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Abstract-Text interpretation depends among other things on a 
pre-processing stage in extracting effectively a correct stem or 

root. Since there is no available standard stemmer for Arabic, 

we address here five methods for extracting Arabic roots and 

the outcomes of the approach with best results will be used 

later on. Four of these methods are based on a positional

letter-ranking approach where such an approach is 

investigated along with an adjustment, and two proposed 

variants. The fifth one is a rule-based approach. An algorithm 
for correcting irregular words is applied for all methods and a 

comparison is made between all approaches. The accuracy of 

these methods was found by comparing extracted roots with a 
predefined list of roots using an in-house text collection. 

Results show that the correction algorithm improved the 

accuracy of the rule-based one by about 14% and the 

positional letter ranking based algorithms by 7% to 10%. The 
adjusted positional letter ranking method proved to be the 

highest in accuracy among all five algorithms but slightly 
higher than the rule-based one. However, the rule-based 

algorithm was found to be the approach with the highest 
accuracy among all ten algorithms when the correction 

algorithm was included in it. 

Keywords: Arabic Root Extraction; Natural Language 

Processing; Text Mining; Rule-Based; Positional Letter Ranking; 

t-test; Variance. 

I. INTRODUCTION 

Researchers have explored and developed many Text 
Mining (TM) and Natural Language Processing (NLP) 
techniques especially to English language but few have been 
proposed for Arabic text automatic interpretation. This is 
partially due to the rich morphology [10] of Arabic language. 
Applying TM techniques requires first a preprocessing stage 
that would remove punctuation marks, function words and 
return the remaining words to their stems (for Arabic words 
to their stems or roots). For English language, researchers 
perform the stemming step in order to reduce the high 
dimensionality of documents [12]. Our aim is to compare the 
performance of different techniques for stemming Arabic 
words and use the technique with best results. The approach 
for stemming used here is based on Al-Shalabi, et al work [3] 
which is a positional letter ranking technique for Arabic root 
extraction. The choice of this technique was because it is 
simple, easy to implement and had a reported 90% accuracy. 
However, in [3] no information were provided of the reasons 
of choosing the weight and rank values for letters, thus two 
variant methods of Al-Shalabi, et al work are proposed here 
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along with an adjustment to it. The results of implementing 
these techniques will be compared with those of a rule-based 
one thoroughly investigated in [2]. The choice of the rule
based technique was because it reported accuracy higher than 
90%. Since the two approaches used here do not handle 
irregular words, then the Correction algorithm proposed and 
implemented in [2] is included in all algorithms and its 
effectiveness in improving their performance is presented. 
The importance of handling irregular words comes from the 
fact that these words presence is about 30% in Arabic textsl. 

The remainder of this paper is organized such that in 
Section II a brief review, of the various available Arabic root 
extraction techniques in the literature as well as the Arabic 
language morphology is introduced. In Section III, the 
gathered text collection and the function words list are both 
described. The positional-based-letter ranking techniques and 
their algorithms along with the rule-based one are presented 
in Section IV. Section V presents the evaluation criteria and 
experimental results. Finally, Section VI discusses 
conclusions and future work. 

II. RELATED WORK AND BACKGROUND 

A. Related Work 

Much [4], [11] work have been performed on Arabic 
morphological analysis and stemming especially for 
Information Retrieval (IR) applications. It was concluded 
that for IR using light stemming provided the highest IR 
performance followed by that when using root extraction 
(due to space limitation, the reader is kindly referred to the 
works in [4] and [11] for excellent reviews). For TM on 
Arabic, few works, as far as we know, have been conducted 
to investigate the effect of using stems or roots instead of 
words on Text Classification (TC) performance such as [14] 
and [15]. There is a discrepancy among their results. Some 
reported that light stemming degraded TC performance, 
whereas others reported that using either stems or roots 
improved it. It must be noted here that in all mentioned 
works above for TC, no significance tests were reported. 
Many Arabic morphological analysis approaches are rule
based. However, few of such methods handle specific cases 
of irregular words but not all, to our knowledge, except the 
works of El-Sadany and Hashish [9] and Beesley [7]. It is 
note worthy that in El-Sadany and Hashish [9] work, no 

I Percentage values presented here are gathered by I st author from 40 texts chosen 

arbitrarily in the collection. 
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results were provided of the system implemented. Also, in 
Beesley's work [7], although the Xerox dem02 is available 
and efficient, it requires usually a relatively long time to 
provide the required roots. Thus, there is a need to build an 
algorithm that provides the correct root for such irregular 
words. When developing stemmer/morphological analyzer, 
important issues present themselves [4] such as under
stemming and over-stemming. Other issues that require 
handling for stemmers are compound words, proper nouns, 
foreign Arabized words, and irregular forms of words. Here 
some of the weaknesses presented above are addressed, 
namely handling irregular words. 

B. Background 

Arabic language is one of the Semitic languages, [10] 
that is written from right to left and has 28 letters all 
consonants: three of these letters are also used as long 
vowels A 3, W, y. Arabic language has many special 
cases/properties that affect stemming or any automatic 
method such as Hmzp, short vowels, nunation, and t$dyd. 
These different aspects are highly important in spoken 
Arabic and in natural language understanding. However, 
Modem Standard Arabic (MSA) usually does not include 
short vowels, nunations or assimilation marks in printed 
texts. Without their presence, the ambiguity of words 
increases. Verbs are [10] categorized in Arabic as sound or 
unsound verbs. Unsound verbs are categorized into weak 
verbs and comprising verbs (either hamzated or geminated). 

III. TEXT COLLECTION AND FUNCTION WORDS LIST 

Since no public Arabic text collection is available, an in
house collection of Arabic texts is used to support this work. 
This collection was gathered, according to eight subject 
categories, by acquiring arbitrarily Arabic texts from various 
online Arabic newspapers, academics, magazines and other 
sources published online in the period 231712008 - 11212009. 
In each category about 50 texts were chosen randomly with a 
total of 380 texts (nearly 193,500 words). The Arabic 
function words list used in this work is formed from 2,549 
words [10]. Examples of function words are the separate 
prepositions, personal pronouns, demonstrative pronouns, 
relative pronouns, conjunctions, and interjections. Imperfect 
verbs as kAn wAxwAthA were included in the function words 
list along with similar verbs such as OSbH or mAzAI. Also, 
dual and plural forms of the function words are added to 
their list. Both, constructed text collection and function word 
list are used in Section V for experiments. 

IV. CONSTRUCTION OF ROOT EXTRACTORS 

In this work, the main purpose is to use/propose variants 
of a positional-letter ranking approach to extract roots of 

2 Xerox demo can be found at http://www.xrce.xerox.com/Research· 

Development/Historical·projectslLinguistic.Demosl Arabic.Morphological·Analysis· 

and· Generation 

3 Transliterations used here are that of Buckwalter' found at: 

http://www.qarnus.org/transliteration.htm 
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words in texts as a preprocessing step for TM and to 
compare the results of such techniques with those of a rule
based one. Both the positional letter ranking one, based on 
AI-Shalabi, et al [3] work, and the rule-based one, based on 
AI-Ameed's [1] work concentrate on affix removal of the 
letters in sOltmwnyhA. The original positional-letter ranking 
technique and the rule-based one presented here do not 
handle weak, eliminated-long-vowel, hamzated words, 
names of places, countries, cities, months, broken plurals 
(except the rule-based one), foreign Arabized words or 
geminated words (except for the rule-based one where 
geminating is partially handled and the second variant 
method). So, the Correction algorithm [2] is used here in all 
techniques in order to improve their performance and 
investigate its effectiveness. The approach with the best 
performance results will be used in TM procedures later on. 
The performance of the techniques before/after adding the 
Correction algorithm to them will be presented in Section V. 

A. Non-Linguistic Approach 

This approach uses the positional-letter-ranking work 
proposed by AI-Shalabi, et al [3]4 and a slight adjustment to 
it along with two proposed variants to it. The above 
techniques test at the beginning if the number of letters in the 
word is less than or equal to 3 and if so take the word (except 
for the fourth technique) without any further processing. The 
fourth technique tests if a two-letter word is geminated by 
comparing it to a two-letter geminated words list. If it is in 
the list, the fourth technique presents the two-letter word as a 
triliteral root by doubling its second letter. Also, the third and 
fourth techniques extract specific cases of quadriliteral roots 
along with triliteral ones whereas the first two methods 
extract only triliteral roots. Section V presents the outcome 
of implementing these techniques. 
AI-Shalabi Algorithm. This algorithm employs a letter 
weight, an order index and assigns a rank to a letter 
according to its order in the word. AI-Shalubi algorithm 
extracts the root for the word through the following simple 
steps: 1- for each letter in the word (from right to left) apply 
weight and rank values according to Tables I and II while 
assigning order values, 2- calculate the product of the rank 
and weight for each letter, 3- keep only the letters with the 
first three smallest product values without changing the order 
of these letters in the word. In order to illustrate the 
performance of this algorithm, two examples of words are 
shown in Table III where the least three product values are 
bolded. As shown in Table I, the rank of a word is calculated 
differently when its number of letters is odd from that when 
it is even. The weights of letters are given values for letters 
categorized into groups (e.g. allocating the group of letters 'p, 
A' a weight of 5) as shown in Table II. AI-Shalabi, et al work 
did not explain or clarifY why or on what basis did it use 
such ranking or weighting only that such groups and their 
values were chosen after extensive experimentation. 

4 Many thank goes to H. AI·Serhan for providing a copy of AI·Shalabi, et al (2003) 

paper. 
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TABLE!. LETTER RANKING IN AL-SHALABI ALGORITHM (DERIVED 
FROM (AL-SHALABJ, ETAL 2003) WORK) 

Letter position Rank (if word Rank (if word 
from right length is even) length is odd) 

1 N N 
2 N-1 N-1 
3 N-2 N-2 
: : : 

IN/21 N/2 + 1 IN/21 
IN/2l+ 1 N/2 + 1-0.5 IN/2l+ 1-15 
IN/2l+ 2 N/2 + 2 -0.5 IN/21 + 2-15 
I N/2l+ 3 N/2 + 3 -0.5 IN/21+ 3-15 

: : : 
N N-0.5 N-15 

Where N. number oj tellers In a word 

TABLE II. TABLE 2: WEIGHTS OF LETTER GROUPS IN AL-SHALABI 
ALGORITHM (DERIVED FROM (A I.-SHALABJ, ET AI. 2003) WORK) 

TABLEIIL EXAMPLES OF EXTRACTED ROOTS USING [3) 

a) word IstxdAmh, correct root xdm 
letters h m A d x I s J 
Order 8 7 6 5 4 3 2 1 

Weight 1 2 5 0 0 3 1 2 
Rank 7.5 6.5 5.5 4.5 5 6 7 8 

Product 7.5 13 27.5 0 0 18 7 16 
Root sxd (Xl 

b) word AltElymAt, correct root Elm 
Letters I A M Y I Jl I I A 
Order 9 8 7 6 5 4 3 2 1 

Weight 3 5 2 3.5 1 0 3 1 5 
Rank 7.5 6.5 5.5 4.5 5 6 7 8 9 

Product 22.5 32.5 11 15.75 5 0 21 8 45 
Root 1m (Xl 

Adjusted Al-Shulubl AlgOrithm. It was notIced In [3] that 
there was a discrepancy in some of its examples. The two 
examples that caused such discrepancy were the ones when 
the letter I was at first or second positions of a word where 
the authors have given it a weight of 5 .  However, it was 
given a weight of 1 when it was in other positions (as already 
specified in their paper). This information was not explained 
or mentioned throughout the paper except only in the two 
examples. So, here this is considered a possible adjustment 
algorithm (named Adjusted Al-Shulubl) while maintaining 
the rest of the procedure mentioned in [3]. Thus, the same 
ranking and ordering of letters in a word were maintained, 
and a different weight of 5 to only the letter I was given if it 
was in the first or second positions in the word. Following 
this adjustment of the weight of the letter I when applied on 
the same two examples in Table III, the expected extracted 
roots would be sxd and Elm respectively. 
As can be seen from the examples in the previous two 
techniques, it is expected that these algorithms will not 
extract roots with high accuracy. However, since this 
approach is very simple and easy to implement, then 
proposing a different weighting scheme, based on 
considering the characteristics of occurrence of Arabic 
language letters, for the groups of letters might produce 
higher accuracy results. Statistics showing the percentages of 
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such Arabic letters were founds. After close examination of 
these percentages and including the effect of the number of 
letters before and after them as shown in Table IV, it was not 
possible to quantitatively reach a weight for these letters or 
classifY them into separate distinct groups. However, it was 
possible to do so qualitatively: 1- At a first analysis, it was 
proposed that these letters be grouped into 5 groups (as Al
Shulubi algorithm or its adjustment) where here such groups 
are assigned classes: high, high or moderate, moderate, 
moderate or low, and finally low. 2- However, at a second 
analysis; it was proposed that these letters be grouped into 4 
groups where here such groups are assigned classes: high, 
high or moderate, moderate, andjinally moderate or low. 3-
At a third analysis, it was proposed that these letters be 
grouped into 3 groups where here such groups are assigned 
classes: high, moderate, and jinally moderate or low. The 
reason why no conclusive number of groups was reached is 
the nature of some of these letters and their similar 
percentages in appearing as extra and original letters in 
words. Also, it was not possible to quantitatively find all the 
weights proposed by Al-Shulubi algorithm from these 
statistics. However, since the initial number of groups found 
here are 5 ,  weighting letters was thus given by assigning the 
groups weights from 5 to 1 according to classes assigned: 5 
for high, 3.5 for high or moderate, 3 for moderate, and so on. 
In order to investigate these different choices of the number 
of groups, the first Variant method explained next will adapt 
grouping these letters into 4 groups, while the second 
Variant method will group such letters into 3 groups. 

TABLE IV. PERCENTAGES OF LETTERS APPEARANCE IN TEXTS 

no. of no. of 
letter letter Qualitati 

Lett Rate letters letters 
after before ve weight 
with with for rate 

er (%) after before 
highest highest values 

&% & 0/0 % % only 

Spac 
not 27 32 100 43.02 not a 

e 
give 84 0L OL A 21.9p character n 

A 19.6 3 1 30 94 40.81 space high 5 960L OL 42.16 

4.22 1 3 30 84 space y moderate p OL OL 100 38.41 or low 
h 1.79 1 4 22 69 A 15.8 1 Low 440L OL 41.03 -( 

) 0.50 1 0 6 19 Y 52.31 Low 31 OL OL 41.54 A 

6.66 2 8 31 97 space 16.07 high or 
y 880L OL 25.49 f moderate 
I 12.9 3 0 29 91 A A high 9 940L OL 21.24 61.71 

5.64 3 1 24 75 space A moderate f 970L OL 22.76 22.49 

5.70 3 0 27 84 16.09 space moderate w 940L OL A 41.02 

Y 0.91 1 3 9 28 space 1 Low OL OL 100 71.43 

8.52 3 0 25 78 space 1 high or m 940L OL 19.73 22.33 moderate 
3.86 25 78 21 66 space A moderate n % OL OL 42.57% 28.12 or low 

5 From Khaled A1Shamaa web site, URL: 
http://www.alshamaa.com/php/arabiclindex.html. [last accessed: 4/6/2010] 
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Where . OL STANDS FOR OF LETTER 
First Proposed Variant of AI-Shalabi Algorithm. Here, it is 
proposed to use the same ranks of letters as that of AI
Shalabi algorithm but to assign a different set of weights to 
letters as shown in Table V in order to provide a triliteral 
root according to their order. The five groups of letters that 
were proposed in [3] have been reduced to four with the 
shown weights. The letter I was moved to third group with 
weight 3. The letter s was moved to the fourth group to give 
it a higher value especially when at beginning of a word 
(most likely it will be an extra letter but an original letter 
elsewhere). Finally, the letter h was moved to the first group 
with weight 5 since it is expected that when h is at the end of 
the word, it is likely to be a suffix since it might be wrongly 
written as h where as it is meant to be p. This algorithm is 
called Variantl. Also, this algorithm proposes to extract 
specific cases of quadriliteral-root-based words. Since 
Variantl algorithm is a combination of the original 
positional letter ranking method and rules to handle 
quadriliteral roots, then it is a hybrid method. The original 
two examples in Table III would generate the roots sxd and 
Elm respectively, when using this algorithm. 

TASLE V. WEIGHTS OF LETTER GROUPS FOR VARIAN,] ALGORITHM 

Variantl Algorithm 
Inputs: Set of preprocessed documents D = {dJ, 
d" ... . . ,do}, Predefined root lists, Predefined 
letter groups weight lists 
Outputs: List of triliteral and some quadriliteral 
roots for each new document new_di_l 
START 
For each document di do { 
LastWord = Count No Words(d,) 
For j = 1 to LastWord in di do 
LastLetter = Count_No_Letters(wj,c) 
If (LastLetter <= 3) {Final_Wordj = Wj, go to * } 
Provide the order, weight values for each letter in 
word w] 
Perform calculating the product of order and weight 
values for each letter in word Wj 
Count = Count_No_Zero_Product_Letters(wj) 
If((Count > 3) and (LastLetter >= 
4)){ Final_Wordj=Extract_4letter_with_least�roduct 
(Wj), go to * } Else 
{ Final_Wordj=Extract_3letter_with_least�roduct (w] 
) } 
* Write Final_Wordj to output document new_di_l 
Calculate Accuracy_of_document_ new_di_l } 
END 

In brief, this algorithm varies from previous ones by 
providing different groups of letters with different weight 
values and extracting four-letter roots. 
Second Proposed Variant Algorithm. The second variant 
technique of AI-Shalabi algorithm (that is named here 
Variant2) uses the same ranks as described in [3]. This 
second technique performs the following steps: 1- it excludes 
the letter combination Al (i.e. the definitive article) from the 
word if the word starts with it, 2- it replaces the letters 0, I, I 
with A and replaces letters j, y with Y and replaces letter p 
with h (i.e. a normalization step), 3- it presents specific two-
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letter geminated words as triliteral by comparing them with a 
predefined list of two-letter geminated words and if the two
letter word is in the list, the algorithm duplicates the second 
letter, 4- it uses a different weighting scheme as shown in 
Table VI other than the previous three techniques, 5 - it 
provides a quadriliteral root by counting the number of zero 
product values for letters in a word (other than the letter b) 
and by counting the number of repetitions a letter occurs in a 
word (other than the letters b or w or A). As can be noticed 
from the algorithm, more rules were put for choosing a 
quadriliteral root. This is due to the fact that in some four
letter words using Variantl algorithm, these words will be 
considered as a correct root where they are not. As can be 
seen from Table VI, the five groups of letters that were 
proposed in [3] have been reduced to only three with the 
shown weights. Here, the second group (in Table II) is 
cancelled since its letters are replaced by Y. Also, the letters I, 
m, sand n are moved to the third group with weight 2, and 
the letters t, wand Y were moved to the second group with 
weight 3. The original two examples, from Table III, using 
this variant would extract roots, xdm and Elm respectively. 

TASLE V!. WEIGHTS OF LETTER GROUPS FOR VARIANT2 ALGORITHM 

I 
Let�ers 

I Zero 
A. h Rest 

5 

Variant2 Algorithm 
Inputs: Set of preprocessed documents D = {dJ, 
d" ... . . ,do}, Predefined root lists, Predefined two
letter geminated words list, 3 Predefined Replace 
lists, Predefined letter groups weight lists 
Outputs: List of triliteral and some quadriliteral 
roots for each new document new_di_l 
START 
For each document di do { 
LastWord = Count No Words(d,) 
For j = 1 to LastWord in di do 
LastLetter = Count_No_Letters (Wj' c) 
If(LastLetter < 3) {{Final_Wordj = w]' go to *}} 
Remove_AL (w]) 

Replace_letters (Wj) % a normalization step 
Provide the order, weight for each letter in w]. 
Perform calculating the product of weight and order 
val ues for each let ter in word w]. 
Count = Count_No_Zero_Product_Letters_Not_b(wj) 
Repeat = Count_No_Repetitions_Not_b_w_A(wj) 
If(((Count > 3) or (Repeat > 2)) and (LastLetter >= 
4) ) 
{Final_Wordj=Extract_4letter_with_least�roduct(wj) , 
go to *} Else 
{ Final_Word]=Extract_3letter_with_least�roduct(w] 
) } 
* LastLetter = Count_No_Letters(Final_Wordj,c) 
If (LastLetter == 2) {{cc = Compare (Final_Wordj, 
2_letter_list) } 
If(cc==O) {Final_Wordj=Correct_Word(Final_Wordj)}} 
Write Final_Wordj to output document new_di_l 
Calculate Accuracy_of_document_ new_di_l} 
END 

In brief, this algorithm varies from the previous ones by that 
it: 1- provides different weight values for different groups of 
letters, 2- removes Al from words if these words start with it, 
3- perform a normalization step, 4- handles two-letter 
geminated roots, and 5 - extracts four-letter roots. 
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B. The Rule-Based Approach 

The rule-based stemmer is implemented starting from 
the work of Al-Ameed [I). It is composed of two parts: a 
rule-based light stemmer, and a pattern-based infix remover. 
The rule-based light stemmer removes prefixes and suffixes 
from the word according to specific rules. The pattern-based 
infix remover removes infixes from the word according to 
specific patterns. This approach is named here Rule-Based 

algorithm. The basic steps of this algorithm is simple: 1- it 
stems the word if its number of letters is greater than 3, 2- it 
outputs this stem to a new document, 3- it performs infix 
removal on this stem, 4- it outputs the resulting root to 
another new document and calculates the accuracy of 
algorithm after all words are processed from the input 
document. When the Correction algorithm is included, step 
4 is modified such that the algorithm corrects irregular 
triliteral roots (if extracted root is not found in the root list) 
and then performs the remainder. This root extractor was 
explained in details in [2] and due to space limitation, the 
reader is kindly referred to it for more details. All 
techniques are evaluated using accuracy which is found by 
each algorithm by comparing each extracted root with a 
predefined list of 5,405 roots that contains lists of only 
triliteral and quadriliteral roots (4,655 triliteral roots and 750 
quadriliteral roots collected from ([5], [6], and [8])), then 
counting the roots that match the ones in the predefined list, 
and finally calculating the percentage of correct roots in 
each text of the collection. 

V. EXPERIMENTAL RESULTS AND ANAYLSIS 

A. Accuracy Results 

The accuracy of algorithms is shown in Fig. 1 along with 
their Correction counterparts6. In Fig. 1, the Adjusted AI
Shalabi and the Rule-Based algorithms provided the highest 
accuracy results (with or without the correction algorithm). 
The effect of adding the Correction algorithm to all 
techniques was to increase their accuracy by about 7% to 
14%. Although Variantl algorithm is higher in accuracy 
than Variant2 algorithm, nevertheless, when their 
Correction algorithm is added, the opposite occurs. This 
result indicates that Variant2 algorithm is more sensitive to 
irregular words. Also, the Rule-Based algorithm is rather 
less in accuracy than the Adjusted AI-Shalabi algorithm by 
about 2.2%. However, the Rule-Based Correction 
algorithm's accuracy is rather higher than that the Adjusted 
AI-Shalabi Correction algorithm's accuracy by about 2%. As 
can be seen from the results [13, pp. 208 - 210], the 
differences among such algorithms are rather small which 
requires calculating variance using (1) for all algorithms: 

6 SI: A1-Shalabi algorithm. Sl_corr: AI-Shalabi with Correction algorithm, S2: 

Adjusted AI-Shalabi algorithm, S2 _ corr: Adjusted AI-Shalabi with Correction 

algorithm, S3: Variant! algorithm, S3 _corr: Variant! with Correction algorithm, S4: 

Variant2 algorithm, S4_corr: Variant2 with Correction algorithm, RB: Rule-Based 

algorithm, RB_corr: Rule-Based with Correction algorithm. 
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Var 
" 

L (x, -x) (I) 
i=oi 

Where n: number of texts, Xi: accuracy Of;11I text, x7 average accuracy of n texts. 

The results of variance for all algorithms in all categories are 
shown in Fig. 2. The variance values for the Adjusted AI
Shalabi and Rule-Based algorithms along with their 
Correction are shown in Fig. 3 where these values are very 
near and can not clarify which of the two algorithms (or their 
Correction ones) is better. Thus, [13, pp. 208 - 210] using (2) 
t-test is found by hypothesizing that Adjusted AI-Shalabi 
algorithm is better than Rule-Based algorithm (as the null 
hypothesis). The t-value was found to be 5.56 and for a = 
0.01, the critical value of t is 2.576 (using a one-tailed test 
with 00 degrees of freedom [13, pp. 609]). Since t = 5.56 > 
2.576 then the hypothesis is accepted here. 

, where .... s 
Var I + Var 2 

n1 + n2 -2 

(2) 

Where x-;: accuracy of Adjusted AI-Shalabi algoritl.m, x-;: accuracy of Rule-Based 
algorithm , .r: pooled variance of both algorithms, and Var1: variance of Adjusted A/
Shalabi algorithm, Var,: variance of Rule-Based algorithm, n1 � n,: number of texts 
for both algorithms. 
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Figure 3. Comparison between variance values for Rule-Based and 
Adjusted AI-Shalabi algorithms along with their Correction ones 

The t-test is also performed for the two algorithms with the 
Correction algorithm where the null hypothesis here is that 
Rule-Bused Correction algorithm is better than the Adjusted 
AI-Shulubi Correction algorithm. Using the same equations 
as above and for a = 0.01, the hypothesis is accepted. Thus, 
one concludes that the approach with highest accuracy 
among all algorithms is the rule-based approach (with the 
Correction algorithm). Also, although not shown here, the 
Correction algorithm, in general, lowered variance and 
improved performance of all algorithms and categories. Also, 
an in-coder7 analyzed their performance and found that the 
Correction algorithm relatively improved the rule-based one 
by about 10% whereas it relatively improved the positional 
letter ranking techniques by about 5 .2% � 5 .5 %. Results of 
in-coder analysis are shown in Fig. 4 and Fig. 5 and are not 
near those reported in Fig. 1. This is due to some limitations 
as: 1- in specific cases the correction algorithm does not 
check the extracted root since it is not reached8. 2- In other 
cases the extracted root is not found in the algorithm to be 
corrected since its case is not handled. 3- In other cases the 
extracted root is not found in the root list since the root list 
provided here does not include all roots (estimated 10,000 
roots [4]). 4- In other cases, although relatively few, a 
surface word might have more than one option for correction 
and the algorithm chooses (according to its structure) only 
one of them (that might be wrong). 

Average of all categories 
52.2 54.95 

48.67 51.19 48.81 51.54 52.07 56.93 

42 44.54 

Figure 4. Native Arabic speaker analysis of algorithm' accuracy 

7 The I st author of this paper. This was done as a preliminary step using 40 texts (5 
from each class chosen arbitrarily). 

8 ll1is is due to the fact that the extracted root is found in the predefined root list (so is 

considered correct even though it is actually the wrong root). 
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Algorithms Accuracy (after exclusion) on average 

67.33 
64.52 

6136 6087 61 12 - 57.17 
60.13 

57.37 
,--

52.07 
-

r-
- - ,-- -

49.45 
- r-

51 51_corr 52 52_corr 53 53_corr 54 54_corr RB RB_corr 

Algorithm 

Figure 5. Native Arabic speaker analysis of algorithm' accuracy after 
excluding number of names, transliterations, stop words and compounds 

from total number of words in texts 

VI. CONCLUSIONS AND FUTURE WORK 

A positional letter ranking approach for root extraction 
was investigated. Two variants along with an adjustment to 
it were also proposed and implemented here. The results of 
implementing such techniques were compared with those of 
a rule-based one. It was found that the Correction algorithm 
do indeed improve the performance of the two approaches. 
The Adjusted AI-Shulabi method proved to be the highest in 
accuracy among all five original algorithms. However, the 
Rule-Bused algorithm became the approach with the highest 
accuracy among all ten algorithms when the Correction 

algorithm was included in it (improvement by about 14%). 
The experiments show a promising future for the proposed 
Correction algorithm to be implemented for other 
stemmers. Yet, it has some limitations and the 14% 
improvement can be increased by adding further rules and 
restrictions. Also, the Adjusted AI-Shulubi method can be 
further improved by: a) handling two-letter geminated 
words, performing normalization to handle weak words, and 
extract some quadriliteral-root based words (as was 
proposed in the second variant), b) handling the special 
effect of b as an extra letter (when at beginning of a word) 
and c) proposing a range of weight values instead of specific 
ones. This is so since it is clear from the experimental 
results that the two proposed grouping of letters and their 
respective weights did not provide in general higher 
accuracy values. However, it was observed that each 
proposed method gave the correct root for some words but 
failed for others, while the Adjusted AI-Shulubi method 
provided the correct root for many others. This suggests that 
using a range of weight values to such letters might provide 
higher accuracies (instead of specific values). Also, 
acquiring larger text collection would emphasize the results 
of the performance of such techniques. 
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