresponding mechanisms to reveal these setting. 
For example, if Environment Modules are present, we use the 
module list command to get a listing of what MPI 
implementation and compiler the shell is configured to access. 
Alternately, we search for MPI implementations accessible via 
the PATH and LD_LIBRARY_PATH environment variables. 
We can also determine information about the currently 
accessible MPI stack by identifying which commonly used 
wrappers for compiling MPI programs are currently accessible 
at the site. 

When running during a source phase, the EDC additionally 
creates two MPI “Hello World” programs, one compiled in C 
and the other in Fortran. We compile these programs using the 
application’s required MPI stack. 

When running during a target phase, the EDC additionally 
identifies whether any required shared libraries are missing at 
the target site. If the application binary is present at the target 
site, we use the ldd tool to get a list of missing shared libraries. 
If the application binary is not present at the target site, or if 
the ldd tool is not working, we perform a search using the 
same methods as used by the BDC to locate shared libraries. 

C. Target Evaluation 

The Target Evaluation Component (TEC) evaluates the 
execution readiness of an application during target phases. To 
determine execution readiness, the TEC investigates the 
determinants outlined by our prediction model. If following a 
source phase, the TEC also applies our resolution scheme. In 
this subsection, we describe the process the TEC follows to 
arrive at a final prediction. 

The TEC first determines whether the hardware 
architecture and C library version requirements are met. To 
evaluate compatibility—as outlined in our prediction model in 
Section III—we analyze the application description created by 
the BDC and the environment descriptions created by the 
EDC. 

The TEC next evaluates MPI stack compatibility. The TEC 
can search for a compatible MPI stack or for a specific MPI 
stack requested by the user. For each matching MPI stack, we 
compile and run test MPI programs to determine if the stack is 
functioning as defined by our prediction model. If a source 
phase has previously occurred, we also run the test MPI 
programs generated at the guaranteed execution site. The 
success of these tests further shows compatibility between the 
selected MPI stack and an MPI stack used to run the 
application. Running these test MPI programs requires 
knowing the execution command that corresponds to the 
selected MPI stack. Our methods by default use the mpiexec 
command unless otherwise specified by users in the template 
submission format description. 

Lastly, the TEC investigates whether an application’s 
shared library requirements are met. The EDC has already 
determined if any required shared libraries are missing at the 
target site. If a source phase has previously occurred, we 
attempt to resolve any missing library requirements by 
applying our resolution scheme. We make copies of missing 
shared libraries that have been determined to be ready to 
execute at the target site accessible for use at runtime by 
adding their location to the PATH environment variable.  



The TEC makes the final prediction that an application is 
ready for execution at a target site if all of our prediction 
model determinants are evaluated to be satisfied. FEAM 
outputs the prediction along with site-specific configuration 
details to the user. The output includes an explanation of 
general site information and any detected problems. 
Additionally, the user is provided with scripts to automatically 
set the determined configurations at runtime. 

VI. EVALUATION 

To evaluate our prediction model and resolution scheme, 
we used FEAM to predict the execution readiness of MPI 
application binaries from two benchmark suites across five 
computing sites. To determine the effectiveness of our 
prediction model, we compared FEAM’s prediction of 
execution readiness with actual execution results, i.e., whether 
the applications ran or not. To evaluate the impact of our 
resolution scheme, we calculated the increase in successful 
executions enabled by FEAM. In this section, before 
discussing the evaluation results, we discuss the binaries and 
sites used for our tests as well as how our tests were set up. 

A. Test Set Description 

For our evaluation, we used MPI applications from two 
benchmark suites: the NAS Parallel Benchmarks [17] and 
SPEC MPI2007 [18]. The NAS Parallel Benchmarks (NPB) 
suite consists of applications derived from computational fluid 
dynamics. SPEC MPI2007 benchmark suite was developed 
from native MPI-parallel end-user applications. We used 
version 2.4 of the MPI reference implementation of the NPB 
suite and version 2.0 of the SPEC MPI2007 benchmark suite 
for our evaluation. 

We evaluated the execution readiness of the selected MPI 
applications at five computing environments. These target 
sites were chosen such that a diverse test set was created in 
terms of the operating system, hardware architecture, network 
interconnect, and MPI implementation. Three of the chosen 
test sites are state-of-the-art high performance computing 
systems available to researchers via the national XSEDE 
infrastructure [22]. They represent the main types of systems 
architectures available at the national supercomputing centers: 
symmetric multiprocessing (SMP), massively parallel 
processing (MPP), and hybrid CPU/GPU systems. The other 
two test sites are mid-size university clusters. One is part of 
the FutureGrid Project [23] test-bed while the other is a 
University of Virginia resource [24]. The test sites run 
different versions of three Linux-based operating systems and 
the C library. The sites support three open source MPI 
implementations. Open MPI is available at five sites, 
MVAPICH2 is available at four sites, and MPICH2 is 
available at two sites. Each MPI implementation is associated 
with GNU, Intel, and/or PGI compilers for C and/or Fortran. 
Table II details these characteristics for each computing site 
and lists the MPI stack combinations that we used to create 
application binaries. 

To create the MPI application binaries for our tests, we 
compiled the selected MPI applications with multiple MPI 
stacks at each target site. Our final binary test set consisted of 

  

TABLE II.  TARGET SITE CHARACTERISTICS 

Computing Site 

 (Type - CPUs) 

Operating 

System 

C Library 

& 

Compiler 

Versions 

Utilized MPI Stacks: 

MPI Types & Versions 

(Compilers i:Intel, 

g:GNU, p:PGI) 

XSEDE Ranger, 

Texas Advanced 

Computing 

Center 

(MPP – 62,976) 

CentOS 

4.9 

LibC 

v2.3.4, 

GNU CC 

v3.4.6, 

Intel v10.1 

Open MPI v1.3 (i/g/p ) 

MVAPICH2 v1.2 (i/g/p) 

XSEDE Forge, 

National Center 

for 

Supercomputing 

Applications 

(Hybrid - 576) 

Red Hat 

Enterprise 

Linux 

Server 6.1 

LibC v2.12 

GNU CC 

v4.4.5 

Intel v12 

Open MPI v1.4 (g/i) 

MVAPICH2 v1.7rcl (i) 

XSEDE 

Blacklight, 

Pittsburg 

Supercomputing 

Center 

(SMP – 4,096) 

SUSE 

Linux 

Enterprise 

Server 11 

LibC 

v2.11.1, 

GNU CC 

v4.4.3, 

Intel v11.1 

Open MPI v1.4  (i/g) 

 

FutureGrid India, 

Indiana 

University 

(Cluster - 920) 

Red Hat 

Enterprise 

Linux 

Server 5.6 

LibC v2.5, 

GNU CC 

v4.1.2, 

Intel v11.1 

Open MPI v1.4 (i/g) 

MVAPICH2 v1.7a2 (i/g) 

MPICH2 v1.4 (i/g) 

 

ITS Fir, 

University of 

Virginia  

(Cluster - 1,496) 

CentOS 

5.6 

LibC v2.5, 

GNU CC 

v4.1.2, 

Intel v12 

Open MPI v1.4 (i/g/p) 

MVAPICH2 v1.7a (i/g/p) 

MPICH2 v1.3 (i/g/p) 

 
a subset of the benchmarks suites as some benchmark 
applications would not compile with certain MPI stacks 
combinations while others would not run at the site where they 
were compiled. From the NPB suite, our test set consisted of 
four kernels (integer sort, embarrassingly parallel, conjugate 
gradient, and multi-grid on a sequence of meshes) as well as 
three pseudo applications (block tri-diagonal solver, scalar 
penta-diagonal solver, and lower-upper Gauss-Seidel solver). 
From the SPEC MPI2007 benchmark suite, our test set 
consisted of a quantum chromodynamics code (104.milc), two 
computation fluid dynamics codes (107.leslie3d and 115.fds4), 
a parallel ray tracing code (122.tachyon), a molecular 
dynamics simulation code (126.lammps), a weather prediction 
code (127.GAPgeofem), and a 3D Eulerian hydrodynamics 
code (129.tera_tf). In total, our binary test set was comprised 
of 110 NPB and 147 SPEC MPI2007 binaries. 

B. Methodology 

To evaluate the effectiveness of our prediction model, we 
compared FEAM’s predictions with actual execution results. 
Initially, we migrated each MPI application binary to all target 
sites where the binary had not been compiled. We found that 
our methods were 100% accurate at assessing whether a 
matching MPI implementation was available for all target 
sites. Thus, we chose to restrict our evaluation to sites that had 
a matching MPI implementation. For example, for binaries 
compiled for MVAPICH2 on Ranger, the accuracy of our 
prediction was calculated only on Forge, India, and Fir. The 
execution readiness of applications at such sites is more 
relevant as, without a matching MPI implementation, the other 
sites have no potential for successful execution. However, in 
choosing   to   focus   on   this   subset,   we   ignore   accurate  



TABLE III.  ACCURACY OF PREDICTION MODEL 

Basic Prediction Extended Prediction  

NAS SPEC NAS SPEC 
94% 92% 99% 93% 

TABLE IV.  IMPACT OF RESOLUTION MODEL 

Actual Execution Result Increase in 

Successful Executions 

due to Resolution 

Before 

Resolution 

After 

Resolution 

NAS SPEC NAS SPEC NAS SPEC 

58% 47% 78% 66% 33% 39% 

 

predictions and, as a result, present lower prediction accuracy 
results than if all target sites had been considered.  

Our evaluation of the effectiveness of our prediction model 
also distinguishes where information is gathered to form a 
prediction. We present basic prediction results formed by only 
running FEAM’s required target phase at a target site. We 
present extended prediction results formed by including 
information from running FEAM’s optional source phase at a 
guaranteed execution site. In this way, our evaluation 
differentiates the effectiveness of our methods for instances 
when users do not have access to or do not want to access 
guaranteed execution sites. Such a situation could, in 
particular, be relevant to users of community application 
binaries. Table III presents the accuracy results of our 
prediction model for basic and extended predictions on our 
test set, broken down by benchmark suite. 

To evaluate the impact of our resolution scheme, we 
calculated the increase in successful executions enabled by 
FEAM. As with our prediction model evaluation, our 
resolution scheme evaluation focused on target sites with 
matching MPI implementations. We measured the number of 
successful executions before applying FEAM (Epre) and the 
number of successful executions after applying the resolution 
related configurations composed by FEAM (Epost). Finally, we 
calculated the increase in successful executions (Eincrease) in 
relation to the initial number of successful executions: 

Eincrease = (Epost - Epre) / Epre 

Table IV presents these three sets of calculations for each 
benchmark suite as a percentage of the total number of 
executions.  

C. Results Analysis 

To put the evaluation results of our prediction model and 
resolution scheme into perspective, we first consider the 
execution results that we gathered without applying FEAM. 
We found that only around half (58% of the NAS binaries and 
47% of the SPEC binaries) of the applications ran when the 
only configuration performed was the selection of a matching 
MPI implementation. These results underline the importance 
of considering more than just available MPI implementations 
when choosing execution sites. Again, these percentages only 
consider target sites where a matching MPI implementation 
was available. If all possible target sites had been considered, 
the percentage of successful executions would be much lower. 
Our results also confirm the importance of dealing with 

missing shared libraries to ensure the execution of an 
application binary without recompilation. We found that 
missing shared libraries caused more than half of the 
execution failures. (The remaining failures were due to C 
library version requirements, floating point exceptions, and 
system errors.)  

Upon analysis of our evaluation results, we found that our 
model was able to recognize and correctly predict the vast 
majority of execution failures. FEAM’s predictions were over 
90% accurate. Due to additional compatibility tests 
incorporated from information gathered during FEAM’s 
source phases, our extended predictions were even more 
accurate than our basic predictions (99% vs. 94% for NAS 
binaries and 93% vs. 92% for SPEC binaries). For example, 
by running MPI test programs compiled at guaranteed 
execution sites, we were able to detect floating point errors 
and application binary interface (ABI) incompatibilities in 
shared libraries. We found that less than 10% of the time our 
model incorrectly predicted success as it was unable to 
recognize failures due to system errors, such as failed MPI 
daemon spawning or time-outs due to communication errors.  

As for our resolution scheme, our analysis revealed that it 
enabled execution for about half of the binaries that would 
have otherwise failed due to missing shared libraries. In other 
words, using FEAM resulted in around a third more successful 
executions overall (33% for the NAS binaries and 39% for the 
SPEC binaries). The other half of the missing library failures 
could not be resolved mainly due to incompatibility issues. For 
example, the shared libraries copies gathered at guaranteed 
execution sites required incompatible C library versions and 
used incompatible ABIs. The remaining resolution attempts 
failed due to system errors. 

To additionally asses the cost of using FEAM, we 
measured how many CPU hours were required to run our 
prediction model as well as how much extra space was 
required to apply our resolution scheme. These quantities are 
relevant for computing sites that charge for compute nodes 
usage and limit storage space. We found that FEAM’s source 
and target phases completed in less than five minutes. We 
measured that FEAM used on average 45MB of disk space 
when counting the size of a bundle of all shared libraries used 
by our test set. Overall, we found that executing FEAM for 
our evaluation test set required a small amount of time and 
disk space. 

VII. FUTURE WORK 

The general direction of our future work will be to develop 
more methods for efficiently migrating MPI applications to 
new environments. Our next focus is on techniques to aid the 
migration of MPI application source code. We are also in the 
process of carrying out a study that measures the amount of 
time users spend and the types of tasks users perform when 
migrating to new environments [25]. Eventually, we will 
evaluate the effectiveness of our techniques on a mixture of 
non-benchmark codes developed by individuals and 
communities.  

VIII. CONCLUSIONS 

This paper described our efforts to help make 
computational infrastructures more usable and accessible to 



any scientists who want to employ computation in doing their 
research. We described a model that predicts whether MPI 
application binaries will execute at new sites and a scheme 
that increases the likelihood binaries will execute by resolving 
shared library requirements. We presented a Linux-based 
implementation of our techniques called FEAM, a Framework 
for Efficient Application Migration. We evaluated FEAM 
across five computing sites with applications from NAS 
Parallel and MPI SPEC2007 benchmark suites compiled using 
three open-source MPI implementations and three compilers. 
Our evaluation found that our prediction model was more than 
90% accurate, and that our resolution scheme enabled about a 
third more successful executions. 

There are various use cases for employing FEAM. FEAM 
can be a preliminary probe for evaluating multiple target sites 
by analyzing sites for execution readiness quickly without 
requiring the application to be present at each site. FEAM can 
gather and document basic site characteristics, such as 
available MPI stacks. FEAM can also detect and document 
basic execution issues. When scientists are dealing with 
applications they did not create, FEAM can identify basic 
requirements, such as the MPI stack and shared library 
dependencies. FEAM can quickly enable execution that would 
otherwise be blocked by missing shared libraries without 
requiring scientists to be familiar with the management of 
shared objects. Additionally, FEAM, by providing 
documentation of the analysis process, can teach interested 
scientists what to look for at new computing sites when 
assessing execution readiness. 

FEAM executes with minimal input from the user, runs 
quickly, and requires little space. It relieves the user of 
manually parsing various environment configurations to find 
out if a shared computing resource is a good match for 
execution. For scientists who do not have much experience, 
time, or support to explore new computing sites or compile 
MPI applications, FEAM provides an efficient automated tool 
for facilitating the migration process. 
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