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ABSTRACT 

Endoscopy is an invaluable tool for several surgical and diagnostic applications. It permits minimally invasive 

visualization of internal structures thus involving little or no injury to internal structures. This method of visualization 

however restricts the size of the imaging device and therefore compromises on the field of view captured in a single 

image. The problem of a narrow field of view can be solved by capturing video sequences and stitching them to generate 

a mosaic of the scene under consideration. Registration of images in the sequence is therefore a crucial step. Existing 

methods compute frame-to-frame registration estimates and use these to resample images in order to generate a mosaic. 

The complexity of the appearance of internal structures and accumulation of registration error in frame to frame 

estimates however can be large enough to cause a cumulative drift that can misrepresent the scene. These errors can be 

reduced by application of global adjustment schemes. In this paper, we present a set of techniques for overcoming this 

problem of drift for pixel based registration in order to achieve global consistency of mosaics. The algorithm uses the 

frame-to-frame estimate as an initialization and subsequently corrects these estimates by setting up a large scale 

optimization problem which simultaneously solves for all corrections of estimates. In addition we set up a graph and 

introduce loop closure constraints in order to ensure consistency of registration. We present our method and results in 

semi global and fully global graph based adjustment methods as well as validation of our results. 
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1. INTRODUCTION 

 

In recent years, visual endoscopy has become an increasingly popular tool in diagnostic medicine. As a non-invasive 

visual procedure, it offers several advantages over blind biopsy methods such as increased comfort to the patient and 

convenience for the physician by providing opportunities for in-office procedures. Current techniques do however suffer 

from limitations in terms of visualization capabilities (due small fields of view and low video frame rates 

) which make this type of diagnostic procedure inconvenient and long. Automated mosaicking offers an opportunity to 

tackle the problem of insufficient fields of view and resolution. Mosaicking procedures involve generation of an 

integrated picture or an environment map of a scene from a video sequence by stitching together multiple images of a 

scene. 

 

The first step in the mosaicking procedure is registration, which involves computing a relationship between pixels in one 

image and another. Once pixel correspondence has been established, each image can be warped onto a common 

coordinate system to generate an environment map. Registration methods involve computation of a transformation that 

maps one image to another one. Methods for computing a registration estimate fall into two broad categories: direct 

methods which compute a transformation that optimizes some measure of photometric consistency over the entire image 

[1][2], and feature based methods [8] [9], which use a sparse set of corresponding image features to estimate the image-

to-image mapping. We [2] employ direct techniques on an endometrial mosaicking application whereas [10] [11] 

employ feature based registration techniques on a retinal and fetal mosaicking applications respectively. Once a 

registration is computed, the construction of a mosaic entails resampling the images to a common coordinate system so 

that they can be combined into a single image. The issues to consider in stitching are resampling and interpolation, 

blending, removal of artifacts due to motion (such as ghost effects) and generation of a seamless mosaic.  

 



 

 
 

 

In most prior mosaicking work, registrations are computed by calculating relationships between consecutive frames. The 

use of frame to frame image registration methods is advantageous since they are simple and allow for rapid, real time 

processing of images for generation of a global environment map. However, long sequences of images accumulate 

misalignment errors when no further correction is applied to the registration. These errors could become large enough to 

misrepresent the scene under consideration. Furthermore, in medical imaging applications, the presence of deformable 

structures causes misalignment errors even within smaller sequences of images. Figure 1 shows some mosaics generated 

from images captured using a contact endoscopic system. Images are stitched together by computing frame to frame 

registration estimate between images. Figure 1A shows a mosaic of a regular grid generated using 80 frames and only 

frame to frame mosaicking. Figure 1B shows an image of an endometrial wall where the overlap clearly is incorrect. 
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Figure 1 A: Mosaic of 80 image grid sequence using frame to frame registration,  

B: Mosaic of 100 image grid sequence using frame to frame registration 

 

There are generally two methods for enforcing global consistency: frame to mosaic methods and local to global methods. 

The first method involves estimation of an initial registration from frame to frame registration, followed by a local 

optimization of the frame to the mosaic at its current state. This method however is very sensitive to the appearance of 

the mosaic and the registration result can vary drastically with the choice of the blending method. The problem of global 

consistency can also be approached by enforcing photometric consistency (direct methods) or geometric consistency 

(feature based methods) between overlapping input frames. This is typically carried out by optimizing an objective 

function that describes the overall error of a set of registrations (bundle adjustment). Geometric methods [8][9] have 

been developed in the computer vision community  where the objective function describes an error metric for 

reconstruction of the set of feature points in multiple views. In several cases of endoscopy however, image features are 

very weak and feature based registration methods cannot be applied. It is therefore useful to apply pixel based (direct) 

registration methods for such cases. Loewke et al [12] approach this problem by applying gaussian potentials to the 

direct case using the bundle adjustment framework.  Vercauteren et al [6] apply a lie group formulation of the bundle 

adjustment problem and optimize on the cross correlation function.  

 

The problem we address is the reduction of registration errors by performing direct global alignment in endoscopic video 

applications using a graph based method. In the next few sections, we describe our methods and results as well as the 

development of phantoms to validate our methods. 

2. METHODS 

 
2.1 Direct Registration of Two Images 

 

Consider two images: I0 the base image and I1 which is to be registered and re-sampled back onto the coordinate frame 

of I0. The registration estimate to be computed is the transformation that minimizes the SSD error criterion, with the 

assumption that pixel noise is gaussian [1]. The parameters of this transformation are denoted by p . For a general 



 

 
 

 

motion model operating at image location x , the transformation function can be written as ),( pxf  and the SSD error 

for a parameter set p  for all image locations is written as:  
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Since the magnitude of components of ∂p is small, it is possible to apply a linearization of this expression using a first 

order Taylor expansion on ),(( ppxfI , ignoring higher order terms as  
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where J is the Jacobian matrix of the image 
1

I  with respect to image locations (spatial derivatives of Image 
1

I ) and ∂f/ 

∂p is the Jacobian of the registration transformation which is to be computed. A linear closed-form solution can therefore 

be obtained for the registration parameters p . In order to register images in a video sequence, this method can be used 

to compute registration estimates between every frame and the subsequent image in the video sequence. This technique 

is what is referred to as pair-wise registration. Once this registration is computed, the construction of a mosaic entails 

resampling all images to a common coordinate system so that they can be combined into a single image. 

 

2.2 Global Mosaicking: 

The proposed solution for global registration optimizes registration parameters by minimizing the total SSD error with 

respect to all pairs of images that overlap. This is a specific type of problem that falls under the general set of techniques 

known as bundle adjustment [7]. Bundle adjustment typically involves solving for a set of 3D structure and motion 

parameters that minimize the total reprojection error with respect to a set of feature points in many images. In our case, 

we formulate a solution to the global problem by extending pixel-based registration as follows. For a set of n  Images in 

a video sequence 
1
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where ω = 1 when 
i

I and 
j

I overlap and ω = 0 when there is no overlap. The parameter set p that is being solved for is 

the set of all registrations between every overlapping pair. The linear system that solves for the motion (registration) 

parameters in the direct optimization framework is:   

t
DpJ .  

where J  is the spatial derivative matrix, )()),((
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 is the time derivative vector and p  is the motion 

vector to be solved for. In order to take advantage of different overlapping regions between images, we consider every 

overlapping  pair of images, compute the region of overlap of this pair and then append the spatial and time derivatives 

of this region to the system above. The matrix J  therefore is a block diagonal matrix with spatial derivatives between 

every image pair on the diagonal.  (Pairs of images with a greater overlap have more rows in this matrix.)  

Once this is setup, we can add additional constraints to the parameter set in order to ensure global consistency. This is 

carried out by setting up a graph system where each node of the graph represents an image and each edge represents the 

presence of overlap between two images. The parameter set being solved for is therefore the set of all edges of the graph. 

The metric of consistency defined to reduce drift error is the sum of motion parameters in a cycle. Since the elements of 

the parameter vector p  that is being solved for include the motion parameters 
ji

p
,

, we can add the global consistency 

constraint to the system above as:  
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where q  is the number of cycles and ck are the cycle bases. In order to add this to the linear system, we define C  as the 

matrix of the sum of all cycle bases. The linear system that we solve for therefore becomes  

t
DpCJ ).(  

The added constraint enforces that all loops in the graph are closed (the sum of all registrations is 0), thus minimizing the 

accumulated error. In order to solve this sparse system efficiently in MATLAB, we use a conjugate gradients method.  

 

In the case where there are 3 images and all images overlap with each other (Figure 2) , a fully connected graph 

representation is generated. A set of 6 registration parameters are to be solved for together. The constraint added 

therefore is:  

[1 0 1 0 -1 0; 0,1,0,1,0,-1], 

The algorithm can be summarized as follows: 

 Generate all edges  for the graph.  

 Find all cycles in the graph and add this constraint to the system above.  

 Solve the sparse system for registration parameters 

Figure 3 shows mosaics generated from a sequence of 5 images. The images mosaicked here are the first image and the 

last (fifth) image. In this case, since all images overlap with each other, the graph is a fully connected graph. The mosaic 

on the left shows the first pass result where no global adjustment has been applied. The mosaic on the right shows the 

adjusted mosaic. The correction of drift error can be noted in this result. 

 

  

Figure 2: A system of 3 images where an overlap exists between every pair of 

images 

Figure 3: Images show mosaics of first and fifth image in the sequence. The result on the left is generated using only 

frame to frame registration. The result on the right shows the second pass result with graph based global adjustment 

 



 

 
 

 

Semi global Registration: This algorithm was then extended to accommodate for a large video sequence where all 

images do not overlap with each other. Since the motion of the camera between image samples is small and the overlap 

between consecutive images is high, a small set of consecutive images can be considered to be fully overlapping (all 

images in the set overlap with every other image in the set). The Jacobian is the block diagonal matrix constructed using 

spatial derivatives between every image pair. For each of these sets, a fully connected graph structure can then be 

constructed. The advantage of this method is that it solves a much smaller system and therefore is more computationally 

efficient. The algorithm proceeds as follows: 

 Suppose there are a total of N images to mosaic. 

 Select the size of a subset n such that you can safely assume that any n consecutive images will have overlap. 

 Using this set of n images, generate a fully connected graph structure where the nodes represent the images and 

the edges represent the registration between images. Now, use the current estimate of motion to warp images. 

 Setup the Jacobian from derivatives and add graph constraints. 

 Solve for all motion parameters using the optimization and update the registration parameters 

 Repeat for all subsets 

Fully Global Registration: Although this method is computationally efficient, it has the disadvantage of not being able 

to deal with the case where an image may overlap with another one that is not temporally close to it. In order incorporate 

all overlapping regions, we extend the algorithm to solve one large system which incorporates all overlapping image 

pairs. An initial frame-to-frame registration estimate is computed, and the overlap between all images is computed. The 

Jacobian is then constructed as the block diagonal matrix of spatial derivatives between every overlapping image pair.  

The algorithm is summarized as follows. Given a total of N images to mosaic: 

 Find all image pairs that overlap  

 Generate a graph structure where the nodes represent the images. An edge is added between two images only if 

there is overlap between the two.  

 Setup the Jacobian from derivatives and add graph constraints.  

 Solve for all motion parameters and update the registration parameters  

 Repeat till convergence 

3. EXPERIMENTAL SETUP AND RESULTS 

3.1 Experimental Setup and Data collection 

Three types of data were used in our experiments. The first two are phantom datasets and the third is ex-vivo data of the 

endometrium. In order to obtain ground truth data in a reliable manner, the endoscope was attached to the steady hand 

robot [5], which has an accuracy of up to 10 microns. Various phantoms were positioned and the imager was moved in 

uniform steps using the robot. Figure 4 shows the system setup. 
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Figure 4: Experimental Setup 



 

 
 

 

The first phantom used was a checkerboard pattern with squares of sides 1mm printed and pasted around a cylindrical 

pipette. The pipette allowed for a reduction in dewarping effects but did not allow for direct contact of the imaged 

checkerboard with the endoscope. Motions that could be applied using this phantom included insertion, retraction and 

rotation, as well as a combination of these which produced a spiral-like motion. The second type of phantom was a 

rubber phantom with similar visual feature properties as the endometrial wall. The phantom was prepared with a sample 

of pink silicone rubber that was painted with red silicone paint to generate features similar to the endometrial wall 

(Figure 5). The phantom was wrapped around the pipette during data collection. Motions that were applied using this 

phantom included insertion, retraction and rotation, as well as a combination of these which produced a spiral-like 

motion. The third set of data was collected on an ex-vivo uterus. Data was captured by a gynecologist using free hand 

motion. Motions that were applied include insertion, retraction, rotation and lateral motion. 

 

 

 

 

 

 

 

 

 

3.2 Validation 

Validation of mosaics is a crucial aspect but this area has had very minimal work in medical imaging due to the 

difficulty of establishing a ground truth. In the endoscopic case it is usually not feasible to place fiducials on internal 

structures that need to be imaged to provide geometric ground truth. In addition, the field of view of the imagers is so 

small (usually around 4mm) that any type of marker that would have to be placed would have to be smaller than this in 

order to be useful. We propose a few methods for phantom based image mosaic validation in this proposal.Since the 

phantom does not have any regular features on its surface, it is not possible to extract higher level data for measurement 

of accuracy. However, since not all images are used to generate the mosaic, the regions of stitching can be compared 

with regions on corresponding regions of images not used for mosaicking to develop a measure of accuracy. The metric 

used for comparison is normalized SSD and the percentage error per pixel is reported. We refer to this metric as the SSD 

validation error. Further validation and accuracy measurements of results will be presented in the final paper. 

 

3.3 Results 

Semi Global Mosaicking: In this set of experiments, the semi global mosaicking described in section 2.2 was applied to 

generate the second pass mosaic. The images on the top show the frame to frame mosaic and the images on the bottom 

show the refined mosaic. In the grid case, a set of 5 consecutive images was used to refine the inter-frame registration. 

Figure 7 (top left) shows results on the 80 image grid sequence. The mean corner point error was 1.141 for the first pass 

mosaic and 1.1618 pixels for the adjusted mosaic. Figure 7(bottom left) shows results on phantom experiments. The  

 

 

 

 

 

 

 

 

 

 

  

Figure 6:  

Left - SSD Validation error for semi global phantom registration.  

Right - SSD Validation error for fully global phantom registration. 

Figure 5: Rubber Phantom 



 

 
 

 

input dataset was a sequence of 50 image. For validation, the method described in section 3.2 was applied. Figure 6 

(Left) shows the result of 8 independent patches tested for percentage pixel error. The red and blue lines represent SSD 

validation error in the first and second pass mosaics respectively. Figure 7 (bottom right) shows the same algorithm 

applied to an endometrial image sequence, where the number of images in the subsequence forming the fully connected 

graph was 10.  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fully Global Adjustment: The graph based fully global adjustment method described in section 2.2 was then applied. 

The mosaic on the top left in Figure 8 shows the result generated from the first pass frame to frame registration and the 

refined mosaic for the grid experiment. Validation was carried out by measuring the line fits of corners. The corner 

points on had an error of 1.141 pixels and the adjusted mosaic had an error of 0.6343 pixels. In the case of the phantom, 

the input dataset was the same used above. Eight independent feature rich regions were chosen on the mosaic for 

comparison with input images. A marked reduction of error can be observed between the first mosaic and the final 

mosaic. Figure 6  (Right) shows the result of 8 independent patches tested for percentage pixel error. The red and blue 

lines represent SSD validation error in the first and second pass mosaics respectively.  

 

  

Figure 7: In each set the mosaic on the top is generated from frame to frame 

estimates and the mosaic on the bottom is generated from semi global 

adjustment. Top left: 80 grid images, Top right: Grid points plotted, 

Bottom left: Phantom mosaics, Bottom left: Ex-vivo endometrial 

mosaics 
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