
Cloud Application Logging for Forensics

Raffael Marty
Loggly, Inc.

78 First Street
San Francisco, CA 94105
rmarty@loggly.com

ABSTRACT
Logs are one of the most important pieces of analytical data
in a cloud-based service infrastructure. At any point in time,
service owners and operators need to understand the sta-
tus of each infrastructure component for fault monitoring,
to assess feature usage, and to monitor business processes.
Application developers, as well as security personnel, need
access to historic information for debugging and forensic in-
vestigations.

This paper discusses a logging framework and guidelines
that provide a proactive approach to logging to ensure that
the data needed for forensic investigations has been gener-
ated and collected. The standardized framework eliminates
the need for logging stakeholders to reinvent their own stan-
dards. These guidelines make sure that critical information
associated with cloud infrastructure and software as a ser-
vice (SaaS) use-cases are collected as part of a defense in
depth strategy. In addition, they ensure that log consumers
can effectively and easily analyze, process, and correlate the
emitted log records. The theoretical foundations are em-
phasized in the second part of the paper that covers the im-
plementation of the framework in an example SaaS offering
running on a public cloud service.

While the framework is targeted towards and requires the
buy-in from application developers, the data collected is crit-
ical to enable comprehensive forensic investigations. In ad-
dition, it helps IT architects and technical evaluators of log-
ging architectures build a business oriented logging frame-
work.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms
Log Forensics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

Keywords
cloud, logging, computer forensics, software as a service, log-
ging guidelines

1. INTRODUCTION
The ”cloud”[5, 11] is increasingly used to deploy and run

end-user services, also known as software as a service (SaaS)[28].
Running any application requires insight into each infras-
tructure layer for various technical, security, and business
reasons. This section outlines some of these problems and
use-cases that can benefit from log analysis and manage-
ment. If we look at the software development life cycle, the
use-cases surface in the following order:

• Debugging and Forensics

• Fault monitoring

• Troubleshooting

• Feature usage

• Performance monitoring

• Security / incident detection

• Regulatory and standards compliance

Each of these use-cases can leverage log analysis to either
completely solve or at least help drastically speed up and
simplify the solution to the use-case.

The rest of this paper is organized as follows: In Section
2 we discuss the challenges associated with logging in cloud-
based application infrastructures. Section 3 shows how these
challenges can be addressed by a logging architecture. In
section 4 we will see that a logging architecture alone is
not enough. It needs to be accompanied by use-case driven
logging guidelines. The second part of this paper (Section
5) covers a references setup of a cloud-based application
that shows how logging was architected and implemented
throughout the infrastructure layers.

2. LOG ANALYSIS CHALLENGES
If log analysis is the solution to many of our needs in

cloud application development and delivery, we need to have
a closer look at the challenges that are associated with it.

The following is a list of challenges associated with cloud-
based log analysis and forensics:

• Decentralization of logs

• Volatility of logs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357627793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• Multiple tiers and layers

• Archival and retention

• Accessibility of logs

• Non existence of logs

• Absence of critical information in logs

• Non compatible / random log formats

A cloud-based application stores logs on multiple servers
and in multiple log files. The volatile nature of these re-
sources1 causes log files to be available only for a certain
period of time. Each layer in the cloud application stack
generates logs, the network, the operating system, the ap-
plications, databases, network services, etc. Once logs are
collected, they need to be kept around for a specific time
either for regulatory reasons or to support forensic investi-
gations. We need to make the logs available to a number of
constituencies; application developers, system administra-
tors, security analysts, etc. They all need access, but only
to a subset and not always all of the logs. Platform as a
service (PaaS) providers often do not make logs available to
their platform users at all. This can be a significant problem
when trying to analyze application problems. For example,
Amazon[5] does not make the load balancer logs available to
their users. And finally, critical components cannot or are
not instrumented correctly to generate the logs necessary to
answer specific questions. Even if logs are available, they
come in all kinds of different formats that are often hard to
process and analyze.

The first five challenges can be solved through log man-
agement. The remaining three are more intrinsic problems
and have to be addressed through defining logging guidelines
and standards2.

2.1 Log Management
Solving the cloud logging problems outlined in the last

section requires a log management solution or architecture
to support the following list of features:

• Centralization of all logs

• Scalable log storage

• Fast data access and retrieval

• Support for any log format

• Running data analysis jobs (e.g., map reduce[16])

• Retention of log records

• Archival of old logs and restoring on demand

• Segregated data access through access control

• Preservation of log integrity

• Audit trail for access to logs

These requirements match up with the challenges defined
in the last section. However, they do not address the last
three challenges of missing and non standardized log records.

1For example, if machines are pegging at a very high load,
new machines can be booted up or machines are terminated
if they are not needed anymore without prior warning.
2Note that in some cases, it is not possible to change any-
thing about the logging behavior as we cannot control the
code of third-party applications.

2.2 Log Records
What happens if there are no common guidelines or stan-

dards defined for logging? In a lot of cases, application de-
velopers do not log much. Sometimes, when they do log,
the log records are incomplete, as the following example il-
lustrates:

Mar 16 08:09:58 kernel: [0.000000]

Normal 1048576 -> 1048576

There is not much information in this log to determine
what actually happened and what is Normal?

A general rule of thumb states that a log record should be
both understandable by a human and easily machine pro-
cessable. This also means that every log entry should, if
possible, log what happened, when it happened, who trig-
gered the event, and why it happened. We will later discuss
in more detail what these rules mean and how good log-
ging guidelines cover these requirements (see Sections 4.2
and 4.3).

In the next section we will discuss how we need to instru-
ment our infrastructure to collect all the logs. After that we
will see how logging guidelines help address issues related to
missing and incomplete log records.

3. LOGGING ARCHITECTURE
A log management system is the basis for enabling log

analysis and solving the goals introduced in the previous
sections. Setting up a logging framework involves the fol-
lowing steps:

• Enable logging in each infrastructure and application
component

• Setup and configure log transport

• Tune logging configurations

3.1 Enable Logging
As a first step, we need to enable logging on all infrastruc-

ture components that we need to collect logs from. Note that
this might sound straight forward, but it is not always easy
to do so. Operating systems are mostly simple to configure.
In the case of UNIX, syslog[31] is generally already setup
and logs can be found in /var/log. The hard part with
OS logs is tuning. For example, how do you configure the
logging of password changes on a UNIX system[22]? Log-
ging in databases is a level harder than logging in operating
systems. Configuration can be very tricky and complicated.
For example, Oracle[24] has at least three different logging
mechanisms. Each of them has their own sets of features, ad-
vantages, and disadvantages. It gets worse though; logging
from within your applications is most likely non-existent. Or
if it exists, it is likely not configured the way your use-cases
demand; log records are likely missing and the existing log
records are missing critical information.

3.2 Log Transport
Setting up log transport covers issues related to how logs

are transfered from the sources to a central log collector.
Here are issues to consider when setting up the infrastruc-
ture:

• Synchronized clocks across components

• Reliable transport protocol

• Compressed communication to preserve bandwidth

• Encrypted transport to preserve confidentiality and in-
tegrity

3.3 Log Tuning
Log data is now centralized and we have to tune log sources

to make sure we get the right type of logs and the right details
collected. Each logging component needs to be visited and
tuned based on the use-cases. Some things to think about
are where to collect individual logs, what logs to store in
the same place, and whether to collect certain log records at
all. For example, if you are running an Apache Web server,
do you collect all the log records in the same file; all the
media file access, the errors, and regular accesses? Or are
you going to disregard some log records?

Depending on the use-cases you might need to log addi-
tional details in the log records. For example, in Apache it
is possible to log the processing time for each request. That
way, it is possible to identify performance degradations by
monitoring how long Apache takes to process a request.

4. LOGGING GUIDELINES
To address the challenges associated with the information

in log records, we need to establish a set of guidelines and we
need to have our applications instrumented to follow these
guidelines. These guidelines were developed based on exist-
ing logging standards and research conducted at a number
of log management companies[4, 15, 20, 30, 33].

4.1 When to Log
When do applications generate log records? Making the

decision when to write log records needs to be driven by
use-cases. These use-cases in cloud applications surface in
four areas:

• Business relevant logging

• Operations based logging

• Security (forensics) related logging

• Regulatory and standards mandates

As a rule of thumb, at every return call in an application,
the status should be logged, whether success or failure. That
way errors are logged and activity throughout the applica-
tion can be tracked.

4.1.1 Business
Business relevant logging covers features used and busi-

ness metrics being tracked. Tracking features in a cloud
application is extremely crucial for product management. It
helps not only determine what features are currently used,
it can also be used to make informed decisions about the
future direction of the product. Other business metrics that
you want to log in a cloud application are outlined in [8].

Monitoring service level agreements (SLAs) fall under the
topic of business relevant logging as well. Although some of
the metrics are more of operational origin, such as applica-
tion latencies.

4.1.2 Operational
Operational logging should be implemented for the follow-

ing instances:

• Errors are problems that impact a single application
user and not the entire platform.

• Critical conditions are situations that impacts all users
of the application. They demand immediate atten-
tion3.

• System and application start, stop, and restart. Each
of these events could indicate a possible problem. There
is always a reason why a machine stopped or was restarted.

• Changes to objects track problems and attribute changes
to an activity. Objects are entities in the application,
such as users, invoices, or goods. Other examples of
changes that should be logged are:

– Installation of a new application (generally logged
on the operating system level).

– Configuration change4.

– Logging program code updates enable attribution of
changes to developers.

– Backup runs need to be logged to audit successful or
failed backups.

– Audit of log access (especially change attempts).

4.1.3 Security
Security logging in cloud application is concerned with

authentication and authorization, as well as forensics sup-
port5. In addition to these three cases, security tools (e.g.,
intrusion detection or prevention system or anti virus tools)
will log all kinds of other security-related issues, such as at-
tempted attacks or the detection of a virus on a system.
Cloud-applications should focus on the following use-cases:

• Login / logout (local and remote)

• Password changes / authorization changes

• Failed resource access (denied authorization)

• All activity executed by a privileged account

Privileged accounts, admins, or root users are the ones
that have control of a system or application. They have
privileges to change most of the parameters in the applica-
tion. It therefore is crucial for security purposes to monitor
very closely what these accounts are doing6.

4.1.4 Compliance
Compliance and regulatory demands are one more group

of use-cases that demand logging. The difference the other
use-cases is that it is often required by law or by business
partners to comply with these regulations. For example,
the payment card industry’s data security standard (PCI
DSS[25]) demands a set of actions with regards to logging
(see Section 10 of PCI DSS). The interesting part about
the PCI DSS is that it demands that someone reviews the

3Exceptions should be logged automatically through the ap-
plication framework.
4For example a reconfiguration of the logging setup is im-
portant to determine why specific log entries are not logged
anymore.
5Note that any type of log can be important for forensics,
not just security logs.
6Note also that this has an interesting effect on what user
should be used on a daily basis. Normal activity should not
be executed with a privileged account!

logs and not just that they are generated. Note that most
of the regulations and standards will cover use-cases that
we discussed earlier in this section. For example logging
privileged activity is a central piece of any regulatory logging
effort.

4.2 What to Log
We are now leaving the high-level use-cases and infras-

tructure setup to dive into the individual log records. How
does an individual record have to look?

At a minimum, the following fields need to be present in
every log record: Timestamp, Application, User, Session ID,
Severity, Reason, Categorization. These fields help answer
the questions: when, what, who, and why. Furthermore,
they are responsible for providing all the information de-
manded by our use-cases.

A timestamp is necessary to identify when a log record
or the recorded event happened. Timestamps are logged in
a standard format[18]. The application field identifies the
producer of the log entry. A user field is necessary to iden-
tify which user has triggered an activity. Use unique user
names or IDs to distinguish users from each other. A session
ID helps track a single request across different applications
and tiers. The challenge is to share the same ID across
all components. A severity is logged to filter logs based on
their importance. A severity system needs to be established.
For example: debug, info, warn, error, and crit. The same
schema should be used across all applications and tiers. A
reason is often necessary to identify why something has hap-
pened. For example, access was denied due to insufficient
privileges or a wrong password. The reason identifies why.
As a last set of mandatory field, category or taxonomy fields
should be logged.

Categorization is a method commonly used to augment
information in log records to allow addressing similar events
in a common way. This is highly useful in, for example,
reporting. Think about a report that shows all failed logins.
One could try to build a really complicated search pattern
that finds failed login events across all kinds of different
applications7 or one could use a common category field to
address all those records.

4.3 How to log
What fields to log in a log record is the first piece in the

logging puzzle. The next piece we need is a syntax. The
basis for a syntax is rooted in normalization, which is the
process of taking a log entry and identifying what each of
the pieces represent. For example, to report on the top users
accessing a system we need to know which part of each log
record represents the user name. The problems that can be
solved with normalized data are also called structured data
analysis. Sometimes additional processes are classified under
normalization. For example, normalizing numerical values
to fall in a predefined range can be seen as normalization.
There are a number of problems with normalization[21]. Es-
pecially if the log entries are not self-descriptive. More on
that in Section 4.3.

The following is a syntax recommendation that is based
on standards work and the study of many existing logging
standards (e.g., [9, 17, 29, 35]). Common event expression

7Each application logs failed logins in completely different
formats[34].

(CEE)[10] is a new standard that is going to be based on
the following syntax:

time=2010-05-13 13:03:47.123231PDT,

session_id=08BaswoAAQgAADVDG3IAAAAD,

severity=ERROR,user=pixlcloud_zrlram,

object=customer,action=delete,status=failure,

reason=does not exist

There are a couple of important properties to note about
the example log record:

First, each field is represented as a key-value pair. This is
the most important property that every records follows. It
makes the log files easy to parse by a consumer and helps
with interpreting the log records. Also note that all of the
field names are lower case and do not contain any punctua-
tions. You could use underscores for legibility.

Second, the log record uses three fields to establish a cat-
egorization schema or taxonomy: object, action, and status.
Each log record is assigned exactly one value for each of these
fields. The category entries should be established upfront
for a given environment. Standards like CEE are trying to
standardize an overarching taxonomy that can be adopted
by all log producers. Establishing a taxonomy needs to be
based on the use-cases and allow for classifying log records
in an easy way. For example, by using the object value of
’customer’, one can filter by customer related events. Or by
querying for status=failure, it is possible to search for all
failure indicating log records across all of the infrastructure
logs.

These are recommendations for how log entries should be
structured. To define a complete syntax, issues like encoding
have to be addressed. For the scope of this paper, those
issues are left to a standard like CEE[10].

4.4 Don’t forget the infrastructure
We talked a lot about application logging needs. However,

do not forget the infrastructure. Infrastructure logs can pro-
vide very useful context for application logs. Some examples
are firewalls, intrusion detection and prevention systems, or
web content filter logs which can help identify why an ap-
plication request was not completed. Either of these devices
might have blocked or altered the request. Other exam-
ples are load balancers that rewrite Web requests or modify
them. Additionally, infrastructure issues, such as high laten-
cies might be related to overloaded machines, materializing
in logs kept on the operating systems of the Web servers.

There are many more infrastructure components that can
be used to correlate against application behavior.

5. REFERENCE SETUP
In the first part of this paper, we have covered the theoret-

ical and architectural basis for cloud application log manage-
ment. The second part of this paper discusses how we have
implemented a application logging infrastructure at a soft-
ware as a service (SaaS) company. This section presents a
number of tips and practical considerations that help overall
logging use-cases but most importantly support and enable
forensic analysis in case of an incident.

Part of the SaaS architecture that we are using here is
a traditional three-tiered setup that is deployed on top of
the Amazon AWS cloud. The following is an overview of
the application components and a list of activities that are
logged in each component:

• Django[13] : Object changes, authentication and au-
thorization, exceptions, errors, feature usage

• JavaScript : AJAX requests, feature usage

• Apache: User requests (successes and attempts)

• MySQL: Database activity

• Operating system: System status, operational failures

• Java Backend : Exceptions, errors, performance

In the following, we are going to briefly touch upon each
of the components and talk in more detail about what it
means to log in these components and what some of the
pitfalls were that we ran into.

5.1 Django
Django assumes that developers are using the standard

python logging libraries[26]. There is no additional support
for logging built into Django. Due to this lack of intrinsic
logging support we had to implement our own logging solu-
tion for Django and instrument Django, or more precisely,
the Django authentication methods to write log entries[14].
In addition, we wrote a small logging library that can be in-
cluded in any code. Once included, it exports logging calls
for each severity level, such as debug(), error(), info(),
warn(), crit(), and feature() The first five calls all work
similar; they require a set of key-value pairs. For example:

error({’object’:’customer’,’action’:’delete’,

’reason’:’does not exists’,’id’:’22’})

The corresponding log entry looks as follows:

2010 Jan 28 13:03:47 127.0.0.1 severity=ERROR,
user=pixlcloud_zrlram,object=customer,action=delete,
status=failure,reason=does not exist,id=22,
request_id=dxlsEwqgOxAAABrrhZgAAAAB

The extra key-values in the log record are automatically
added to the log entries by our logging library without bur-
dening the developer to explicitly include them. The unique id
is extracted from the HTTP request object. This ID is
unique for each user request and is used on each applica-
tion tier to allow correction of messages. The user is also
extracted through the request object. The severity is in-
cluded automatically based on the logging command. These
different levels of logging calls (i.e., severities) are used to
filter messages, and also to log debug messages only in de-
velopment. In production, there is a configuration setting
that turns debug logging off.

Note that we are trying to always log the category fields:
an object, an action, a status, and if possible a reason. This
enables us to do very powerful queries on the logs, like look-
ing for specific objects or finding all failed calls.

In addition to the regular logging calls, we implemented
a separate call to log feature usage. This goes back to the
use-cases where we are interested in how much each of our
features in the product is used.

5.2 JavaScript
Logging in JavaScript is not very developer friendly. The

problem is that the logs end up on the client side. They
cannot be collected in a server log to correlate them with
other log records. Some of the service’s features are triggered
solely through Ajax[2] calls and we would like to log them on

the server along with the other features. We therefore built
a little logging library that can be included in the HTML
code. Calling the library results in an Ajax call to an end
point on the server that will log the message which is passed
as a payload to the call. In order to not spawn too many
HTTP requests, the library can be used in batch mode to
bundle multiple log records into a single call.

5.3 Apache
Our Apache logging setup is based on Apache’s defaults.

However, we tuned a number of parameters in order to en-
able some of our use-cases. To satisfy our logging guidelines,
we need to collect a timestamp, the originating server, the
URL accessed, the session ID from the application, and the
HTTP return code to identify what the server has done with
the request.

The motivation for some of these fields you find in the
first part of this paper, for example the session ID. Here is
a sample log entry that shows how our Apache logs look.
Note specifically the last two fields:

76.191.189.15 - - [29/Jan/2010:11:15:54 -0800]
"GET / HTTP/1.1" 200 3874 "http://pixlcloud.service.ch/"
"Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_2; en-us)
AppleWebKit/531.21.8 (KHTML, like Gecko) Version/4.0.4
Safari/531.21.10" duvpqQqgOxAAABruAPYAAAAE

5.3.1 Apache Configuration
This section is going to outline how we configured our

Apache instances. The first step is to configure the LogFor-
mat to contain the extra information that we are interested
in. The item we added is {%UNIQUE_ID}e. The former adds
a unique ID into every request and the latter logs the latency
for every request:

LogFormat "%h %l %u %t \"%r\" %>s %b

\"%{Referer}i\" \"%{User-Agent}i\"

%{UNIQUE_ID}e" service

Make sure you enable the mod_unique_id[3] module such
that Apache includes a session ID in every log entry.

In a next instance, we turned off an annoying log record
that you will see if you have Apache running with sub pro-
cesses. When an Apache server manages its child processes,
it needs a way to wake up those processes to handle them
new connections. Each of these actions creates a log entry.
We are not at all interested in those. Here is the Apache
logging configuration we ended up with:

SetEnvIf Remote_Addr "127\.0\.0\.1" loopback=1
SetEnvIf loopback 1 accesslog

CustomLog /var/log/apache2/access.log service env=!accesslog

5.3.2 Load Balancing
In our infrastructure, we are using a load balancer, which

turned out to significantly impact the Apache logs. Load
balancers make requests look like they came from the load
balancer’s IP; the client IP is logged wrong, making it impos-
sible to track requests back to the actual source and correlate
other log recrods with it. An easy fix would be to change
the LogFormat statement to use the X-Forwarded_For field
instead of %h. However, this won’t always work. There are
two Apache modules that are meant to address this issue:
mod remoteip and mod rpaf. Both of these modules allow
us to keep the original LogFormat statement in the Apache

configuration. The modules replace the remote ip (%h) field
with the value of the X-Forwarded-For header in the HTTP
request if the request came from a load balancer. We ended
up using mod rpaf with the following configuration:

LoadModule rpaf_module mod_rpaf.so

RPAFenable On

RPAFsethostname On

RPAFproxy_ips 10.162.65.208 10.160.137.226

This worked really well, until we realized that on Amazon
AWS, the load balancer constantly changes. After defining
a very long chain of RPAFproxy ips, we started looking into
another solution, which was to patch mod rpaf to work as
desired[23].

5.4 MySQL
Our MySQL setup is a such that we are using Amazon’s

Relational Database Service[7]. The problem with this ap-
proach being that we do not get MySQL logs. We are looking
into configuring MySQL to send logs to a separate database
table and then exporting the information from there. We
haven’t done so yet.

One of the challenges with setting up MySQL logging will
be to include the common session ID in the log messages to
enable correlation of the database logs with application logs
and Web requests.

5.5 Operating system
Our infrastructure heavily relies on servers handling re-

quests and processing customer data in the back end. We
are using collectd[12] on each machine to monitor individual
metrics. The data from all machines is centrally collected
and a number of alerts and scripted actions are triggered
based on predefined thresholds.

We are also utilizing a number of other log files on the
operating systems for monitoring. For example, some of our
servers have very complicated firewall rules deployed. By
logging failed requests we can identify both mis-configurations
and potential attacks. We are able to identify users that are
trying to access their services on the platform, but are using
the wrong ports to do so. We mine the logs and then alert
the users of their mis-configurations. To assess the attacks,
we are not just logging blocked connections, but also se-
lected passed ones. We can for example monitor our servers
for strange outbound requests that haven’t been seen be-
fore. Correlating those with observed blocked connections
gives us clues as to the origin of these new outbound con-
nections. We can then use the combined information to
determine whether the connections are benign or should be
of concern.

5.6 Backend
We are operating a number of components in our SaaS’s

backend. The most important piece is a Java-based server
component we instrumented with logging code to monitor
a number of metrics and events. First and foremost we
are looking for errors. We instrumented Log4J[19] to log
through syslog. The severity levels defined earlier in this
paper are used to classify the log entries.

In order to correlate the backend logs with any of the
other logs, we are using the session ID from the original
Web requests and pass them down in any query made to the
back end as part of the request. That way, all the backend

logs contain the same session ID as the original request that
triggered the backend process.

Another measure we are tracking very closely is the num-
ber of exceptions in the logs. In a first instance, we are
monitoring them to fix them. However, not all of them can
be fixed or make sense to be fixed. What we are doing how-
ever, is monitoring the number of exceptions over time. An
increase shows that our code quality is degrading and we
can take action to prioritize work on fixing them. This has
shown to be a good measure to balance feature vs. bug-
related work and often proofs invaluable when investigating
security issues.

6. FUTURE TOPICS
There are a number of issues and topics around cloud-

based application logging that we haven’t been able to dis-
cuss in this paper. However, we are interested in addressing
them at a future point in time are: security visualization[1],
forensic timeline analysis, log review, log correlation, and
policy monitoring.

7. CONTRIBUTIONS
To date, there exists no simple and easy to implement

framework for application logging. This paper presents a
basis for application developers to guide the implementa-
tion of efficient and use-case oriented logging. The paper
contributes guidelines for when to log, where to log, and
exactly what to log in order to enable the three main log
analysis uses: forensic investigation, reporting, and correla-
tion. Without following these guidelines it is impossible to
forensically recreate the precise actions that an actor under-
took. Log collections and logging guidelines are an essential
building block of any forensic process.

The logging guidelines in this paper are tailored to to-
day’s infrastructures that are often running in cloud envi-
ronments, where asynchronous operations and a variety of
different components are involved in single user interactions.
They are designed for investigators, application developers,
and operations teams to be more efficient and to better sup-
port their business processes.

8. BIOGRAPHY
Raffael Marty is an expert and author in the areas of

data analysis and visualization. His interests span anything
related to information security, big data analysis, and infor-
mation visualization. Previously, he has held various posi-
tions in the SIEM and log management space at companies
such as Splunk, ArcSight, IBM research, and PriceWater-
house Coopers. Nowadays, he is frequently consulted as an
industry expert in all aspects of log analysis and data visu-
alization. As the founder of Loggly, a logging as a service
company, Raffy spends a lot of time re-inventing the log-
ging space and - when not surfing the California waves - he
can be found teaching classes and giving lectures at security
conferences around the world.

References
[1] Raffael Marty, Applied Security Visualization, Addi-

son Wesley, August 2008.

[2] Asynchronous JavaScript Technology, https:

//developer.mozilla.org/en/AJAX.

[3] Apache Module mod unique id, http://httpd.

apache.org/docs/2.1/mod/mod_unique_id.html.

[4] ArcSight - Common Event Format, www.arcsight.

com/solutions/solutions-cef.

[5] Amazon Web Services, http://aws.amazon.com.

[6] AWS Elastic Load Balancing http://aws.amazon.

com/elasticloadbalancing.

[7] Amazon Relational Database Service http://aws.

amazon.com/rds.

[8] Bessemer cloud computing law Number 2: Get
Instrument rated, and trust the 6C’s of Cloud
Finance, www.bvp.com/About/Investment_Practice/
Default.aspx?id=3988. Accessed June 6, 2010.

[9] Bridgewater, David, Standardize messages with the
Common Base Event model, IBM DeveloperWorks, 21
Oct 2004.

[10] Common Event Expression http://cee.mitre.org.

[11] Cloud Computing. in Wikipedia. Retrieved June 2,
2010 from http://en.wikipedia.org/wiki/Cloud_

computing.

[12] collectd Â£ The system statistics collection daemon,
www.collectd.org.

[13] Django, Web framework www.djangoproject.com.

[14] Django 1.2 logging patch www.loggly.com/

wp-content/uploads/2010/04/django_logging_

1.2.patch

[15] M. Dacier et al. Design of an intrusion-tolerant intru-
sion detection system, Maftia Project, deliverable 10,
2005.

[16] Jeffrey Dean and Sanjay Ghemawat, MapRe-
duce: Simplified Data Processing on Large Clusters,
OSDI’04: Sixth Symposium on Operating System De-
sign and Implementation, San Francisco, CA, Decem-
ber, 2004.

[17] IDWG (Intrusion Detection Working Group), In-
trusion Detection Exchange Format, www.ietf.org/

html.charters/idwg-charter.html.

[18] ISO 8601 - Data elements and interchange formats Â£

Information interchange Â£ Representation of dates
and times, International Organization for Standard-
ization.

[19] Apache log4j, Java Logging, http://logging.apache.
org/log4j.

[20] Loggly Inc., www.loggly.com.

[21] Event Processing Â£ Normalization,
http://raffy.ch/blog/2007/08/25/

event-processing-normalization/, accessed June
4, 2010.

[22] Linux/UNIX Audit Logs, http://raffy.ch/blog/

2006/07/24/linux-unix-audit-logs.

[23] Fixing Client IPs in Apache Logs with Ama-
zon Load Balancers, www.loggly.com/2010/03/

fixing-client-ips-in-apache-logs-with-amazon-load-balancers,
Accessed June 11, 2010.

[24] Pete Finnigan, Introduction to Simple Oracle
Auditing, www.symantec.com/connect/articles/

introduction-simple-oracle-auditing.

[25] PCI security standards council, Payment Card Indus-
try (PCI), Data Security Standard, Version 1.2.1, July
2009.

[26] Python Logging, www.python.org/dev/peps/

pep-0282.

[27] rsyslgo, www.rsyslog.com.

[28] Software as a Service in Wikipedia. Retrieved
June 2, 2010 from http://en.wikipedia.org/wiki/

Software_as_a_service.

[29] , ICSA Labs. The Security Device Event Exchange
(SDEE), www.icsalabs.com/html/communities/ids/
sdee/index.shtml

[30] Splunk Wiki - Common Information Model, www.

splunk.com/wiki/Apps:Common_Information_Model.

[31] Syslog(3) - Man page, http://linux.die.net/man/3/
syslog.

[32] Syslog-ng logging system, www.balabit.com/

network-security/syslog-ng.

[33] Thor: A tool to Test Intrusion Detection System by
Variations of Attacks, http://thor.cryptojail.net/
thor.

[34] Common Dictionary and Event Taxonomy, http://

cee.mitre.org/ceelanguage.html#event.

[35] OpenXDAS, http://openxdas.sourceforge.net/.

https://developer.mozilla.org/en/AJAX
https://developer.mozilla.org/en/AJAX
http://httpd.apache.org/docs/2.1/mod/mod_unique_id.html
http://httpd.apache.org/docs/2.1/mod/mod_unique_id.html
www.arcsight.com/solutions/solutions-cef
www.arcsight.com/solutions/solutions-cef
http://aws.amazon.com
http://aws.amazon.com/elasticloadbalancing
http://aws.amazon.com/elasticloadbalancing
http://aws.amazon.com/rds
http://aws.amazon.com/rds
www.bvp.com/About/Investment_Practice/Default.aspx?id=3988
www.bvp.com/About/Investment_Practice/Default.aspx?id=3988
http://cee.mitre.org
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing
www.collectd.org
www.djangoproject.com
www.loggly.com/wp-content/uploads/2010/04/django_logging_1.2.patch
www.loggly.com/wp-content/uploads/2010/04/django_logging_1.2.patch
www.loggly.com/wp-content/uploads/2010/04/django_logging_1.2.patch
www.ietf.org/html.charters/idwg-charter.html
www.ietf.org/html.charters/idwg-charter.html
http://logging.apache.org/log4j
http://logging.apache.org/log4j
www.loggly.com
http://raffy.ch/blog/2007/08/25/event-processing-normalization/
http://raffy.ch/blog/2007/08/25/event-processing-normalization/
http://raffy.ch/blog/2006/07/24/linux-unix-audit-logs
http://raffy.ch/blog/2006/07/24/linux-unix-audit-logs
www.loggly.com/2010/03/fixing-client-ips-in-apache-logs-with-amazon-load-balancers
www.loggly.com/2010/03/fixing-client-ips-in-apache-logs-with-amazon-load-balancers
www.symantec.com/connect/articles/introduction-simple-oracle-auditing
www.symantec.com/connect/articles/introduction-simple-oracle-auditing
www.python.org/dev/peps/pep-0282
www.python.org/dev/peps/pep-0282
www.rsyslog.com
http://en.wikipedia.org/wiki/Software_as_a_service
http://en.wikipedia.org/wiki/Software_as_a_service
www.icsalabs.com/html/communities/ids/sdee/index.shtml
www.icsalabs.com/html/communities/ids/sdee/index.shtml
www.splunk.com/wiki/Apps:Common_Information_Model
www.splunk.com/wiki/Apps:Common_Information_Model
http://linux.die.net/man/3/syslog
http://linux.die.net/man/3/syslog
www.balabit.com/network-security/syslog-ng
www.balabit.com/network-security/syslog-ng
http://thor.cryptojail.net/thor
http://thor.cryptojail.net/thor
http://cee.mitre.org/ceelanguage.html#event
http://cee.mitre.org/ceelanguage.html#event
http://openxdas.sourceforge.net/

	Introduction
	Log Analysis Challenges
	Log Management
	Log Records

	Logging Architecture
	Enable Logging
	Log Transport
	Log Tuning

	Logging Guidelines
	When to Log
	Business
	Operational
	Security
	Compliance

	What to Log
	How to log
	Don't forget the infrastructure

	Reference Setup
	Django
	JavaScript
	Apache
	Apache Configuration
	Load Balancing

	MySQL
	Operating system
	Backend

	Future Topics
	Contributions
	Biography

