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Abstract— The computational burden that model predictive
control (MPC) imposes depends to a large extent on the way
the optimal control problem is formulated as an optimization
problem. In this paper, we present a new formulation that
results in a compact and sparse optimization problem to be
solved at each sampling interval. The approach is based on a
change of variables that leads to a block banded Hessian when
the horizon length is bigger than the controllability index of the
plant. In this case the problem can be solved with an interior-
point method in time linear in the horizon length. Existing dense
approaches grow cubically with the horizon length, whereas
existing sparse approaches grow at a significantly greater rate
than with the method presented here.

I. INTRODUCTION
Applications with fast dynamics impose high sampling

frequency requirements on their control loops. In linear
MPC, the optimal control input at every sampling instant
is determined through the solution of a convex optimization
problem with a quadratic cost and linear constraints. The
very high computational demands stand as a barrier that
has prevented the widespread use of MPC in applications
with fast dynamics that could otherwise benefit from MPC’s
natural ability to deal with physical constraints. One method
for reducing the computation time is to compute a piece-wise
linear feedback control law offline as an explicit function
of the current state of the plant [2]. Online implementation
is reduced to a table look-up procedure and the evaluation
of a linear function. The main drawback of explicit MPC
is that the number of regions in the look-up table grows
exponentially with the size of the control problem and so
do the computational and memory requirements. Even for
relatively small problems, solving the optimization problem
online can be the faster alternative [6], [19].

The method employed when formulating the MPC prob-
lem as a quadratic program (QP) has a big impact on the
problem size and structure and the resulting computational
and memory requirements, as well as on the numerical
conditioning. The standard approach makes use of the plant
dynamics to eliminate the states from the decision variables
by expressing them as an explicit function of the current
state and future control inputs [12]. This condensed online
formulation leads to compact and dense QPs. In this case,
the complexity scales cubically in the horizon length when
using an interior-point method. For MPC problems that
require long horizon lengths, the non-condensed formulation,
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which keeps the states as decision variables and consid-
ers the system dynamics implicitly by enforcing equality
constraints [14], [20], can result in significant speed-ups.
With this approach the problem becomes larger but the
structure can be exploited to find a solution in time linear
in the horizon length. The different ways of formulating
the optimization problem have an analogy in numerical
integration methods, where the explicit Runge-Kutta method
obtains slope estimates as an explicit function of previously
computed values, whereas in the implicit method estimates
are expressed as an implicit function of all other estimates.
As with MPC formulations, the Runge-Kutta implicit method
has better numerical properties since estimation errors are not
propagated [5]. A similar analogy could be made between
single and multiple shooting approaches to boundary value
problems [3], [13] and the condensed and non-condensed
approaches, respectively.

The non-condensed method is often also referred to as the
sparse method due to the abundant structure in the resulting
optimization problems. In this paper, we will show that this
label does not provide the complete picture and that it is
indeed possible to have a sparse condensed formulation that
can be solved in time linear in the horizon length. In addition,
we will show that this method is at least as fast as the
standard condensed formulation and it is faster than the non-
condensed formulation for a wide variety of control problems
where the number of states is larger than the number of
inputs. Our approach is based on the use of linear feedback
policies to simulate a change of variables that results in a
block banded Hessian in cases where the horizon length is
larger than the controllability index of the plant. The use of
feedback policies for pre-stabilization has been previously
studied as an aid for proving stability [15] and as a way
of improving the conditioning of the resulting optimization
problem [16]. However, we find it surprising that it has
not yet been applied to introduce and exploit structure in
the problem, as we will do here, considering the important
practical implications.

This paper is organized as follows: Section II reviews
the constrained LQR problem; the condensed and non-
condensed formulations are reviewed in Section III and
their computational complexity is analyzed in the context of
primal-dual interior-point methods. It is important to mention
that the results stated in this paper will have a similar
impact on active-set methods. In Section IV we present our
sparse condensed approach and compare it with existing QP
formulations. Numerical results are presented in Section V
to verify the feasibility of the proposed approach and the
paper is concluded in Section VI.
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II. CONSTRAINED LQR

Consider a discrete-time linear time-invariant model of the
plant

xk+1 = Axk +Buk, (1)
yk = Cxk, (2)

where xk ∈ Rn is the state vector at sample instant k,
uk ∈ Rm is the input vector and yk ∈ Rp is the output
vector. At every sampling instant, given an estimate or
measurement of the current state of the plant x̂, the finite-
horizon constrained LQR problem is to minimize

1

2
xTN Q̃xN +

N−1∑
k=0

(
1

2
xTkQdxk +

1

2
uTkRduk + xTk Sduk) (3)

subject to

x0 = x̂ (4a)
xk+1 = Axk +Buk for k = 0, 1, 2, ..., N − 1 (4b)

Jxk + Euk ≤ d for k = 0, 1, 2, ..., N − 1 (4c)

where Qd ∈ Rn×n is symmetric positive semi-definite
(SPSD), Rd ∈ Rm×m is symmetric positive definite (SPD)
to guarantee uniqueness of the solution, Sd ∈ Rn×m is such
that (3) is convex, J ∈ Rl×n, E ∈ Rl×m, d ∈ Rl and l is
the number of constraints. We assume a linear control law,
which is the solution to the unconstrained problem, from
k = N to infinity, and choose N sufficiently large such that
xN lies in an invariant set with respect to the linear control
law [17]. Q̃ ∈ Rn×n is the solution to the appropriate Ricatti
equation.

III. REVIEW OF EXISTING QP FORMULATIONS

The optimal control problem (3)–(4) can be written as a
general QP of the following form:

min
θ

1

2
θTHθ + hT θ (5)

subject to

Fθ =f, (6a)
Gθ ≤g (6b)

where the size and structure of the matrices and vectors
depends on the employed formulation.

Primal-dual interior-point methods can be used to solve
for the optimal θ. Algorithm 1 is a variant of the infeasible
primal-dual method [20], where ν and λ are Lagrange multi-
pliers for the equality and inequality constraints respectively,
s is a vector of slack variables, σ is a small constant between
zero and one,

Wk := ΛkS
−1
k ,

Λk and Sk are diagonal matrices containing the elements of
λk and sk, respectively, and

µk :=
λTk sk
Nl

Algorithm 1 Primal-Dual Interior-Point Algorithm
Choose initial point (θ0, ν0, λ0, s0) with [λT0 , s

T
0 ]T > 0

for k = 0 to P − 1 do

1. Ak :=

[
H +GTWkG FT

F 0

]
2. bk :=

[
−h−GT (λk −Wkg + σµks

−1
k )

−Fθk + f

]
3. Solve Akzk = bk for zk =:

[
θk + ∆θk

∆νk

]
4. ∆λk := Wk(G(θk + ∆θk)− g) + σµks

−1
k

5. ∆sk := −sk − (G(θk + ∆θk)− g)

6. Find αk := max(0,1] α :

[
λk + α∆λk
sk + α∆sk

]
> 0.

7. (θk+1, νk+1, λk+1, sk+1) :=
(θk, νk, λk, sk) + αk(∆θk,∆νk,∆λk,∆sk)

end for

is a measure of sub-optimality that approaches zero at
the optimum. Real-time requirements will impose a hard
bound on the number of interior-point iterations, hence P
is assumed fixed a priori.

At each interior-point iteration, computing the matrix triple
product GTWkG and solving the system of linear equations
Akzk = bk account for most of the computation, hence the
overall complexity can be expressed considering the cost of
these operations only.

A. Condensed approach

The state variables can be eliminated from the decision
variables of the optimization problem by expressing them as
a function of the current state and input sequence:

x = Ax̂+ Bu (7)

where
x := [xT0 x

T
1 x

T
2 . . . xTN−1 x

T
N ]T ,

u := [uT0 u
T
1 u

T
2 . . . uTN−2 x

T
N−1]T ,

A :=


In
A
A2

...
AN−1

AN

 ,B :=



0
B 0

AB B
. . .

...
. . .

AN−2B B 0
AN−1B AN−2B · · · AB B


.

In this case, θ := u, F := 0, f := 0 and we have an
inequality constrained QP with dense matrices

H := BTQB + R + BTS + STB,

h := x̂TAT (QB + S),

G := JB + E,

g := d− JAx̂,

where

Q :=

[
IN ⊗Qd 0

0 Q̃

]
,R := IN⊗Rd,S :=

[
IN ⊗ Sd

0

]
,
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J := IN ⊗ J, E := IN ⊗ E, d := 1N ⊗ d,

and ⊗ denotes the Kronecker product.
By simple inspection of the prediction matrices A and B,

it becomes apparent that ill-conditioning can arise for large
values of N , especially when A has eigenvalues outside the
unit circle.

With this formulation, G is a lower block triangular matrix.
The cost of computing GTWkG (Line 2 in Algorithm 1) can
be split into 1

2N
2lm operations for the row update WkG

and 1
2N

3lm2 operations for the matrix-matrix multiplication
when exploiting the symmetry of the result. In terms of
the system of linear equations (Line 3 in Algorithm 1),
Ak ∈ RNm×Nm is a SPD dense matrix, hence the problem
can be solved using an unstructured Cholesky factorization
in 1

3N
3m3 + 2N2m2 operations [4, App. C].

It is also worth considering the memory requirements of
each formulation, since it is an important aspect for em-
bedded implementations [11]. With respect to Algorithm 1,
most memory would be used for storing matrices H , G and
Ak. With the condensed approach, the cost of storing these
matrices is approximately 1

2N
2(2m2 + lm) elements.

B. Non-condensed approach

The future states can be kept as decision variables and
the system dynamics can be incorporated into the problem
by enforcing equality constraints [14], [20]. In this case
θ := [xT uT ]T , h := 0, and the remaining matrices have
sparse structures that describe the optimal control prob-
lem (3)–(4) exactly.

Assuming dense constraint matrices J and E, the cost
of computing GTWkG is broken down into Nl(n + m)
for the row update and Nl(n + m)2 for the highly struc-
tured matrix-matrix multiplication. For solving Akzk = bk,
the coefficient matrix Ak ∈ RN(2n+m)×N(2n+m) is an
indefinite symmetric matrix that can be made banded through
appropriate row re-ordering (or interleaving of variables
∆θ and ∆ν). The resulting banded matrix has a half-
band of size 2n + m. Such a linear system can be
solved using a banded symmetric LDLT factorization in
N(2n + m)3 + 4N(2n + m)2 + N(2n + m) floating point
operations [4, App. C], or through a block factorization
method based on a sequence of Cholesky factorizations in
O(N(n+m)3) operations [14], [20].

In terms of memory requirements, storage of matrices G,
H and Ak requires Nl(n+m), 1

2N(n+m)2 and N(2n+m)2

elements, respectively. The linear growth of computational
and memory requirements with respect to the horizon length,
in contrast to the cubic and quadratic growth exhibited by
the condensed formulation, suggests that the non-condensed
approach could be favored by applications that require long
horizons.

IV. SPARSE CONDENSED APPROACH

In this section we present a novel way to formulate the
optimal control problem (3)–(4) as a structured optimization
problem.

The reason why the non-condensed approach leads to a
cost that is linear in the horizon length is due to the size of
matrices H , G and Ak growing linearly with N , but the size
of their non-zero bands is independent of N . In this section
we will show that a feedback law of the form

uk = Kxk + zk for k = 0, 1, 2, ..., N − 1 (8)

can simulate a change of variables [15], [16] such that H , G
and Ak become banded matrices with the size of the non-
zero band independent of N . As a result, an interior-point
method solving the new optimization problem will have a
cost linear in the horizon length. It is important to clarify that
this K does not have to be the same as the feedback gain
being assumed from k = N to infinity [17], hence stability
and feasibility properties are independent of the choice of K.
In this context, the effect of the change of variables is not
plant pre-stabilization but a mathematical trick to introduce
structure into the problem. The gain K is never implemented
in practice.

With respect to the optimal control problem (3)–(4), the
effect on the change of variables (8) is as follows:

QK :=Qd +KTRdK + SdK +KTSTd

SK :=Sd +KTRd

JK :=J + EK

AK :=A+BK

The new transformed system is given by

xk+1 = (A+BK)xk +Bzk = AKxk +Bzk (9)

and the states can now be expressed as a function of the new
control variables zk

x = AKx̂+ BKz

where
z := [zT0 z

T
1 z

T
2 . . . zTN−2 z

T
N−1]T ,

AK =


In
AK

.

.

.

A
r−1
K
0

.

.

.
0

 ,BK =



0
B 0

.

.

.
. . .

A
r−1
K

B

0

. . .

.

.

.
. . .

. . . 0

0 · · · 0 A
r−1
K

B · · · B


.

If the pair (A,B) is reachable it is possible to design a
state feedback law that yields a closed-loop system with
arbitrary eigenvalues [1]. By inspection of the new prediction
matrices, it becomes clear that if K is chosen such that
A + BK is nilpotent i.e. (A + BK)i = 0 for all i ≥ r,
the prediction matrix BK becomes banded lower triangular
if N > r+ 1. The parameter r is the controllability index of
the pair (A,B) and it lies in the range⌈ n

m

⌉
≤ r ≤ n

when B has full column rank. In practice, the value of r is
equal to the lower bound in most cases.
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This simple observation has very significant practical
implications. When the horizon length is large enough, the
matrices become banded and the structured optimization
problem can be solved in time linear in the horizon length
with an interior-point method. This is also the main advan-
tage of the non-condensed approach. However, the sparse
condense approach is superior in terms of computational
and memory requirements for most control problems, and
starts to outperform the dense condensed approach at smaller
values of horizon length.

The problem of obtaining a suitable matrix K such that
A+BK is nilpotent is analogous to finding the deadbeat gain
in the context of static state feedback. The computation of
the deadbeat feedback gain in a numerically reliable way is
not a trivial task and the problem has been addressed by
several authors [8], [9], [18]. All proposed methods start
by transforming the original system into the controllability
staircase form [7], which unlike the controller canonical
form, can be obtained through a numerically reliable process.
The algorithm proposed by Van Dooren [8] optimizes for the
minimum norm K. Instead of approaching the problem of
assigning an eigenvalue of multiplicity n at zero, which is
known to be a numerically sensitive problem, the algorithm
uses the fact that a strictly triangular matrix is always nilpo-
tent. Norm-preserving unitary transformations are applied to
the original system to arrive at the desired nilpotent form,
yielding a numerically stable algorithm.

The resulting optimization problem (5)–(6) has θ := z,
F := 0, f := 0,

H :=BK
TQBK + (KBK + I)T (R(KBK + I) + STBK)+

BK
TS(KBK + I),

h :=x̂TAK
T (QBK + S(KBK + I)+

KT (R(KBK + I) + SBK)),

G :=(J + EK)BK + E,

g :=d− (J + EK)AKx̂,

where
K :=

[
IN ⊗K 0

]
.

H is a block banded symmetric positive definite matrix
of size Nm×Nm with half-band equal to r + 1 blocks of
size m × m. G is a block banded lower triangular matrix
with a half-band of r + 1 blocks of size l × m, whereas
Ak has the same dimensions as H . It is now clear that the
optimization problem can be solved using an interior-point
method in time linear with respect to N . The solution of the
new optimization problem applied to (8) yields exactly the
same control sequence as with the other formulations for any
matrix K. It is important to note that if K = 0 we arrive at
the original condensed formulation.

The cost of computing GTWkG is now approximated
by 1

2Nm(r + 1)l for the row update plus 1
2Nm

2(r + 1)2l
for the matrix multiplication. The coefficient matrix
Ak ∈ RNm×Nm is now an SPD banded matrix, hence the
linear system can be solved using a banded Cholesky routine
with a cost of Nm3(r+ 1)2 + 4Nm2(r+ 1) operations [4].

TABLE I
COMPARISON OF THE COMPUTATIONAL COMPLEXITY IMPOSED BY THE

DIFFERENT QP FORMULATIONS.

Computation

Condensed O(N3m2(l +m))
Non-condensed O(N(m+ n)2(l +m+ n))

Sparse condensed O(Nm2r2(l +m))

TABLE II
COMPARISON OF THE MEMORY REQUIREMENTS IMPOSING BY THE

DIFFERENT QP FORMULATIONS.

Memory

Condensed O(N2m(l +m))
Non-condensed O(N(m+ n)(l +m+ n))

Sparse condensed O(Nrm(l +m))

The memory requirements for storing the main matrices are
now approximately 1

2N(r + 1)(2m2 + lm).
Being able to directly apply methods for positive def-

inite matrices instead of methods for indefinite matrices
is another benefit over the non-condensed approach. For
instance, Cholesky factorization is more numerically stable
than LDLT , it requires slightly less computation, and the
possibility of choosing an arbitrary permutation matrix al-
lows for a simpler pivoting procedure and the possibility
of making use of the block structure inside the non-zero
band to reduce computation and memory requirements fur-
ther. Another advantage is that input rate constraints can
be added to the optimal control problem (3)–(4) without
affecting the structure of the matrices in the optimization
problem (5)–(6), whereas with the non-condensed approach
the inclusion of rate constraints increases the bandsize of G
and consequently Ak.

Tables I and II compare the upper bound computational
complexity and memory requirements for the three different
QP formulations that have been discussed in this paper.
The expressions for the sparse condensed approach assume
that N > r + 1, otherwise the matrices are dense. Hence,
the sparse condensed approach is always at least as good
as the standard condensed approach in terms of compu-
tational complexity and memory requirements. Taking a
conservative assumption for the largest possible nilpotency
index r = n, the expressions suggest that if the number
of states is larger than the number of inputs the formulation
presented in this paper will provide an improvement over the
non-condensed approach, both in terms of computation and
memory usage. Both these approaches will outperform the
standard condensed approach for large N . These predictions
are confirmed by Figure 1.

In Section III we discussed how the condensed approach
can lead to ill-conditioned predictions for large N as a
consequence of the state-transition matrix being raised to
high powers. This issue has been addressed in the literature
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Fig. 1. Accurate count of the number of floating point operations per
interior-point iteration for the different QP formulations discussed in this
paper. The size of the control problem is m = 2, n = 6, l = 6. The upper
and lower bounds for r are shown.

by suggesting a pre-stabilizing feedback law [16]. This
approach can improve the conditioning of AK and BK,
but it still requires raising A to powers up to N , which
causes model mismatch and finite representation errors to
accumulate. The sparse condensed approach presented here
limits the power to which A is raised to a maximum of r−1,
hence reducing this error accumulation.

A. Limitations of the sparse condensed approach

It is well-known that control and signal processing prob-
lems can be ill-conditioned when there is a large mismatch
between the requested sampling frequency and the dynamics
of the continuous-time time system [10]. The method pre-
sented in this paper is no exception to the rule, however,
the conditioning is acceptable for most control problems,
especially when targeting systems with fast dynamics.

The matrix K is the deadbeat feedback gain that can
control any state to the origin in r steps. For systems
with fast dynamics it is easier to steer the state quickly,
hence relatively small values of K are necessary and the
conditioning of the problem is acceptable. It is precisely
applications with fast dynamics that can benefit most from
methods for solving optimization problems faster that can
turn the possibility of employing MPC into a feasible option.

A well-known drawback of deadbeat control is that if
the sampling period is small with respect to the system’s
dynamics, a very large K could be necessary, since more
energy would be needed to steer the state to zero in less time.
In the context of this paper, a large value of K can result
in an ill-conditioned optimization problem. Our numerical
simulations have indeed confirmed that for systems with
slow unstable dynamics, when sampling in the millisecond
range using the sparse condensed approach, the QP problems
become badly conditioned and the trajectory of the system is
very similar to the open-loop trajectory. However, for plants
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Fig. 2. Trade-off between closed-loop control cost and computational cost
for all different QP formulations.

with stable dynamics, the control quality is good at most
sampling frequency regimes, hence the problem could be
solved by using a pre-stabilising gain.

B. Linear time-varying systems

In the proposed method the matrix K is computed offline
for a given A and B, hence this approach might not be
suitable for time-varying MPC applications where the model
changes are not known a priori. However, the computation
of the deadbeat gain K does not depend on the horizon
length and it is significantly simpler than solving the QPs so
ocassional online recomputation of K could still be feasible
for some applications, especially since the QP matrices also
need to be recomputed when using condensing.

For time-varying systems where the model changes are
known ahead of time, such as periodic systems, a deadbeat
K needs to be computed for every distinct model. If there
are model changes during the prediction horizon, the effec-
tiveness of the proposed approach in introducing structure
will depend on the sequence of model changes.

V. NUMERICAL RESULTS

In order to investigate the numerical properties of the
proposed approach we use an example oscillatory system
composed of six masses connected by springs and dampers.
The masses, spring constants and damping coefficients are
0.1, 150 and 0.01, respectively. The control objective is to
keep all the masses at their rest position. All masses can be
actuated and the constraints are given by

−0.5 ≤ uk ≤ 0.5,

−4 ≤ yk ≤ 4,

hence the control problem has m = 6, n = 12, p = 6
and l = 24. Matrices Qd and Rd are obtained from the
continuous-time matrices Qc and Rc assuming a zero order
hold. These are chosen such that the inputs and outputs are
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weighed equally. The horizon length is 0.3 seconds and the
number of steps is given by N = d 0.3

∆ e where ∆ is the
sampling period. The plant is controllable with controllability
index r = 2 and has a maximum frequency pole at 12Hz.

All simulations start with all masses at their rest posi-
tion, except mass 6 which is displaced to the constraint.
This starting condition guarantees that input constraints
will become active during the simulations, which last for
6 seconds. Sampling faster leads to better quality control for
all formulations as the controller is able to respond faster
to disturbances. However, this also means that the number
of steps in the horizon increases, hence the amount of com-
putation required also increases. Figure 2 shows the trade-
off between closed-loop control quality and computational
requirements for all QP formulations described in this paper.
The plot is obtained by obtaining the closed-loop cost and
computational demands for a range of sampling frequencies.
For a given control quality the proposed approach requires
less computation, and for a fixed computational power the
proposed approach achieves a better control quality because
it allows faster sampling.

VI. CONCLUSION

In this paper, we have presented a novel way to formu-
late a constrained optimal control problem as a structured
optimization problem that can be solved in time linear in the
horizon length with an interior-point method. The structure is
introduced through a suitable change of variables that results
in banded prediction matrices. The proposed method has
been compared against the current standard approaches and it
has been shown to offer reduced computational and memory
requirements for most control problems. As a result, em-
ploying the proposed approach could allow one to push the
boundaries of MPC to applications where the computational
burden has so far been too great, or it could allow current
MPC applications to run on cheaper commodity hardware.

The limitations of the approach have also been identified.
Existing algorithms for computing the deadbeat feedback
gain K attempt to find the minimum nilpotency index r,
because the goal of the feedback is to provide a closed-
loop system that steers the state to zero in the least number
of steps. In the context of this paper, deadbeat control is
used as a mathematical trick to introduce structure into
the optimization problem, and a smaller value of r means
that the non-zero bands of the matrices will be smaller.
However, in order to improve the numerical conditioning of
the problem, it may be preferable to increase the nilpotency
index beyond the controllability index of the plant, especially
since any r smaller than N−1 provides an improvement over
the standard condensed approach. A methodology that allows
trading computational time and memory requirements for
numerical conditioning of the resulting optimization problem
could be a target for future research.

VII. ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of
the EPSRC (Grants EP/G031576/1 and EP/I012036/1) and

the EU FP7 Project EMBOCON, as well as industrial sup-
port from Xilinx, the Mathworks, and the European Space
Agency.

REFERENCES
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