
2010 2nd International Conference on Computer Technology and Development (lCCTD 2010)

Stemming Techniques for Arabic Words: A Comparative Study

May Y. Al-Nashashibi, D. Neagu

Department of Computing, University of Bradford,
Bradford, UK,

e-mail: (M.Y.A.Al-nashashibi.D.Neagu)@bradford.ac.uk

Abstract-Text interpretation depends among other things on a
pre-processing stage in extracting effectively a correct stem or

root. Since there is no available standard stemmer for Arabic,

we address here five methods for extracting Arabic roots and

the outcomes of the approach with best results will be used

later on. Four of these methods are based on a positional

letter-ranking approach where such an approach is

investigated along with an adjustment, and two proposed

variants. The fifth one is a rule-based approach. An algorithm
for correcting irregular words is applied for all methods and a

comparison is made between all approaches. The accuracy of

these methods was found by comparing extracted roots with a
predefined list of roots using an in-house text collection.

Results show that the correction algorithm improved the

accuracy of the rule-based one by about 14% and the

positional letter ranking based algorithms by 7% to 10%. The
adjusted positional letter ranking method proved to be the

highest in accuracy among all five algorithms but slightly
higher than the rule-based one. However, the rule-based

algorithm was found to be the approach with the highest
accuracy among all ten algorithms when the correction

algorithm was included in it.

Keywords: Arabic Root Extraction; Natural Language

Processing; Text Mining; Rule-Based; Positional Letter Ranking;

t-test; Variance.

I. INTRODUCTION

Researchers have explored and developed many Text
Mining (TM) and Natural Language Processing (NLP)
techniques especially to English language but few have been
proposed for Arabic text automatic interpretation. This is
partially due to the rich morphology [10] of Arabic language.
Applying TM techniques requires first a preprocessing stage
that would remove punctuation marks, function words and
return the remaining words to their stems (for Arabic words
to their stems or roots). For English language, researchers
perform the stemming step in order to reduce the high
dimensionality of documents [12]. Our aim is to compare the
performance of different techniques for stemming Arabic
words and use the technique with best results. The approach
for stemming used here is based on Al-Shalabi, et al work [3]
which is a positional letter ranking technique for Arabic root
extraction. The choice of this technique was because it is
simple, easy to implement and had a reported 90% accuracy.
However, in [3] no information were provided of the reasons
of choosing the weight and rank values for letters, thus two
variant methods of Al-Shalabi, et al work are proposed here

978-1-4244-8845-2/10/ $ 26.00 © 2010 IEEE 270

Ali A. Yaghi

Department of Computer Science, Petra University,
Amman, Jordan,

e-mail: Ali.Yaghi@uop.edu.jo

along with an adjustment to it. The results of implementing
these techniques will be compared with those of a rule-based
one thoroughly investigated in [2]. The choice of the rule
based technique was because it reported accuracy higher than
90%. Since the two approaches used here do not handle
irregular words, then the Correction algorithm proposed and
implemented in [2] is included in all algorithms and its
effectiveness in improving their performance is presented.
The importance of handling irregular words comes from the
fact that these words presence is about 30% in Arabic textsl.

The remainder of this paper is organized such that in
Section II a brief review, of the various available Arabic root
extraction techniques in the literature as well as the Arabic
language morphology is introduced. In Section III, the
gathered text collection and the function words list are both
described. The positional-based-letter ranking techniques and
their algorithms along with the rule-based one are presented
in Section IV. Section V presents the evaluation criteria and
experimental results. Finally, Section VI discusses
conclusions and future work.

II. RELATED WORK AND BACKGROUND

A. Related Work

Much [4], [11] work have been performed on Arabic
morphological analysis and stemming especially for
Information Retrieval (IR) applications. It was concluded
that for IR using light stemming provided the highest IR
performance followed by that when using root extraction
(due to space limitation, the reader is kindly referred to the
works in [4] and [11] for excellent reviews). For TM on
Arabic, few works, as far as we know, have been conducted
to investigate the effect of using stems or roots instead of
words on Text Classification (TC) performance such as [14]
and [15]. There is a discrepancy among their results. Some
reported that light stemming degraded TC performance,
whereas others reported that using either stems or roots
improved it. It must be noted here that in all mentioned
works above for TC, no significance tests were reported.
Many Arabic morphological analysis approaches are rule
based. However, few of such methods handle specific cases
of irregular words but not all, to our knowledge, except the
works of El-Sadany and Hashish [9] and Beesley [7]. It is
note worthy that in El-Sadany and Hashish [9] work, no

I Percentage values presented here are gathered by I st author from 40 texts chosen

arbitrarily in the collection.

2010 2nd International Conference on Computer Technology and Development (ICCTD 2010)

results were provided of the system implemented. Also, in
Beesley's work [7], although the Xerox dem02 is available
and efficient, it requires usually a relatively long time to
provide the required roots. Thus, there is a need to build an
algorithm that provides the correct root for such irregular
words. When developing stemmer/morphological analyzer,
important issues present themselves [4] such as under
stemming and over-stemming. Other issues that require
handling for stemmers are compound words, proper nouns,
foreign Arabized words, and irregular forms of words. Here
some of the weaknesses presented above are addressed,
namely handling irregular words.

B. Background

Arabic language is one of the Semitic languages, [10]
that is written from right to left and has 28 letters all
consonants: three of these letters are also used as long
vowels A 3, W, y. Arabic language has many special
cases/properties that affect stemming or any automatic
method such as Hmzp, short vowels, nunation, and t$dyd.
These different aspects are highly important in spoken
Arabic and in natural language understanding. However,
Modem Standard Arabic (MSA) usually does not include
short vowels, nunations or assimilation marks in printed
texts. Without their presence, the ambiguity of words
increases. Verbs are [10] categorized in Arabic as sound or
unsound verbs. Unsound verbs are categorized into weak
verbs and comprising verbs (either hamzated or geminated).

III. TEXT COLLECTION AND FUNCTION WORDS LIST

Since no public Arabic text collection is available, an in
house collection of Arabic texts is used to support this work.
This collection was gathered, according to eight subject
categories, by acquiring arbitrarily Arabic texts from various
online Arabic newspapers, academics, magazines and other
sources published online in the period 231712008 - 11212009.
In each category about 50 texts were chosen randomly with a
total of 380 texts (nearly 193,500 words). The Arabic
function words list used in this work is formed from 2,549
words [10]. Examples of function words are the separate
prepositions, personal pronouns, demonstrative pronouns,
relative pronouns, conjunctions, and interjections. Imperfect
verbs as kAn wAxwAthA were included in the function words
list along with similar verbs such as OSbH or mAzAI. Also,
dual and plural forms of the function words are added to
their list. Both, constructed text collection and function word
list are used in Section V for experiments.

IV. CONSTRUCTION OF ROOT EXTRACTORS

In this work, the main purpose is to use/propose variants
of a positional-letter ranking approach to extract roots of

2 Xerox demo can be found at http://www.xrce.xerox.com/Research·

Development/Historical·projectslLinguistic.Demosl Arabic.Morphological·Analysis·

and· Generation

3 Transliterations used here are that of Buckwalter' found at:

http://www.qarnus.org/transliteration.htm

271

words in texts as a preprocessing step for TM and to
compare the results of such techniques with those of a rule
based one. Both the positional letter ranking one, based on
AI-Shalabi, et al [3] work, and the rule-based one, based on
AI-Ameed's [1] work concentrate on affix removal of the
letters in sOltmwnyhA. The original positional-letter ranking
technique and the rule-based one presented here do not
handle weak, eliminated-long-vowel, hamzated words,
names of places, countries, cities, months, broken plurals
(except the rule-based one), foreign Arabized words or
geminated words (except for the rule-based one where
geminating is partially handled and the second variant
method). So, the Correction algorithm [2] is used here in all
techniques in order to improve their performance and
investigate its effectiveness. The approach with the best
performance results will be used in TM procedures later on.
The performance of the techniques before/after adding the
Correction algorithm to them will be presented in Section V.

A. Non-Linguistic Approach

This approach uses the positional-letter-ranking work
proposed by AI-Shalabi, et al [3]4 and a slight adjustment to
it along with two proposed variants to it. The above
techniques test at the beginning if the number of letters in the
word is less than or equal to 3 and if so take the word (except
for the fourth technique) without any further processing. The
fourth technique tests if a two-letter word is geminated by
comparing it to a two-letter geminated words list. If it is in
the list, the fourth technique presents the two-letter word as a
triliteral root by doubling its second letter. Also, the third and
fourth techniques extract specific cases of quadriliteral roots
along with triliteral ones whereas the first two methods
extract only triliteral roots. Section V presents the outcome
of implementing these techniques.
AI-Shalabi Algorithm. This algorithm employs a letter
weight, an order index and assigns a rank to a letter
according to its order in the word. AI-Shalubi algorithm
extracts the root for the word through the following simple
steps: 1- for each letter in the word (from right to left) apply
weight and rank values according to Tables I and II while
assigning order values, 2- calculate the product of the rank
and weight for each letter, 3- keep only the letters with the
first three smallest product values without changing the order
of these letters in the word. In order to illustrate the
performance of this algorithm, two examples of words are
shown in Table III where the least three product values are
bolded. As shown in Table I, the rank of a word is calculated
differently when its number of letters is odd from that when
it is even. The weights of letters are given values for letters
categorized into groups (e.g. allocating the group of letters 'p,
A' a weight of 5) as shown in Table II. AI-Shalabi, et al work
did not explain or clarifY why or on what basis did it use
such ranking or weighting only that such groups and their
values were chosen after extensive experimentation.

4 Many thank goes to H. AI·Serhan for providing a copy of AI·Shalabi, et al (2003)

paper.

2010 2nd International Conference on Computer Technology and Development (ICCTD 2010)

TABLE!. LETTER RANKING IN AL-SHALABI ALGORITHM (DERIVED
FROM (AL-SHALABJ, ETAL 2003) WORK)

Letter position Rank (if word Rank (if word
from right length is even) length is odd)

1 N N
2 N-1 N-1
3 N-2 N-2
: : :

IN/21 N/2 + 1 IN/21
IN/2l+ 1 N/2 + 1-0.5 IN/2l+ 1-15
IN/2l+ 2 N/2 + 2 -0.5 IN/21 + 2-15
I N/2l+ 3 N/2 + 3 -0.5 IN/21+ 3-15

: : :
N N-0.5 N-15

Where N. number oj tellers In a word

TABLE II. TABLE 2: WEIGHTS OF LETTER GROUPS IN AL-SHALABI
ALGORITHM (DERIVED FROM (A I.-SHALABJ, ET AI. 2003) WORK)

TABLEIIL EXAMPLES OF EXTRACTED ROOTS USING [3)

a) word IstxdAmh, correct root xdm
letters h m A d x I s J
Order 8 7 6 5 4 3 2 1

Weight 1 2 5 0 0 3 1 2
Rank 7.5 6.5 5.5 4.5 5 6 7 8

Product 7.5 13 27.5 0 0 18 7 16
Root sxd (Xl

b) word AltElymAt, correct root Elm
Letters I A M Y I Jl I I A
Order 9 8 7 6 5 4 3 2 1

Weight 3 5 2 3.5 1 0 3 1 5
Rank 7.5 6.5 5.5 4.5 5 6 7 8 9

Product 22.5 32.5 11 15.75 5 0 21 8 45
Root 1m (Xl

Adjusted Al-Shulubl AlgOrithm. It was notIced In [3] that
there was a discrepancy in some of its examples. The two
examples that caused such discrepancy were the ones when
the letter I was at first or second positions of a word where
the authors have given it a weight of 5 . However, it was
given a weight of 1 when it was in other positions (as already
specified in their paper). This information was not explained
or mentioned throughout the paper except only in the two
examples. So, here this is considered a possible adjustment
algorithm (named Adjusted Al-Shulubl) while maintaining
the rest of the procedure mentioned in [3]. Thus, the same
ranking and ordering of letters in a word were maintained,
and a different weight of 5 to only the letter I was given if it
was in the first or second positions in the word. Following
this adjustment of the weight of the letter I when applied on
the same two examples in Table III, the expected extracted
roots would be sxd and Elm respectively.
As can be seen from the examples in the previous two
techniques, it is expected that these algorithms will not
extract roots with high accuracy. However, since this
approach is very simple and easy to implement, then
proposing a different weighting scheme, based on
considering the characteristics of occurrence of Arabic
language letters, for the groups of letters might produce
higher accuracy results. Statistics showing the percentages of

272

such Arabic letters were founds. After close examination of
these percentages and including the effect of the number of
letters before and after them as shown in Table IV, it was not
possible to quantitatively reach a weight for these letters or
classifY them into separate distinct groups. However, it was
possible to do so qualitatively: 1- At a first analysis, it was
proposed that these letters be grouped into 5 groups (as Al
Shulubi algorithm or its adjustment) where here such groups
are assigned classes: high, high or moderate, moderate,
moderate or low, and finally low. 2- However, at a second
analysis; it was proposed that these letters be grouped into 4
groups where here such groups are assigned classes: high,
high or moderate, moderate, andjinally moderate or low. 3-
At a third analysis, it was proposed that these letters be
grouped into 3 groups where here such groups are assigned
classes: high, moderate, and jinally moderate or low. The
reason why no conclusive number of groups was reached is
the nature of some of these letters and their similar
percentages in appearing as extra and original letters in
words. Also, it was not possible to quantitatively find all the
weights proposed by Al-Shulubi algorithm from these
statistics. However, since the initial number of groups found
here are 5 , weighting letters was thus given by assigning the
groups weights from 5 to 1 according to classes assigned: 5
for high, 3.5 for high or moderate, 3 for moderate, and so on.
In order to investigate these different choices of the number
of groups, the first Variant method explained next will adapt
grouping these letters into 4 groups, while the second
Variant method will group such letters into 3 groups.

TABLE IV. PERCENTAGES OF LETTERS APPEARANCE IN TEXTS

no. of no. of
letter letter Qualitati

Lett Rate letters letters
after before ve weight
with with for rate

er (%) after before
highest highest values

&% & 0/0 % % only

Spac
not 27 32 100 43.02 not a

e
give 84 0L OL A 21.9p character n

A 19.6 3 1 30 94 40.81 space high 5 960L OL 42.16

4.22 1 3 30 84 space y moderate p OL OL 100 38.41 or low
h 1.79 1 4 22 69 A 15.8 1 Low 440L OL 41.03 -(

) 0.50 1 0 6 19 Y 52.31 Low 31 OL OL 41.54 A

6.66 2 8 31 97 space 16.07 high or
y 880L OL 25.49 f moderate
I 12.9 3 0 29 91 A A high 9 940L OL 21.24 61.71

5.64 3 1 24 75 space A moderate f 970L OL 22.76 22.49

5.70 3 0 27 84 16.09 space moderate w 940L OL A 41.02

Y 0.91 1 3 9 28 space 1 Low OL OL 100 71.43

8.52 3 0 25 78 space 1 high or m 940L OL 19.73 22.33 moderate
3.86 25 78 21 66 space A moderate n % OL OL 42.57% 28.12 or low

5 From Khaled A1Shamaa web site, URL:
http://www.alshamaa.com/php/arabiclindex.html. [last accessed: 4/6/2010]

2010 2nd International Conference on Computer Technology and Development (ICCTD 2010)

Where . OL STANDS FOR OF LETTER
First Proposed Variant of AI-Shalabi Algorithm. Here, it is
proposed to use the same ranks of letters as that of AI
Shalabi algorithm but to assign a different set of weights to
letters as shown in Table V in order to provide a triliteral
root according to their order. The five groups of letters that
were proposed in [3] have been reduced to four with the
shown weights. The letter I was moved to third group with
weight 3. The letter s was moved to the fourth group to give
it a higher value especially when at beginning of a word
(most likely it will be an extra letter but an original letter
elsewhere). Finally, the letter h was moved to the first group
with weight 5 since it is expected that when h is at the end of
the word, it is likely to be a suffix since it might be wrongly
written as h where as it is meant to be p. This algorithm is
called Variantl. Also, this algorithm proposes to extract
specific cases of quadriliteral-root-based words. Since
Variantl algorithm is a combination of the original
positional letter ranking method and rules to handle
quadriliteral roots, then it is a hybrid method. The original
two examples in Table III would generate the roots sxd and
Elm respectively, when using this algorithm.

TASLE V. WEIGHTS OF LETTER GROUPS FOR VARIAN,] ALGORITHM

Variantl Algorithm
Inputs: Set of preprocessed documents D = {dJ,
d" ,do}, Predefined root lists, Predefined
letter groups weight lists
Outputs: List of triliteral and some quadriliteral
roots for each new document new_di_l
START
For each document di do {
LastWord = Count No Words(d,)
For j = 1 to LastWord in di do
LastLetter = Count_No_Letters(wj,c)
If (LastLetter <= 3) {Final_Wordj = Wj, go to * }
Provide the order, weight values for each letter in
word w]
Perform calculating the product of order and weight
values for each letter in word Wj
Count = Count_No_Zero_Product_Letters(wj)
If((Count > 3) and (LastLetter >=
4)){ Final_Wordj=Extract_4letter_with_least�roduct
(Wj), go to * } Else
{ Final_Wordj=Extract_3letter_with_least�roduct (w]
) }
* Write Final_Wordj to output document new_di_l
Calculate Accuracy_of_document_ new_di_l }
END

In brief, this algorithm varies from previous ones by
providing different groups of letters with different weight
values and extracting four-letter roots.
Second Proposed Variant Algorithm. The second variant
technique of AI-Shalabi algorithm (that is named here
Variant2) uses the same ranks as described in [3]. This
second technique performs the following steps: 1- it excludes
the letter combination Al (i.e. the definitive article) from the
word if the word starts with it, 2- it replaces the letters 0, I, I
with A and replaces letters j, y with Y and replaces letter p
with h (i.e. a normalization step), 3- it presents specific two-

273

letter geminated words as triliteral by comparing them with a
predefined list of two-letter geminated words and if the two
letter word is in the list, the algorithm duplicates the second
letter, 4- it uses a different weighting scheme as shown in
Table VI other than the previous three techniques, 5 - it
provides a quadriliteral root by counting the number of zero
product values for letters in a word (other than the letter b)
and by counting the number of repetitions a letter occurs in a
word (other than the letters b or w or A). As can be noticed
from the algorithm, more rules were put for choosing a
quadriliteral root. This is due to the fact that in some four
letter words using Variantl algorithm, these words will be
considered as a correct root where they are not. As can be
seen from Table VI, the five groups of letters that were
proposed in [3] have been reduced to only three with the
shown weights. Here, the second group (in Table II) is
cancelled since its letters are replaced by Y. Also, the letters I,
m, sand n are moved to the third group with weight 2, and
the letters t, wand Y were moved to the second group with
weight 3. The original two examples, from Table III, using
this variant would extract roots, xdm and Elm respectively.

TASLE V!. WEIGHTS OF LETTER GROUPS FOR VARIANT2 ALGORITHM

I
Let�ers

I Zero
A. h Rest

5

Variant2 Algorithm
Inputs: Set of preprocessed documents D = {dJ,
d" ,do}, Predefined root lists, Predefined two
letter geminated words list, 3 Predefined Replace
lists, Predefined letter groups weight lists
Outputs: List of triliteral and some quadriliteral
roots for each new document new_di_l
START
For each document di do {
LastWord = Count No Words(d,)
For j = 1 to LastWord in di do
LastLetter = Count_No_Letters (Wj' c)
If(LastLetter < 3) {{Final_Wordj = w]' go to *}}
Remove_AL (w])

Replace_letters (Wj) % a normalization step
Provide the order, weight for each letter in w].
Perform calculating the product of weight and order
val ues for each let ter in word w].
Count = Count_No_Zero_Product_Letters_Not_b(wj)
Repeat = Count_No_Repetitions_Not_b_w_A(wj)
If(((Count > 3) or (Repeat > 2)) and (LastLetter >=
4))
{Final_Wordj=Extract_4letter_with_least�roduct(wj) ,
go to *} Else
{ Final_Word]=Extract_3letter_with_least�roduct(w]
) }
* LastLetter = Count_No_Letters(Final_Wordj,c)
If (LastLetter == 2) {{cc = Compare (Final_Wordj,
2_letter_list) }
If(cc==O) {Final_Wordj=Correct_Word(Final_Wordj)}}
Write Final_Wordj to output document new_di_l
Calculate Accuracy_of_document_ new_di_l}
END

In brief, this algorithm varies from the previous ones by that
it: 1- provides different weight values for different groups of
letters, 2- removes Al from words if these words start with it,
3- perform a normalization step, 4- handles two-letter
geminated roots, and 5 - extracts four-letter roots.

2010 2nd International Conference on Computer Technology and Development (ICCTD 2010)

B. The Rule-Based Approach

The rule-based stemmer is implemented starting from
the work of Al-Ameed [I). It is composed of two parts: a
rule-based light stemmer, and a pattern-based infix remover.
The rule-based light stemmer removes prefixes and suffixes
from the word according to specific rules. The pattern-based
infix remover removes infixes from the word according to
specific patterns. This approach is named here Rule-Based

algorithm. The basic steps of this algorithm is simple: 1- it
stems the word if its number of letters is greater than 3, 2- it
outputs this stem to a new document, 3- it performs infix
removal on this stem, 4- it outputs the resulting root to
another new document and calculates the accuracy of
algorithm after all words are processed from the input
document. When the Correction algorithm is included, step
4 is modified such that the algorithm corrects irregular
triliteral roots (if extracted root is not found in the root list)
and then performs the remainder. This root extractor was
explained in details in [2] and due to space limitation, the
reader is kindly referred to it for more details. All
techniques are evaluated using accuracy which is found by
each algorithm by comparing each extracted root with a
predefined list of 5,405 roots that contains lists of only
triliteral and quadriliteral roots (4,655 triliteral roots and 750
quadriliteral roots collected from ([5], [6], and [8])), then
counting the roots that match the ones in the predefined list,
and finally calculating the percentage of correct roots in
each text of the collection.

V. EXPERIMENTAL RESULTS AND ANAYLSIS

A. Accuracy Results

The accuracy of algorithms is shown in Fig. 1 along with
their Correction counterparts6. In Fig. 1, the Adjusted AI
Shalabi and the Rule-Based algorithms provided the highest
accuracy results (with or without the correction algorithm).
The effect of adding the Correction algorithm to all
techniques was to increase their accuracy by about 7% to
14%. Although Variantl algorithm is higher in accuracy
than Variant2 algorithm, nevertheless, when their
Correction algorithm is added, the opposite occurs. This
result indicates that Variant2 algorithm is more sensitive to
irregular words. Also, the Rule-Based algorithm is rather
less in accuracy than the Adjusted AI-Shalabi algorithm by
about 2.2%. However, the Rule-Based Correction
algorithm's accuracy is rather higher than that the Adjusted
AI-Shalabi Correction algorithm's accuracy by about 2%. As
can be seen from the results [13, pp. 208 - 210], the
differences among such algorithms are rather small which
requires calculating variance using (1) for all algorithms:

6 SI: A1-Shalabi algorithm. Sl_corr: AI-Shalabi with Correction algorithm, S2:

Adjusted AI-Shalabi algorithm, S2 _ corr: Adjusted AI-Shalabi with Correction

algorithm, S3: Variant! algorithm, S3 _corr: Variant! with Correction algorithm, S4:

Variant2 algorithm, S4_corr: Variant2 with Correction algorithm, RB: Rule-Based

algorithm, RB_corr: Rule-Based with Correction algorithm.

274

Var
"

L (x, -x) (I)
i=oi

Where n: number of texts, Xi: accuracy Of;11I text, x7 average accuracy of n texts.

The results of variance for all algorithms in all categories are
shown in Fig. 2. The variance values for the Adjusted AI
Shalabi and Rule-Based algorithms along with their
Correction are shown in Fig. 3 where these values are very
near and can not clarify which of the two algorithms (or their
Correction ones) is better. Thus, [13, pp. 208 - 210] using (2)
t-test is found by hypothesizing that Adjusted AI-Shalabi
algorithm is better than Rule-Based algorithm (as the null
hypothesis). The t-value was found to be 5.56 and for a =
0.01, the critical value of t is 2.576 (using a one-tailed test
with 00 degrees of freedom [13, pp. 609]). Since t = 5.56 >
2.576 then the hypothesis is accepted here.

, where s
Var I + Var 2

n1 + n2 -2

(2)

Where x-;: accuracy of Adjusted AI-Shalabi algoritl.m, x-;: accuracy of Rule-Based
algorithm , .r: pooled variance of both algorithms, and Var1: variance of Adjusted A/
Shalabi algorithm, Var,: variance of Rule-Based algorithm, n1 � n,: number of texts
for both algorithms.

71.72 73.33

62.06 61.96
64.74 ,.....

lL�
S" ,,0«

S"/
'" 0«

S"-� jb&/"
S"

66.25
69.24

�

�" ,,0«
�,,/

69.03
68.92 r-
r-

�'). ,,0«
�')./

69.7

� 0«
�5'

'-

Figure I. Comparison between accuracy results of al1 ten algorithms

3100,-----------------------,

2700

2300

'" <.>1900
r:::
'"

1100

700

3oo L-SN1 -.SNt�co=rr� .. S2,-.. S2�_c= or� r -.S3,-���_c= or� r-.��· �"_� co=rr-.R�B-.R���co�rr

�Politics

_Economies

....... Religious

Texts

+Social

�Educational

-+-Sports

-Arts ..

Figure 2. Variance values for al1 algorithms among al1 categories (points
were connected here by smooth curves for illustration purposes only)

2010 2nd International Conference on Computer Technology and Development (lCCTD 2010)

12478.8

11321.1 r---
-

10358.8
5807.6 --

52 RB

Figure 3. Comparison between variance values for Rule-Based and
Adjusted AI-Shalabi algorithms along with their Correction ones

The t-test is also performed for the two algorithms with the
Correction algorithm where the null hypothesis here is that
Rule-Bused Correction algorithm is better than the Adjusted
AI-Shulubi Correction algorithm. Using the same equations
as above and for a = 0.01, the hypothesis is accepted. Thus,
one concludes that the approach with highest accuracy
among all algorithms is the rule-based approach (with the
Correction algorithm). Also, although not shown here, the
Correction algorithm, in general, lowered variance and
improved performance of all algorithms and categories. Also,
an in-coder7 analyzed their performance and found that the
Correction algorithm relatively improved the rule-based one
by about 10% whereas it relatively improved the positional
letter ranking techniques by about 5 .2% � 5 .5 %. Results of
in-coder analysis are shown in Fig. 4 and Fig. 5 and are not
near those reported in Fig. 1. This is due to some limitations
as: 1- in specific cases the correction algorithm does not
check the extracted root since it is not reached8. 2- In other
cases the extracted root is not found in the algorithm to be
corrected since its case is not handled. 3- In other cases the
extracted root is not found in the root list since the root list
provided here does not include all roots (estimated 10,000
roots [4]). 4- In other cases, although relatively few, a
surface word might have more than one option for correction
and the algorithm chooses (according to its structure) only
one of them (that might be wrong).

Average of all categories
52.2 54.95

48.67 51.19 48.81 51.54 52.07 56.93

42 44.54

Figure 4. Native Arabic speaker analysis of algorithm' accuracy

7 The I st author of this paper. This was done as a preliminary step using 40 texts (5
from each class chosen arbitrarily).

8 ll1is is due to the fact that the extracted root is found in the predefined root list (so is

considered correct even though it is actually the wrong root).

275

Algorithms Accuracy (after exclusion) on average

67.33
64.52

6136 6087 61 12 - 57.17
60.13

57.37
,--

52.07
-

r-
- - ,-- -

49.45
- r-

51 51_corr 52 52_corr 53 53_corr 54 54_corr RB RB_corr

Algorithm

Figure 5. Native Arabic speaker analysis of algorithm' accuracy after
excluding number of names, transliterations, stop words and compounds

from total number of words in texts

VI. CONCLUSIONS AND FUTURE WORK

A positional letter ranking approach for root extraction
was investigated. Two variants along with an adjustment to
it were also proposed and implemented here. The results of
implementing such techniques were compared with those of
a rule-based one. It was found that the Correction algorithm
do indeed improve the performance of the two approaches.
The Adjusted AI-Shulabi method proved to be the highest in
accuracy among all five original algorithms. However, the
Rule-Bused algorithm became the approach with the highest
accuracy among all ten algorithms when the Correction

algorithm was included in it (improvement by about 14%).
The experiments show a promising future for the proposed
Correction algorithm to be implemented for other
stemmers. Yet, it has some limitations and the 14%
improvement can be increased by adding further rules and
restrictions. Also, the Adjusted AI-Shulubi method can be
further improved by: a) handling two-letter geminated
words, performing normalization to handle weak words, and
extract some quadriliteral-root based words (as was
proposed in the second variant), b) handling the special
effect of b as an extra letter (when at beginning of a word)
and c) proposing a range of weight values instead of specific
ones. This is so since it is clear from the experimental
results that the two proposed grouping of letters and their
respective weights did not provide in general higher
accuracy values. However, it was observed that each
proposed method gave the correct root for some words but
failed for others, while the Adjusted AI-Shulubi method
provided the correct root for many others. This suggests that
using a range of weight values to such letters might provide
higher accuracies (instead of specific values). Also,
acquiring larger text collection would emphasize the results
of the performance of such techniques.

ACKNOWLEDGMENT

The first author would like to thank Petra University,
Amman, Jordan for partially financing her PhD study.

2010 2nd International Conference on Computer Technology and Development (ICCTD 2010)

REFERENCES

[I) H.K AI-Ameed. A proposed new model using a light stemmer for
mcreasmg the success of search in Arabic terms. PhD Thesis,
Bradford, UK: University of Bradford. 2006.

[2) M. Y. AI-Nashashibi, D. Neagu, A. Yaghi. "An improved root
extraction technique for Arabic words". In 2nd Int. Conference on
Computer Technology and Development ICCTD 2010, 2-4
November 2010, in press.

[3) R. AI-Shalabi, G. Kannan, and H. AI-Serhan. "New Approach For
extracting Arabic roots". In Proc of 2003 International Arab
conference on Information Technology (ACIT'2003), Alexandria,
2003, pp. 42-59.

[4) IA AI-Sughaiyer and LA AI-Kharashi. "Arabic morphology analysis
technIques: A comprehensive survey". 1 of the American Society for
Information Science & Technology JASIST. Feb. 2004, 55(3), pp.
189 -213.

[5) Imam Mohammed Ibn Abi Baker Ar-Rhazi. Mukhtar us-Sihah. Beirut
Librairie du Liban Publishers. 1986. (in Arabic).

[6) H. Bayyomee, Kh. Kolfat, and A. AI-Shafe'e. Lexicon for Arabic
verbs morphology. Cairo Dar Ilias Modem Publishing Compo 1989.
(in Arabic).

[7) K.R. Beesley. "Finite-State morphological analysis and generation of
Arabic at Xerox Research: status and plans in 2001". In: ARABIC
NLP Workshop: Status and Prospects ACL-EACL2001, Toulouse,
France 6 July 2001, pp. 1-8.

276

[8) A. EI-Dahdah. A Dictionary of Arabic grammar in charts and tables.
Beirut Librairie du Liban Publishers. 2008. Revised by: Dr. GM
Abdul-Massih (in Arabic).

[9) T. A. EI-Sadany and M. A. Hashish. "An Arabic morphological
system". IBM Systems Journal, 28(4),1989, pp. 600-612.

[10) lA. Haywood and H.M. Nahmad. A new Arabic grammar of written
language. London: Lund Humphries Publishers. 1998.

[II) Leah S Larkey, Lisa Ballesteros, and Margaret E. Connell. "Light
stemming for Arabic Information retrieval". In Abdelhadi Soudi,
Antal van den Bosch and Gunter Neumann Eds Arabic
computational morphology knowledge-based and e�pirical

'
methods,

text, speech and language technology series, Vol. 38, Part IV, pp. 221
-243, The Netherlands: Springer , 2007.

[12) F. Sebastiani, and Nazionale Delle Ricerche Consiglio. "Machine
learning in Automated Text Categorization". ACM Computing
Sur.vey, 34(1), 2002, pp. 1-47.

[13) CD. Manning and H. Schiitze. Foundations of statistical natural
language processing. Massachusetts, USA: MIT press. 1999.

[14) A. M. Mesleh. "Chi Square feature extraction based SVMs Arabic
language text categorization system". 1 Computer Science, 3(6),
SCIence Publications, pp. 430-435, 2007.

[IS) S. Raheel, 1 Dichy, and M. Hassoun. "The automatic categorization
of Arabic documents by boosting Decision Trees". Proceedings of 5th
Int. Conference on Signal-Image Technology and Internet-based
Systems SITIS 2009, 29 Nov - 4 Dec 2009, Marrakech, Morocco.
[EEE Xplore.

