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Abstract— Until now, the presence of fences is a technological
barrier for the adoption of robots in Small Medium Enterprises
(SME). The work deals with the definition of an intrinsically
safe algorithm to avoid collisions between an industrial manip-
ulator and obstacles in its workspace (Standard ISO 10218-1).
The suggested strategy aims to offer an industrial solution to the
problem: an off-line analysis of the workspace is performed to
have an exhaustive and intrinsically description of the static
obstacles and a safe spatial grid of “pass-through points”
is calculated; an on-line algorithm, based on an enhanced
Artificial Potential Field evaluates the most suitable points
to avoid collisions against obstacles and perform a realtime
replanning the path of the robot. A Matlab toolbox that
elaborates STL CAD files has been developed to obtain a
full description of the workcell, and the avoidance algorithm
has been designed and implemented in a standard industrial
controller. Various experimental results are reported by using
a COMAU NS16 arm manipulator.

I. INTRODUCTION

The collision avoidance problem deals with the planning

and the control of the motion [1]. In the literature, planning

approaches are well suited to achieve a target position in

known static environments [2], [3], [4], while real-time ob-

stacle avoidance methods allow reactive motion behaviour in

dynamic and unstructured environments, whose knowledge is

strictly local, provided by suitable sensors during the motion

[5], [6], [7], [8], [11]. Very interesting combinations of these

approaches have also been investigated [9], [10] for mobile

robots navigation.

SMEs scenarios present different aspects if compared with

mobile robots navigation [13]: industrial robots (IRs) follow

a trajectory always well-defined that is planned to perform

the task avoiding all the static obstacles inside the workcell,

and four different situations can occur, as shown in Figure

1: (1) neither the trajectory nor the velocity can be changed

since this would produce a process failure; (2) the trajectory

can be modified while the cycle time is imposed; (3) the

trajectory cannot be changed whereas the slowing down

or the interruption of the task execution is allowed; (4)

both the trajectory and the velocity can be modified in run-

time. Furthermore, applications can be classified as follows:

desktop applications where the robot size is lower than the

obstacles ones; shop floor applications where the robot size

is comparable or greater than the obstacles ones. In the

former group, the standard scenario consists in the small size

assembly where the robot is like a third hand of the human

operator. A critic feature consists on the fact that the human

movements are fast and not easily predictable. Moreover, the

N. Pedrocchi, M. Malosio, L. Molinari Tosatti are with ITIA-CNR, Milan,
Italy nicola.pedrocchi@itia.cnr.it

workspace of the robot is quite limited (i.e., simple and short

trajectories), the obstacles configuration of the workspace

changes quickly and they cannot be easily overcome. All

these characteristics do not allow an easy re-plan algorithm

and, in the authors’ opinion, the problem can be mainly

shifted towards the identification of the presence of obstacles

within the workspace. Concerning the latter scenario, the

robot performs extensive trajectories and the suspension of

the task execution is a restrictive strategy since the robot usu-

ally has free space to avoid obstacles, respecting application

requirements (Figure 1). However, in the authors’ knowledge

there are very few experimental results concerning collision

avoidance algorithms applied to industrial scenario. The

paper tries to overcome this lack and an intrinsically safe

strategy is suggested for shop floor applications. The base

idea of the algorithm is that the trajectory can be subdivided

into a collection of nodes and an off-line process identifies

a grid of alternative “pass-through points” for each node.

During the motion execution, an on-line control strategy,

based on an Artificial Potential Field algorithm [5], selects,

at each instant, the most suitable point within the grid of

pre-calculated “pass-through points” for the next node of the

trajectory, according to the constraints imposed by static and

dynamic obstacles. In order to allow an easy implementation

of the algorithm in industrial controllers, the point selected

by the algorithm is sent to the controller as a target for

its inner trajectory planner. The paper reports as proof of

concept the first experimental results using a COMAU NS16

robot that demonstrates the effectiveness of the algorithms

in an industrial-like scenario.

Fig. 1. Possible scenarios in Small Medium Enterprises and applications.
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II. DESCRIPTION OF THE ALGORITHM

Usually, collision avoidance strategies based on Artificial

Potential Field, as [5], [6], [13], solve the path planning prob-

lem by imposing repulsive and attractive forces, where the

sources are respectively the obstacles (static and dynamic)

and the target. Two main drawbacks of this approach can be

identified: it cannot be easily integrated in industrial robots

controls because it requires to substitute the real-time path

planning algorithm already implemented in controls; the path

followed by the robot cannot be verified and validated before

execution since it is completely generated in run-time.

The suggested algorithm approach is quite different: a cloud

of safe-points, i.e., that are safely achievable by the robot

with respect to static obstacles, is computed around the

nominal trajectory (defined by the user) and, for each of

these points, the repulsive forces generated by static and by

dynamic obstacles are calculated. The computed resultant

force is not imposed to the TCP (or to the joints) but it

defines only the evasive direction of the movement for the

robot, i.e, at each instant the new target position sent to the

robot position controller is chosen within the pre-calculated

grid, so that it keeps the robot farther than a minimum

distance from the obstacles and that it lies in the direction

“nearer” to the one calculated as resultant.

The required operations are performed by two different

modules: an off-line pre-processing of the workspace and

an on-line control strategy. The former operation allows to

take into consideration all the information concerning the

workcell, needed in the task planning phase; the latter is

the control algorithm that modifies the robot behaviour in

order to avoid the obstacles. Furthermore, let us denote as

vobst and as V obst
MAX respectively the obstacle velocity and

the maximum allowed one, we impose that the replanning

strategies are applied only if (vobst < V obst
MAX ), otherwise no

replanning is possible with an acceptable robot behaviour,

i.e., the movements requested could not be achieved by the

manipulator, and/or the human reaction that is caused by

a too fast modification of the trajectory performed by the

robot could be completely unforeseeable and, consequently,

dangerous.

A. Off-line processing: Nominal Path and grid of “Pass-
Through” points.

The first step of the algorithm concerns with the analysis

of the task that the robot has to execute taking into account

the kinematic of the robot and the presence of obstacles in the

work cell. In order to have a robust robot behaviour feasible

in industrial scenarios and exploiting standard industrial

controllers, we developed a simple recursive method that

calculates a grid of “pass-through points”, i.e., a set of points

safely achievable by the robot at different instants.

As first operation, the algorithm transforms the nominal
trajectory, i.e., an user-defined continuous sequence of linear,

circular or spline segments, in the nominal path, i.e., a

sequence of discrete nn points {Pi}i=1...nn that lie on the

nominal trajectory. The second step consists on the calcula-

tion for each point Pi of a set of evasive points, which lie
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Fig. 2. “pass through points” for each node of the nominal path.

on the plane containing Pi and orthogonal to the trajectory,

and which belong to different circumferences concentric to

Pi (see Figure 2). Denoting as nc the number of circles

and as nr the number of nodes for each circle, the set

T i ≡{Ti
j,k} j=1...nc, j=1...nr , that collects all the “pass-through”

points corresponding to Pi, is introduced. Practically, the

subindex j corresponds to a different “warning level”, since

the distance from the point Pi and the point Ti
j,k increases

with j, and the subindex k corresponds to a different “evasive

direction”. Finally, the set of all the evasive points so

calculated is denoted as T ≡ {T i}i=1...nn and it represents

the grid of “pass-through” points. The radii of the circles and

the number of the rays can be defined by the user depending

on the different typologies of application. Once defined T ,

both the inverse kinematic and the interference of the robot

with objects in the environment are tested and not acceptable

points are deleted from T .

B. Off-line processing: Static obstacle description and re-
pulsive force calculation.

The second problem to be solved is an exhaustive de-

scription of the workcell. To reach this goal, an algorithm

for the analysis of the STL CAD file format has been

conceived and implemented and published in [14]. Through

the STL standard, the environment can be described as a

group of tessellated surfaces with triangular elements. The

preprocess module performs the refinement of the STL model

increasing the mesh density close to edges and vertexes, and

modifies the 3D model increasing it up in order to take into

consideration a safe-tolerance user definable distance. The

result is a new STL model of the environment where the

original surfaces are translated and the corners are smoothed

in order to have a safe-intrinsic description of the workcell.

In the sake of simplicity, in this article the environment is

modeled as a set of l connected triangular elements denoted

hereafter as ek, with k = 1...l. Denoting as x a generic point

with respect to the absolute frame of reference {A }, the set

of points describing the surface of the triangular element will

be denoted as:

σk ≡ {
x ∈ R3 : x belongs to ek

}
. (1)

The algorithm takes into account two sources for the

artificial potential field: (1) each element of the STL model;
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(2) the end strokes of the joints.

Concerning the former, the idea is that each element of the

STL model is similar to a mass point where the mass value

is expressed by the part of its area seen from a generic point

P of the workspace (see Figure 3).

The first problem to face is that the generic ek element can

be completely/partially hidden by other elements, and the

calculation of the part of area that actively affects the point P
is necessary. From a mathematical point of view, the segment

between the point P and the point x is denoted as

L(P,x) ≡ {
P+ t(x−P) : P, x ∈ R3, P �= x, t ∈ [0, 1]

}
,
(2)

and, consequently, the corrected area of each element k is

σ∗
k (P) ≡ {

x ∈ σk : ∀ j �= k L(P,x) ∧ σ j = /0
}

. (3)

If the element ek is completely hidden by another element,

the set is empty, i.e., σ∗
k = /0. The σ∗

k (P) is the set

description of the flat surface corresponding to the element ek
seen by the point P, and it could be not connected. However,

as shown in Figure 3, the value of the area of σ∗
k is not a

correct estimation for the “mass” of the element. Indeed, as

in physics for the flux calculation methods, the surface has

to be projected orthogonally towards the observation point P.

In order to calculate it, θ denotes as the angle between the

unit normal vector nk corresponding to the element ek and

the unit vector d = (P−x)/‖P−x‖. The effective weighted

value of the active area Ak ≡ Ak (P) is:

Ak (P) =
∫

σ∗
k (P)

(cosθ)2 dσ∗
k (4)

The suggested expression for the artificial force Fenv

generated by the environment in the point P is:

Fenv ≡ Fenv (P) = λT

l

∑
k=1

(
Ak (P)

‖P−Gk‖ηT

)
nk (5)

where the terms ηT and λT are respectively a distance weight

and a suitable constant to tune the behaviour of the system;

Gk denotes the nearest point of ek to P.

Regarding the latter source of repulsive force, q ≡ q(P)
denotes the joint position vector corresponding to the po-

sition P obtained applying the inverse kinematics and as

J ≡ J(P) the jacobian matrix. Furthermore, q− and as q+

denote the vectors containing the negative and positive end-

strokes joints positions respectively. For the k-th joint the

repulsive torque generated by the presence of the end-strokes

is imposed to be equal to:

Cstroke
k ≡Ck (P) =

= λqk

(
q+

k − q−k
)ηqk

[
− 1(

q+
k − qk

)ηqk
+

1(
qk − q−k

)ηqk

]
(6)

where the terms ηqk and λqk , both positive, are respectively

a distance weight to determine the strength of the behaviour

of the algorithm near end strokes and a suitable constant

to tune the behaviour of the system. Note that they can be

imposed differently for each joint. The corresponding force

P 
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∗ = ∅) 
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θ 

x 

Fig. 3. Possible cases for the calculation of the area of the k-th element.

Fstroke ≡ Fstroke (P) applied in the point P due to all the

Cendstroke
k is:

Fstroke =
([

Cstroke
1 . . . Cstroke

do f

]
J−1

)T
(7)

Finally, the repulsive force imposed by static obstacles

Fstatic ≡ Fstatic (P) is calculable by the analytical expression:

Fstatic = Fstroke + Fenv (8)

C. On-line processing: avoidance algorithm

The model for the dynamic obstacle is needed. A suitable

description consists on consider that at each instant the

measurement system describes the obstacles as a limited

collection of points that lie to their bounding surfaces, like

in the tracking of markers in the artificial vision.

Denote as no the number of different obstacles point, as Ok

the position of the k-th one. Moreover, if the actual distance

between the obstacle and the trajectory is greater than D
(warning distance) no avoidance algorithm is applied and

if it is lower than d (forbidden distance) task execution is

suspended (see Figure 4).

Each dynamic obstacle is a source of repulsive force as in

the APF strategies, and for the generic k-th one, the repulsive

force Fdyn,k ≡ Fdyn,k(P) in the point P of the workspace is:

Fdyn,k =⎧⎪⎪⎨
⎪⎪⎩

λo if ‖Ok −P‖ < d
λod2

D2 −d2

(
D2 −‖Ok −P‖2

‖Ok −P‖2

)
Ok −P
‖Ok −P‖ d < ‖Ok −P‖ < D

0 if ‖Ok −P‖ > D
(9)

where λo is a user suitable constant that allows to tune the

system. The resultant repulsive force Frep ≡ Frep(P) is given

by adding both dynamic than static forces:

Frep(P) =
no

∑
k=1

Fdyn,k +Fstatic and frep(P) = Frep/‖Frep‖.
(10)

In APF strategies this force is balanced by an attractive

force, and the resultant is exerted on the robot. In the

suggested algorithm the resultant force is calculated only

to chose the best evasive “pass-through” point among the

available ones. Denote as
{

Pi
}

i=1...n the actual path the
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Fig. 4. Dynamic obstacles description and calculation of the new target on
the basis of the repulsive force. D is the Warning Distance, if the obstacles
are farther than it no modifications to the trajectory are applied; d is the
Forbidden Distance, if the distance is less than it the task is suspended.

robot has to follow, where each element is selected on line

during the task execution within the set of available nodes

T . When the robot moves from the nodes Pi−1 to the node

Pi the algorithm imposes the new target point Pi+1 = Ti+1
j,l

where the level of warning j and the direction l are chosen

in order to maintain the TCP far away from the obstacle and

greater than the minimum distance d and in order to be quite

parallel to the projection of the resultant force frep(Pi+1)
to the plane orthogonal to the trajectory in the point Pi+1

.

In comparison with respect a traditional APF strategy, this

technique is more suitable for industrial scenario because

only a new target position is sent to the robot controller and

the interpolation and the safe execution of the new trajectory

is completely demanded to it. In order to achieve a good

robot behaviour, the control algorithm has to perform fast

response to avoid the obstacle but it has also to guarantee

a predictable response according to the human operator

perception, i.e., the trajectory change has to be smooth. The

reduction of the execution task velocity, modifying the speed

override, ovrobst , is a suitable solution.

The implemented algorithm calculates the override on the

basis of the distance between the obstacles and the TCP of

the robot and on the obstacles velocity. Denoting as λ k
dist

the term that take into account the distance between the k-th

obstacle and the TCP, and denoting as λ k
vel the term that take

into account the velocity of the k-th, and denoting as V obst
min

the minimum obstacle velocity so that if the actual speed

is smaller, no velocity reduction is applied. Therefore, the

speed override ovr ≡ ovr(P,vobst) is:

λ k
dist =

⎧⎪⎪⎨
⎪⎪⎩

1 if ‖Ok −P‖ > D
‖Ok −P‖−d

D−d
if d < ‖Ok −P‖ < D

0 if ‖Ok −P‖ < d

λ k
vel =

⎧⎪⎪⎨
⎪⎪⎩

1 if vobst,k < V obst
min

V obst
max − vobst,k

V obst
max −V obst

min
if V obst

min < vobst,k < V obst
max

0 if vobst,k > V obst
max

ovr [%] = ovrmin +(100−ovrmin)mink=1..no(λ
k
distλ

k
vel)

(11)

where ovrmin is the minimum override velocity the robot

has to guarantee. When the obstacle velocity is greater than

the maximum allowed or the distance is lower less than the

minimum one, the task is suspended.

 

(a) Linear Trajectory and no static
obstacles within the workspace

 

(b) Complex trajectory and a simple
static obstacle within the workspace

Fig. 5. The two tested environment for the algorithm.

III. EXPERIMENTAL RESULTS

The algorithm has been tested on a COMAU NS16 avail-

able at ITIA laboratory that is a serial anthropomorphic robot

arm with a maximum extension of 1.650 [m]. A toolbox

for the analysis of the STL file and of the nominal path

has been developed in Matlab R©. Before the execution of

the test, the industrial controller sends, through an ethernet

socket, the information about the nominal trajectory to a

PC, and it receives the grids of all the “pass-thorough”

points safely achievable. The on-line replanning algorithm

has been implemented on COMAU C4G controller and

PDL2 language. The test cases have been developed using

a virtual obstacle and its position is imposed by a Matlab

user interface and it is sent via TCP-IP socket to the C4G

controller, while the robot joints position are sent to the

Matlab application to update a virtual 3D environment and

to elaborate the experimental results. Two series of tests have

been carried out. In the first test the robot has to follow a

path with no near static obstacle (see Figure 5-(a)); in the

second a more complex environment and trajectory are used

(see Figure 5-(b)).

A. No Forces exerted by the environment

The experiments have been performed imposing an hor-

izontal linear trajectory of 1,600 [mm] length far away

from the static obstacles, i.e., the environment forces are

neglectable. The robot nominal linear velocity has been fixed

at 1,000 [mm/s] (achievable only in absence of obstacles).

(Test 1) The operator is slowly approaching perpendicularly

to the robot trajectory, with a linear velocity of 250 [mm/s].

Figure 6-(Test 1) shows that the robot keeps a safety distance

from the human operator. Note that the algorithm tries

to maintain the robot outside the Obstacle Warning Zone,

however for the last point of the trajectory this behaviour

would cause the not completion of the task. To face this

problem if the last node is outside the Obstacle Forbidden
Zone, the robot is allowed to reduce its distance from the

obstacle and achieve the goal of the task, and the override

modification is always kept active.

(Test 2) The human is quickly approaching perpendicularly

to the robot trajectory, with a linear velocity of 2000 [mm/s].

By increasing the obstacle velocity any appreciable change

is noticed in the robot trajectory. When the human stops
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(a) Test 1, perpendicular approach; 250 [mm/s] as human velocity
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(b) Test 2, perpendicular approach; 2000 [mm/s] as human velocity
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(c) Test 3, collinear approach; 1.2 [mm/s] as human velocity
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(d) Test 4, opposite approach; 1.2 [mm/s] as human velocity

Fig. 6. Tests where the environment does not exerts forces.
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(a) STL-Model of the environ-
ment after processing

(b) Calculated forces due to the envi-
ronment and to the dynamic obstacles.

Fig. 7. Test 2 (see Figure 5)

its motion, the robot controller looks for the trajectory that

allows the greatest distance between the TCP and the human,

within the available grid of “pass-through” points.

(Test 3) The human is moving parallelly to the robot trajec-

tory in the same direction, with an offset of 400 [mm] and

with a velocity of 1,200 [mm/s]. Note that at time t=1.4 [s]

the TCP goes in the Obstacle Forbidden Zone and the task

is suspended.

(Test 4) The robot TCP and the human operator are moving in

opposite directions. The distance between the robot and the

obstacle decreases fastly (see Figure 6-(Test 4)). When the

distance decreases below a certain limit the correction due

to the algorithm starts to correct and deforme the original

trajectory. Note that the robot does not stop the motion and

is able to avoid the obstacle.

B. Complex environment

The second test (Figure 5) is more complex and a struc-

tured environment is imposed. Due to the limited workspace

of the available robot the experimental results are not exhaus-

tive. The Figure 7-(a) shows the STL model of the work cell,

and the Figure 7-(b) displays the resulting force calculated

taking into account both the environment and the human

operator that approaches to the robot. As shown in Figure

8, the robot does not intersect the Obstacle Forbidden Zone
near the obstacle and a trajectory that conclude correctly

the task is found by the controller. The reduction of the

velocity, modifying the override value, is mandatory to have a

good and satisfiable robot behaviour. Various tests have been

performed and they prove the robustness of the algorithm and

its feasibility for many different industrial applications.

IV. CONCLUSION

This paper has addressed the problem of obstacles colli-

sion avoidance by combining different strategies. The algo-

rithm provides a pre-processing toolbox developed in Matlab

to exhaustively model the robot cell by a STL CAD file. A

grid of evasive “pass through” points is calculated in order

to have a deterministic behaviour of the robot in the collision

avoidance. The dynamic obstacles have been modeled as a

set of dimensionless points surrounded by a warning and a

Fig. 8. Actual (circles-line) and nominal (thin-line) trajectory in test 2 (see
figure 5-(b)).

forbidden zone. An APF technique has been developed in

order to choice, at each instant, the optimum position for the

manipulator. Experimental results proved the effectiveness of

the algorithm and its feasibility for industrial applications.
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