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Abstract

The objective of this present study was to introduce a simple, easily understood method for carrying out non-linear
regression analysis based on user input functions. While it is relatively straightforward to fit data with simple
functions such as linear or logarithmic functions, fitting data with more complicated non-linear functions is more
difficult. Commercial specialist programmes are available that will carry out this analysis, but these programmes are
expensive and are not intuitive to learn. An alternative method described here is to use the SOLVER function of the
ubiquitous spreadsheet programme Microsoft Excel, which employs an iterative least squares fitting routine to
produce the optimal goodness of fit between data and function. The intent of this paper is to lead the reader through
an easily understood step-by-step guide to implementing this method, which can be applied to any function in the
form y= f(x), and is well suited to fast, reliable analysis of data in all fields of biology. © 2001 Elsevier Science
Ireland Ltd. All rights reserved.
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1. Introduction

The use of curve fitting to describe experimental
data is widespread in all fields of biology. The
purpose of such analysis is to standardize data
interpretation into a uniformly recognized form.
Curve fitting essentially describes the experimental
data as a mathematical equation in the form
y= f(x), where x is the ‘independent’ variable and
is controlled by the experimenter; y is the ‘depen-

dent’ variable, which is measured; and f is the
function, which includes one or more parameters
used to describe the data. The better the fit, the
more accurately the function describes the data.
The introduction of personal computers into labo-
ratories has greatly reduced the time and effort
required in analyzing data and it is a relatively
straightforward process to fit data with simple
functions such a linear regression, a process that
can be carried out with a few simple point-and-
click commands. It is more difficult, however, to
fit data with more complicated non-linear func-
tions. This is usually carried out by specialist
programmes such as Microcal Origin, Sigma Plot
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or Graphpad Prism. An advantage of these pro-
grammes is that they are capable of fitting user-in-
put functions to data. However these programmes
tend to be expensive (in the £500 range), and if
the goal is simply to fit data with a non-linear
function, the user pays for a vast excess of redun-
dant features. These programmes are aimed at
experienced specialist users with a mathematical
background and tend to be difficult for the novice
to learn. Additionally, these programmes do not
handle data manipulation well and tend to display
data, graphs, results, and analysis in a multitude
of separate windows, which can lead to confusion.

An alternative method is to use Microsoft Excel
to fit non-linear functions. An advantage of this
method is that Excel is probably included in the
computer package as part of Microsoft Office,
and thus no additional expense is required.
Spreadsheet programmes are among the most
commonly used software, and most biologists
have experience with them even if at an elemen-
tary level. Excel offers a friendly user interface,
flexible data manipulation, built-in mathematical
functions and instantaneous graphing of data.
Excel contains the SOLVER function, which is
ideally suited to fitting data with non-linear func-
tions via an iterative algorithm [1], which mini-
mizes the sum of the squared difference between
data points and the function describing the data.
The objective of this present study was to describe
a method of non-linear regression using the
SOLVER function of Excel.

2. Method

The method described in this paper, to conduct
a curve fitting protocol in an Excel spreadsheet,
was carried out on a Gateway Pentium II com-
puter running Microsoft Windows 98 and Excel
97. The protocol involves entering data manually
into the spreadsheet and graphing the data. Once
the data have been entered, the curve fitting pro-
tocol is carried out and the curve fit is overlaid on
the data points. Goodness of fit data are also
calculated so that the accuracy of fit can be
assessed.

2.1. Least squares fit

As a first step to analyzing data using a curve
fitting protocol it is necessary to determine the
goodness of fit. Essentially this means estimating
how well the curve (i.e. the function) describes the
data. The most commonly used measure of the
goodness of fit is least squares. This is based on
the principal that the magnitude of the difference
between the data points and the curve is a good
measure of how well the curve fits the data. For
our purposes the least squares fit method will be
illustrated by fitting data with a linear function, a
process called linear regression. It is assumed that
the reader knows how to input data into an Excel
spreadsheet and graph the data, and that readers
of this paper will be analyzing data in the form (x,
y), where x is the ‘independent’ variable and y is
the ‘dependent’ variable. The data are input onto
the spreadsheet in the form of two columns, one
each for the x and y variables. The data are then
graphed; the most convenient type of graph for
illustrative purposes is a scatter graph. To fit a
linear function to the data, highlight one of the
data points on the graph by clicking the right-
hand mouse button and select Add Trendline. The
Add Trendline Dialogue box appears. Highlight
the Linear box, and a linear fit is superimposed on
the data. The parameters of the fit can be dis-
played on the graph by highlighting the Option
tab in the Add Trendline Dialogue box and select-
ing Display equation on chart. This process how-
ever, does not explain to the user how the fit was
determined. The difference between the data and
the fit is illustrated by the vertical arrows at each
data point in Fig. 1A. The difference, or residual,
between each data point and the fit is calculated.
This is illustrated in Fig. 1B, where the y value of
each point is replaced by the distance of that
point from the linear function. The least squares
fitting method squares the residual value to elimi-
nate the effects of positive or negative deviation
from the fit and is illustrated in Fig. 1C. This is
described by:

SS= �
n

i=1

[y−yfit]2 (1)
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where y is the data point, yfit is the value of the
curve at point y, and SS is the sum of the squares.
The best fit of the data is the linear function that
has the smallest value for the squared sum (SS) of
all the differences. A linear function is described
by:

y=mx+c (2)

where y is the ‘dependent’ variable and x is the
‘independent’ variable. The parameter values m
(the slope) and c (the intercept) are calculated by:
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respectively. The r2 value, also known as the
correlation index or coefficient of determination,
is a value between 0 and 1. It expresses the
proportion of variance in the ‘dependent’ variable
explained by the ‘independent’ variable. An r2

value of 0 means that knowing x does not help to
predict y. As the r2 value increases towards 1 the
more accurately the function fits the data. (N.B.
By convention in linear regression the r2 value is
expressed in lower case and in non-linear regres-
sion the R2 value is expressed in upper case).

r2=1−
�(y−ymean)2

�(y2)−
�(y)2

n

(5)

where y is the data point, and ymean is the average
value of the y data. This method of least squares
fitting can be used only with data in which the
‘dependent’ variable is a linear function of the
‘independent’ variable.

2.2. Non-linear regression

Prior to the advent of personal computers and
specialist curve fitting programmes non-linear
data would be transformed into a linear form and
subsequently analyzed by linear regression (e.g.
Lineweaver Burke method or Scatchard plots).
These transformations could yield inaccurate
analysis as the linear regression was carried out
on transformed data, which may distort the ex-
perimental error or alter the relationship between
the x and y values. This method is outdated and
inaccurate and should not be used. Instead for
data that are not described by a linear function, it
is necessary to implement a protocol that will fit a
non-linear function to the data. A method that is
suitable for this procedure is called iterative non-
linear least squares fitting. This process uses the
same goal as described for linear regression, i.e.

Fig. 1. Linear regression. A: An X-Y Scatter plot illustrating
the difference between the data points and the linear fit. B: A
residual plot illustrating the difference between data points
and the fit. C: The residual is squared to eliminate the effect of
positive or negative deviations from the fit. This value is used
to calculate the sum of the squares.



A.M. Brown / Computer Methods and Programs in Biomedicine 65 (2001) 191–200194

minimize the value of the squared sum of the
difference between data and fit. However it differs
from linear regression in that it is an iterative, or
cyclical process. This involves making an initial
estimate of the parameter values. The initial
parameter estimates should be based on prior
experience of the data or a sensible guess based on
knowledge of the function used to fit the data.
The first iteration involves computing the SS
based on the initial parameter values. The second
iteration involves changing the parameter values
by a small amount and recalculating the SS. This
process is repeated many times to ensure that
changes in the parameter values result in the
smallest possible value of SS. For linear regres-
sion only a single calculation is required to
provide the lowest value of the SS, because the
second and higher derivatives of the function are
zero. Therefore, the algorithm requires only a
single iteration. However, for non-linear regres-
sion the second and higher derivatives are not
zero, and thus an iterative process is required to
calculate the optimal parameter values. Several
different algorithms can be used in non-linear
regression including the Gauss–Newton, the Mar-
quardt–Levenberg, the Nelder–Mead and the
steepest descent methods [2]. SOLVER, however,
uses another iteration protocol, which is based on
the robust and reliable generalized reduced gradi-
ent (GRG) method. A detailed description of the
evolution and implementation of this code can be
found elsewhere [3,4]. All of these algorithms have
similar properties. They all require the user to
input initial parameter values and use these values
to provide a better estimate of the parameters
employing an iterative process. With the same set
of data all of these methods should yield the same
parameter values.

The following example illustrates how to use
the SOLVER function in Excel to fit data with
user-input non-linear functions. The process by
which the curve fit proceeds is called iterative
non-linear least squares regression. The example
used is a sigmoidal function (the Boltzmann equa-
tion), which describes the probability that an ion
channel will be open relative to voltage. This
example is used purely for illustrative purposes
and it is not necessary that the reader understand
anything about ion channels.

The Boltzmann function is described by the
following function:

y=
1�

1+exp
(V−E)
Slope

n (6)

where y is the ‘dependent’ variable, E is the
‘independent’ variable (Voltage), and V and Slope
are the parameter values. V is the half activation
voltage, which describes the voltage at which half
of the ion channels are open (i.e. where y=0.5).
Slope describes the slope at the point V and
indicates the steepness of the curve, or sensitivity
to voltage of the ion channel.

2.3. Configuring the spreadsheet for non-linear
regression

In order to perform non-linear regression anal-
ysis using the Boltzmann function, the following
procedure must be carried out:

1. Input onto a spreadsheet the raw data in two
columns, the X column containing the ‘indepen-
dent’ variable (Voltage), and the Y column con-
taining the ‘dependent’ variable (Data). This is
illustrated as Columns A and B (Voltage and
Data, respectively) of Fig. 2A, where Voltage is
the ‘independent’ variable and Data is the ‘depen-
dent’ variable.

2. Graph the data contained in cells A2 to B20
in a Scatter plot. The data points are displayed as
filled squares.

3. Enter labels in cells G1 to G8 to describe the
contents of the adjacent cells. In cell G1 enter V,
which will describe the parameter in cell H1. For
cell H1 select the Insert menu choose Name then
Define for cell H1. Name the cell V. Similarly, for
cells G2 to G8, enter Slope, Mean of y, df, S.E. of
y, R2. Critical t and CI, respectively. Name cells
H2 to H8, Slope, Mean–of–y, df, S.E.–of–y,
RSQ, Critical– t and CI, respectively.

4. In Column C (Boltzmann) enter the equation
describing the Boltzmann function. This has been
rearranged from Eq. (6) into a form that Excel
recognizes:

= (1/(1+EXP((V−A2)/Slope)))
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Fig. 2. Spreadsheet template for non-linear regression. A: The data are entered into Column A and B with Column C used to generate the fit based on the parameters
in Cells H1 and H2. Columns D and E calculate the 95% confidence interval around the fit. Cell H6 is used to calculate R2. B: The solution of the fit calculated by
SOLVER.
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where V and Slope refer to the parameter values
in cells H1 and H2.

5. Copy the equation from cell C2 down to and
including C20. Note that A2 is a ‘relative refer-
ence’, which specifies the location of a cell relative
to the cell in which the calculation will be carried
out, in this case cell C2. Thus copying from Rows
2 to 20, changes the value of A2 to reflect the
appropriate Row.

6. The mean of the y values is calculated by
entering the following formula in H3.

=AVERAGE(B2:B20)

7. The degrees of freedom is defined as the
number of data point minus the number of
parameters in the function. It is calculated by
entering the following formula in H4.

=COUNT(B2:B20)−COUNT(H1:H2)

8. The standard error of the y values is defined
as

S.E.=

��(y−yfit)2

df (7)

and is calculated by entering the following for-
mula in H5

=SQRT(SUM((B2:B20−C2:C20)�2)/df).

However as this formula must be expressed as an
array formula, press Ctrl+Shift+Enter. This en-
closes the whole formula within a pair of curly
brackets ({}), denoting it as an array formula.

9. The R2 value, the correlation index or coeffi-
cient of determination, is defined as

R2=1−
�(y−yfit)2

�(y−ymean)2

(8)

and is calculated by entering the following for-
mula in H6 and expressing it as an array formula
as described above

=1−SUM((B2:B20−C2:C20)�2)

/SUM((B2:B20−Mean–of–y)�2)

10. In order for the confidence interval of the fit
to be calculated the critical t value at a signifi-

cance level of 95% is calculated by entering the
following formula in H7.

= tinv(0.05,df)

The confidence interval is defined as

yfit* Critical– t*S.E.–of–y

Thus in H8 enter

=Critical– t*S.E.–of–y

Enter the following formula in D2

=C2+CI

and copy it down to D20. Similarly enter=C2−
CI in E2 and copy down to E20. This calculates
the upper and lower confidence limits (95%) of the
fit.

11. The S.E. of the y values, R2 and CI are
automatically calculated: 0.134, 0.872 and 0.283,
respectively.

12. Insert initial estimates of the parameters V
and Slope into cells G1 and G2, respectively.
Approximate estimates are −20 and 10, respec-
tively. Fig. 2A illustrates the spreadsheet template
with the formulas used in the fitting protocol
displayed.

13. Graph Columns C, D and E versus Column
A such that they are displayed as continuous lines
on the graph as illustrated in Fig. 3A. It can be
seen that the initial estimate (thick line) is not a
good fit of the data with large confidence limits
(thin lines). The following section describes ma-
nipulations that allow SOLVER to improve the
fit.

2.4. Implementation of SOLVER

The above protocol sets up the spreadsheet
template that SOLVER requires in order to fit a
curve to the data. This method can be used to fit
data with any user input non-linear function.
Simply enter the appropriate parameter values in
Column H and the function in a form that Excel
recognizes in Column C. Carry out the following:

14. Open the SOLVER function, which can be
found under the Tools menu. The Dialogue box
illustrated in Fig. 4A appears. If SOLVER is not
in this menu it should be installed. See Excel
documentation for installation procedure.
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Fig. 3. Boltzmann fit of electrophysiological data. A: This
graph displays the experimental data points (filled squares),
the fit based on the initial parameter estimates (thick line), and
the 95% confidence intervals (thin lines) around the fit. B: The
fit as calculated by SOLVER. Note how the fit more accu-
rately overlies the data than the initial estimates, and the CI
are closer to the fit.

These changes will be displayed on the spread-
sheet template, as illustrated in Fig. 2B. The
optimal values of V and Slope are −10.317 and
12.194, respectively, and the maximal value of R2

is 0.997. The continuous thick line in Fig. 3B
illustrates the best fit and it is clear that it is an
improvement over the fit provided by the initial
parameter values. Additionally the confidence in-
tervals around the fit have been reduced.

2.5. Controlling ad�anced SOLVER features

The default SOLVER settings can be changed
by opening the Solver Options Dialogue box (Fig.
4B). Each option has a default setting that is
appropriate for most situations but that can be
changed. The most relevant to the protocol de-
scribed in this paper are described below.

Fig. 4. The built-in SOLVER function. A: The SOLVER
Dialogue box used as an interface between the SOLVER
function and data on the spreadsheet. B: The fit can be
fine-tuned using the Options Dialogue box.

15. In Set Target Cell box enter RSQ
16. Set the Equal To option to Max. SOLVER

tries to maximize the value of R2.
17. In By Changing Cells box enter V, Slope.
18. In the Subject to the Constraints box enter

V� =0

V� = −20

This determines the range over which SOLVER
will find the best fitting value of V. It can be seen
from Fig. 2 that the value of V at y=0.5 lies
between 0 and −20. Constraints are used to
impose limits over the range of values used to
define the parameters. Although it is intuitive that
the Slope is positive at y=0.5, it is difficult to
estimate the value so no constraints are applied to
Slope.

19. Choose Solve to perform the fit. The pro-
gramme will iteratively cycle through the fitting
routine, changing the parameter values of V and
Slope until the largest value of R2 is calculated.
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Max time: Specifies the amount of time in
seconds that SOLVER will be allowed to run
before stopping. The default value is 100 s. Itera-
tions: Specifies the number of iterations that
SOLVER will carry out before stopping. The
default value is 100. If SOLVER finds the optimal
solution before either of these limits is reached it
will present the results. Precision: Controls the
precision of solutions by using the number en-
tered to determine whether the value of a con-
straint meets a target or satisfies a lower or upper
bound. The default value is 1×10−6. The higher
the precision, the more time taken to reach a
solution. Tolerance: The percentage by which the
target cell (RSQ in the example described here) of
a solution satisfying the integer constraints can
differ from the true optimal value and still be
considered acceptable. This option applies only to
problems with integer constraints. A higher toler-
ance tends to speed up the solution process. The
default value is 5. Convergence: This value tells
SOLVER when to stop the iterative process.
When the relative change in the target cell value is
less than the number in the Convergence box for
the last five iterations, SOLVER stops. The
smaller the convergence value, the more time
SOLVER takes to reach a solution. The default
value is 0.001. Assume Linear Model: This box
should be checked only if the model to be solved
in linear; otherwise, as in the case of the non-lin-
ear regression described here, leave the box
unchecked. Use Automatic Scaling: Select to use
automatic scaling when inputs and outputs have
large differences in magnitude. For example, if
values such as 1×10−14 are entered rounding off
errors can be large. It is advised to keep this box
checked for all SOLVER models. Assume Non-
Negative: Causes SOLVER to assume a lower
limit of 0 for all adjustable cells for which no
constraints have been set. Show Iteration Results:
Select to have SOLVER pause to show the results
of each iteration. Estimates: Determines the ap-
proach used to obtain subsequent estimates of the
basic variable values at the outset of each one-di-
mensional search. Tangent: Uses linear extrapola-
tion from a tangent vector. Quadratic: The
Quadratic choice extrapolates the minimum (or
maximum) of a quadratic fitted to the function at

its current point. The Tangent choice is slower but
more accurate. Derivatives: Specifies the differenc-
ing used to estimate partial derivatives of the
objective and constraint functions. Forward: The
point from the previous iteration is used in con-
junction with the current point. This reduces the
recalculation time required for finite differencing,
which can account for up to half of the total
solution time. Central: Central differencing relies
only on the current point and perturbs the deci-
sion variables in opposite directions from that
point. Although this involves more recalculation
time, it may result in a better choice of search
direction when the derivatives are rapidly chang-
ing, and hence fewer total iterations. Search: Spe-
cifies the algorithm used at each iteration to
determine the direction to search. Newton: The
default choice Newton requires more memory but
fewer iterations than does the Conjugate gradient
method. Conjugate: Requires less memory than
the Newton method but typically needs more
iterations to reach a particular level of accuracy.
Load Model: Loads a previously saved fitting
routine. Save Model: Allows the user to save the
current fitting routine for future use.

3. Conclusion

Non-linear regression is a powerful technique
for standardizing data analysis. The advent of
personal computers has rendered linear transfor-
mation of data obsolete, allowing non-linear re-
gression to be carried out quickly and reliably by
non-specialist users. While the method described
in this paper requires that the user have a basic
knowledge of spreadsheets, it is not required that
the user has an intimate understanding of the
mathematics behind the processes involved in
curve fitting. This subject is beyond the knowl-
edge of most biologists, involving calculus, ma-
trices and statistics. What is important, however,
is that the user understands enough about the
data to be fit to use the correct type of analysis,
and to judge goodness of fit from calculated
estimates.

This paper does not address the issue of which
functions are suitable to describe individual data,
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but this topic is discussed in detail elsewhere
where excellent guides to determining goodness of
fit of a function using residual plots are described
[2,5,6].

3.1. Assessment of goodness of fit

The R2 value calculated in this paper is de-
signed to give the user an estimate of goodness of
fit of the function to the data, i.e. we assume that
we are using an appropriate function to describe
the data, but we want to know how accurately the
function describes or fits the data. The R2 value is
called the coefficient of determination and its
value represents the fraction of the overall vari-
ance of the ‘dependent’ variable that is explained
by the ‘independent’ variable. It is calculated from
the sum of the squares of the residuals and the
sum of the squares of regression. The sum of the
squares of the residuals captures the error be-
tween the estimate and the actual data and is
analogous to the sum of the squares (within) in
ANOVA (see the numerator of Eq. (8)). The sum
of the squares of the residuals is used in linear
regression to calculate the best fit (see earlier).
The sum of the squares of regression calculates
how far the predicted values differ from the over-
all mean, and is analogous to the sum of the
squares (between) in ANOVA (see the denomina-
tor of Eq. (8)). In the example in this paper the R2

value was 0.997 which means that 99.7% of the
variation of the ‘independent’ variable can be
explained by the variation of the ‘dependent’
variable.

After using SOLVER to calculate the con-
verged values of the parameters one would like to
know the reliability of those values. Some curve
fitting programmes display the standard error of
the parameters. However care should be taken in
interpreting these values. As stated by Motulsky
and Ransnas [6] ‘‘Non-linear regression programs
generally print out estimates of the standard error
of (the) parameters, but these values should not
be taken too seriously. In non-linear functions,
errors are neither additive nor symmetrical, and
exact confidence limits cannot be calculated. The

reported standard error values are based on lin-
earizing assumptions and will always underesti-
mate the true uncertainty of any non-linear
equation…it is not appropriate to use the stan-
dard error values printed by a non-linear regres-
sion program in further formal statistical
calculations.’’ A method for calculating the
asymptotic standard errors of the parameters has
been devised, but it involves evaluating a Hessian
matrix, a method that is ‘‘significantly more com-
plex and requires significantly more computer
time to evaluate. They also require a considerably
more complex computer program’’ [2]. Thus the
approach taken in this paper is to calculate the
standard error of the data around the regression
line, also known as the standard error of the
residuals. This is calculated by dividing the sum of
the squares of the residuals by the degrees of
freedom to get the variance data about the regres-
sion line. Taking the square root of this value
gives the standard error of the residuals. The
standard error of the residuals can be used to
calculate the confidence interval. The confidence
interval is an indicator of the probability that the
true value lies within the range specified by the
probability formula. It is common to use 95%
confidence interval, which means that there is a
95% probability that the true value lies within the
interval. In order to calculate the confidence inter-
val the Critical t-value must be calculated. This
value depends on the confidence interval and the
degrees of freedom. Fortunately Excel has a built-
in function (tinv) which allows calculation of the
Critical t-value, thus bypassing the need to look
up tables of t values. The formula in cell H7
(1-confidence interval, degrees of freedom) calcu-
lates this value for our desired confidence interval
and degrees of freedom. Once this value has been
calculated the confidence interval is simply the
best fit at all data points� the Critical t-
value*S.E. of residuals.

3.2. Ad�antages and limitations

While this protocol is regarded as robust and
reliable a few points should be borne in mind.
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First, the greater the number of parameters in
the function the longer SOLVER will take. Ad-
ditionally the more the user customizes the
fitting protocol with additional constraints or in-
creasing tolerance or precision, the longer
SOLVER will take. Second, if initial parameter
estimates are inappropriate, the iteration process
can proceed in the wrong direction and a solu-
tion is not found. Thus it is important that sen-
sible initial parameter estimates are input. Poor
estimates may also lead to the wrong solution
being found. This paper demonstrates an easily
understood method for rapid fitting of data with
non-linear functions.
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