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Glaucoma

The Shape of the Ganglion Cell plus Inner Plexiform
Layers of the Normal Human Macula

Robert W, Knighton and Giovanni Gregori

Purrose. To use surfaces generated by two-dimensional
penalized splines (2D P-splines) to characterize the shape of
the macular ganglion cell plus inner plexiform layers
(GCLAHIPL) in a group of normal humans.

MerHops. Macular images of the right eyes of 23 normal
subjects ranging in age from 18 to 75 years were obtained with
spectral-domain optical coherence tomography (SD-OCT). The
thickness of GCLHPL was determined by manual segmenta-
tion, areas with blood vessels were removed, and the resulting
maps were fit by smooth surfaces in polar coordinates centered
on the fovea.

Resurts. Smooth surfaces based on 2D P-splines could precisely
represent GCLHIPL thickness data, with errors comparable to
the axial resolution of the SD-OCT instrument. Metrics were
developed for the size, shape, and slope of the edge of the
foveal depression and size and shape of the surrounding
macular ridge. The slope of the foveal edge was negatively
correlated with foveal size (r =—0.60). The size of the macular
ridge was positively correlated with foveal size (r = 0.75), with
a slope near unity (0.90 * 0.18). The centroids of the foveal
edge and macular ridge clustered near the foveal center. The
foveal edge and macular ridge were well fit by ellipses. The
mean GCLHPL thickness formed an elliptical annulus elongat-
ed by approximately 30% in the horizontal direction.

Concrusions. The methods developed here provide precise
characterization of retinal layers for the study of glaucoma,
foveal development, and other applications. (Invest Ophthal-
mol Vis Sci. 2012;53:7412-7420) DOI:10.1167/iovs.12-10515

he retinal ganglion cell (GC), the output neuron of the

retina, sends its axon to the brain via the optic nerve.
Disease, in particular glaucoma, can damage this axon,
resulting in the death and disappearance of the GC. This
structural loss can be especially apparent in the macula, where
a significant fraction of GCs are concentrated to serve foveal
vision and where the ganglion cell layer (GCL) is many cell
bodies thick. Detection of GC loss for glaucoma diagnosis and
management is potentially an important clinical application of
optical coherence tomography (OCT).! Thus, the shape of the
GCL in the normal macula becomes important background
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knowledge for the detection of glaucoma. The shape of the
GCL is determined by the centrifugal displacement of the inner
retina during formation of the fovea,>* so studying the shape
of the GCL also provides insight into foveal development.
Because the boundary between the GCL and the adjacent inner
plexiform layer (IPL) is often indistinct, the thickness of the
GCL and IPL combined (GCLHPL) often serves as a surrogate
for GCL thickness in clinical applications.>~%

The overall shape of the GCL can be inferred qualitatively
from maps of GC density obtained from flat-mounted human
retinas, which show an elliptical mound elongated in the
nasal-temporal direction with a steep-walled central depres-
sion surrounded by a ridge of high GC density that slopes
down gradually toward the periphery.® A similar shape is
evident in retinal thickness maps obtained by OCT in
ViVO.l’l()’ll

Quantitative measurement of retinal features is greatly
facilitated if their geometry is approximated by a smooth
parametric surface; a complex set of data is replaced by a
simpler system from which the measurements are extracted.
For example, the macula has been modeled as a difference of
Gaussians function to define measures of foveal size.'*13 This
method has been extended to use separate fits to multiple
radial profiles,'* but is limited by the global properties of the
particular model, which necessarily link central and peripheral
features, and cannot reveal deviations from the chosen analytic
form. Ideally, analysis of higher-dimensional data requires a
compact mathematical representation with the ease of
evaluation of an analytic function and enough flexibility to
capture the essential structural variation of the features of
interest.

The recently developed technique of two-dimensional
penalized splines (2D P-splines)!>~!7 can be used to describe
a thickness map as a smooth analytic surface while imposing
minimal restrictions on its geometry. The P-spline method
yields an array of coefficients that represent local properties of
the original data and provides precise control of data
smoothing in different dimensions as a means to reduce
measurement noise. Additionally, the method can easily handle
missing data and, when applied to a rectangular data array, the
method is fast and computationally efficient.'® This study used
2D P-splines to quantity GCLHPL thickness maps to determine
the size and shape of the foveal depression, the size and shape
of the surrounding macular ridge, and the relationships
between them in a group of normal subjects.

METHODS

Subjects

Subjects who were participants in another study'® and who were
normal according to its criteria were recruited to have extra OCT scans
of their maculas. Data were from the right eyes of 23 subjects, 11
females and 12 males, with ages that ranged from 18 to 75 years and a
median age of 48 years. Eyes were selected as described elsewhere!® to
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Ficure 1. Layer segmentations (red lines) of a 6-mm-long horizontal B-scan through the fovea. ILM, inner limiting membrane; NFL, outer margin of
the retinal nerve fiber layer; IPL, outer margin of the inner plexiform layer; IS/OS, inner edge of the junction between photoreceptor inner and outer
segments; RPE, retinal pigment epithelium. The yellow circle indicates the foveal center.

cover a wide range (>2:1) of foveal sizes. All subjects provided
informed consent to participate in this study, which was approved by
the Institutional Review Board of the University of Miami.

Macular Imaging and Layer Segmentation

Macular OCT imaging was performed with a commercial retinal
imaging instrument (2D and 3D imaging) (Cirrus HD-OCT; Carl Zeiss
Meditec, Inc., Dublin, CA). The 3D images contained 512 X 128 X 1024
voxels that sampled a nominal 6 X 6 X 2 mm region (horizontal X
vertical X depth) centered on the macula. All images had good signal-to-
noise ratio (signal strength >5) and those that exhibited eye
movements during acquisition were excluded. Because the axial
lengths of the study eyes were rather tightly distributed (23.8 * 1.3
mm), no adjustment for axial length was used. The retinal layers were
outlined by a combination of automatic and manual segmentations (Fig.
1). Automatic algorithms located the inner limiting membrane (ILM),
the junction between the inner and outer segments (IS/OS), and the
retinal pigment epithelium (RPE). The retinal nerve fiber layer (NFL)
and IPL outer boundaries were manually segmented on selected B-
scans using an interactive pen display (Cintiq 12WX; Wacom
Technology Corp., Vancouver, WA). Where the NFL and IPL vanished
in the fovea, their boundaries were made to coincide with the ILM. The
location of the foveal center was selected at the point of maximum
outer segment length (circle on IS/OS in Fig. 1). Retinal blood vessels
were removed from analysis with a binary mask generated from a high-
contrast OCT fundus image of the blood vessel shadows as described
elsewhere.'?

Fitting GCLHIPL Thickness Maps

Because the method has not been applied previously to data from
ophthalmic OCT, the Appendix briefly summarizes the formalism of 2D
P-splines as used here. The interested reader should consult the
references (Eilers and Marx,!5 Eilers et al.,'® and Currie et al.'?) for
more detailed descriptions of the implementation.

Surfaces can be fit to thickness maps in either Cartesian or polar
coordinates. For Cartesian coordinates the surfaces were fit to data in
the original 512 X 128 scan grid. For polar coordinates, data were
converted by nearest-neighbor interpolation to a dense polar grid with
its origin at the foveal center (point of maximum outer segment length;
see Fig. 1) and the discontinuity at +180° oriented horizontally (i.e.,
along the fast B-scan direction) on the temporal side. Barring large tilts
of the subject’s head during acquisition, the discontinuity will
approximately follow the temporal meridian and temporal raphe.?°
The fits in Cartesian coordinates used 25 order-four (cubic) B-splines in
each direction with both directions penalized by A = 0.6. The fits in
polar coordinates used 16 order-five (quartic) B-splines in the radial
direction with A =0.2 and 39 order-four (cubic) B-splines in the angular
direction with A = 3.0. Higher-order B-splines were used radially to
provide more accurate radial derivatives.?’?2> The number of basis
functions was chosen to give a reasonable representation of the data.
Computational time was quite fast (<0.5 seconds) and was not an
important factor in the choice. After the original thickness data were
fit, only the smooth surfaces were used in further analyses.

All data fitting and most analyses were carried out using custom
programs implemented with commercial technical computing soft-
ware (Matlab; The MathWorks, Natick, MA). Matrices of B-splines and

Figure 2. Three representations of GCLHPL thickness for a right eye. The yellow cross in each image marks the point of maximum OS length,
which is assumed to be the foveal center. (A) Original thickness data from a 512 X 128 macular scan covering a 6 X 6 mm retinal area. Black areas
contain no data. (B) A smooth surface fit to the data in Cartesian coordinates. The contour interval is 10 um, with every other contour labeled. (C) A
smooth surface fit to the data in polar coordinates centered on the fovea. Horizontal and vertical polar meridians are labeled at the image edge. The
nasal and temporal edges of the image are marked N and T, respectively. Blue shading indicates areas of data that are not represented.
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Ficure 3. Profiles of GCIHPL thickness along four radial meridians
from the foveal center, two horizontal (A, D) and two vertical (B, C).
The red lines show radial cuts through the smooth polar representa-
tion in Figure 2C and the black dots show the underlying data in Figure
2A. The arrows indicate the steeply rising foveal edge.

their derivatives were then calculated (Matlab function bsplineM.m,
available on the Functional Data Analysis website).?? Linear regressions
were performed using a commercial spreadsheet application program
(Excel; Microsoft Corp., Redmond, WA). Descriptive statistics are
reported as mean * 1SD.

RESULTS

P-Spline Fits to a GCLHIPL Thickness Map

Figure 2 shows an example of data from one eye and the
smooth surfaces that result from fitting with 2D P-splines. The
GCLHPL thickness in Figure 2A is the axial distance between
the manually segmented boundaries labeled NFL and IPL in
Figure 1. To reduce labor, only every other B-scan was
segmented except near the fovea, resulting in the horizontal
striped appearance. The mask formed from blood vessel
shadows superimposed an additional branching pattern that
contained no data. Figure 2B depicts the smooth surface that
results from fitting the data with an array of 625 basis functions
(25 X 25) in Cartesian coordinates. Figure 2C shows the same
data converted by nearest-neighbor interpolation to a dense
polar grid centered on the fovea and fit by an array of 624 basis
functions (16 radial X 39 angular). Radial coordinates extended
from 0.1 to 3.0 mm; angular coordinates extended from —180°
to +180°, with 0° oriented nasally.

The macular geometry in normal subjects is expected to
have a degree of symmetry around the fovea that favors the use
of polar coordinates; structural features can be defined and
measured along the radial dimension alone. The fits to the
actual data in Cartesian coordinates then can serve to validate
the fits to interpolated data in polar coordinates. The Cartesian
and polar representations of Figures 2B, 2C were very close
over their shared area (mean difference =0.014 = 1.2 um). For
the 23 eyes the average difference between Cartesian and polar
representations was 0.03 um, with an average SD of 1.4 pm.
Polar coordinates were used for all analyses presented here.

The relationship between the fitted P-spline surface and the
data can be appreciated in Figure 3, which shows four profiles
made along radial meridians extending from the foveal center
in the eye of Figure 2. The data (black dots) were noisy, but the
overall variation in GCLHPL thickness is captured well by the
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FiGure 4. Measurement of the rising edge of the fovea and the
macular ridge on one meridian. (A) The derivative of the smooth
profile in Figure 3D with the region defining the foveal edge marked by
a red bar. (B) The profile from Figure 3D with the foveal edge marked
in red. The slope of the foveal edge was defined by a linear fit to points
on the edge (dashed line). The radial location of the 50-um contour is
marked with a dotted line and arrow. The parafoveal (macular) ridge is
indicated by the horizontal black bar and its radial location by the
black dot.

fitted surface (red lines). For this eye, the standard error (SE) of
the fit in Cartesian coordinates was 5.1 pm and in polar
coordinates was 5.2 um. For the 23 eyes studied, the SE of the
fit in polar coordinates was 5.25 * 0.38 pum. Thus, the scatter
of the data around the smooth surface had a magnitude similar
to the axial resolution of the OCT instrument. It should be
noted that, with the penalties used, spline fitting did not smear
the steeply rising edge of the fovea (Fig. 3, arrows).

As expected from the known anatomy of the GCL,° the
GCLAHIPL thickness in Figure 2 shows a deep fovea surrounded
by a wide parafoveal (macular) ridge. As seen in the profiles of
Figure 3, GCLHPL thickness started near zero at the foveal
center, rose steeply along the foveal edge (arrows) to the peak
of the macular ridge, and then slowly fell. The rise along the
vertical meridians (£90°; Figs. 3B, 3C) appeared steeper than
the rise along the horizontal meridians (0°, 180°; Figs. 3A, 3D).
The macular ridge was further from the center for the
horizontal meridians, reflecting the oval shape of the contour
lines seen in Figures 2B, 2C.

The slope and location of the foveal edge and the location of
the macular ridge were defined for the local geometry of each
radial profile and then global properties of these features were
derived using a large number of equally spaced meridians.

Foveal Edge

The slope of the rising foveal edge was determined from the
region on the radial profiles where GCLHPL thickness changed
most rapidly. To find this region, radial derivatives of the
smooth surface were evaluated from derivatives of the radial
splines.??2 To reduce the variation that might arise from using
only a single point, the foveal edge was defined as all points
with derivatives >75% of the maximum (marked by the red bar
in Fig. 4A and the red segment in Fig. 4B), subject to the
constraints that the points were >0.2 mm from the foveal
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FiGure 5. Measures of the foveal edge as a function of meridian for 23
normal right eyes. The solid lines are population means; the dotted
lines show *1 SD. (A) Slope. (B) Thickness at the midpoint. The
dashed line is at 50 pum. (C) Radius of the central 50-um contour line.

center and that the maximum derivative was at a GCLHIPL
thickness >30 pum. The slope of the foveal edge was
determined by linear regression (Fig. 4B, dashed line).

The slope and location of the foveal edge varied with
meridian. Figure 5 shows the mean * SD of three measures of
the foveal edge as a function of meridian. The average slope
was shallower horizontally (0°, =180°) than elsewhere (Fig.
5A). The midpoint of the foveal edge might be used to
characterize its location; the average GCLHPL thickness at the
midpoint (Fig. 5B) stayed within a fairly small interval (=5 pm)
and was almost constant except near the temporal meridian
(£180°. This suggested that a simple planar curve (in
particular a thickness contour line) also might provide a useful
definition of the location. The contour lines surrounding the
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Ficure 6. The slope of the foveal edge was negatively correlated with
foveal size. Each point is one eye. The dashed line was fit by linear
regression.
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Figure 7. Central 4 X 4 mm of the GCLHPL thickness surface in
Figure 2C with foveal and macular features superimposed. Solid red
curve: location of the foveal edge. Pale blue band: the region that
exceeds 90% of the peak for each radial profile. Dotted red curve:
location of the macular ridge. Yellow cross: foveal center. Yellow circle:
centroid of the foveal edge. Yellow dot: centroid of the macular ridge.

foveal center (as in Figs. 2B, 2C) were approximately uniformly
spaced, with the central 50-um contour falling somewhat
above the average thickness of the midpoint of the foveal edge
(Fig. 5B, dashed line), so its radius was chosen to locate the
foveal edge on each profile (Fig. 4B, dotted line with arrow).
Figure 5C shows that the average radius of the foveal edge was
largest temporally and smallest within superior and inferior
sectors. Overall foveal size for an eye was defined as the mean
radius of the 50-um contour.

Across subjects there was a negative correlation between
the mean slope of the foveal edge and the foveal size (Fig. 6),
that is, the edges of larger foveas tended to have shallower
slopes (r =—0.60, P = 0.002).

Macular Ridge

The wide macular ridge that surrounds the foveal depression
was defined for each radial profile as the set of points that
exceeded 90% of the profile peak (Fig. 4B). The macular ridge
for the example eye is shown in Figure 7 as a translucent blue
band. The location of the macular ridge (Fig. 4B, black dot) was
defined as the thickness-weighted average of the radial
positions of the points on the ridge and is shown in Figure 7
as the dotted red line, with one dot for each of 72 meridians
spaced 5° apart. The location of the foveal edge, corresponding
to the 50-um contour line, is also shown (solid red line).

Figure 7 also shows the centroids of the foveal edge and
macular ridge, which both lie close to the foveal center. The
centroids of all 23 eyes clustered near the foveal center, as seen
plotted on the central 100-um square in Figure 8. The average
distances between the centroids and the foveal center were 17
* 7 um for the foveal edge and 19 = 12 pum for the macular
ridge. The average distance between the two centroids was 20
= 9 um.

The average radius across all meridians of the foveal edge
and macular ridge, as defined above, provided convenient
measures for the sizes of the fovea and macula, which for the
23 eyes were 0.44 = 0.08 and 1.11 = 0.10 mm, respectively.
These measures were used to relate the two structures. As
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Ficure 8. The centroids of the foveal edge (blue) and macular ridge
(red) relative to the foveal center (black cross).

shown in Figure 9, the sizes of the foveal edge and macular
ridge were correlated (r = 0.75, P < 10~%). The regression line
in Figure 9 has a slope near unity (0.90 = 0.18).

The oblong shapes of the fovea and macula could be well
described by ellipses. The locations of the foveal edge and
macular ridge were determined on 72 radial profiles and
ellipses were fit to the resulting curves.?* Seven examples
selected to cover the range of macular and foveal sizes are
shown in Figures 10A-G. The corresponding points are labeled
in Figure 9. The SE of the fit for the foveal edge ellipses was
16.3 £ 6.4 um, or approximately 3.7% of the average radius of
the foveal edge. The SE of the fit for the macular ridge ellipses
was 40 = 8.7 um, or approximately 3.6% of the average radius
of the macular ridge.

The properties of the foveal and macular ellipses for all 23
eyes are depicted in Figure 10H as lines that show the
elongation factor and tilt of each ellipse. The elongation factor
of an ellipse is given by E = (a/b — 1) X 100 %, where a and b
are the lengths of the major and minor axes of the ellipse,
respectively, and is the amount by which a circle must be
stretched in the direction of the major axis to produce the
ellipse. The tilt of an ellipse is the direction of its major axis.
On average the macular ridge is more elliptically elongated (E,
=30.8 = 9.3%) than the foveal edge (E;=17.7 * 9.3%).

For most foveas and all maculas studied, the ellipse was
elongated approximately horizontally (Fig. 10H). The obvious
foveal exception is shown in Figure 10G; although the macular
ellipse of this eye was approximately horizontal, the foveal
ellipse was nearly vertical, as indicated by the arrow in Figure
10H. The other foveal edge with a nearly vertical tilt angle had
a very small elongation factor (4.3%), so that it differed only
slightly from a circle (for which the tilt angle is undefined).

Average GCL-HPL Thickness Map

The overall similarities of the macular GCLHPL thickness
among eyes was examined by forming a map of their mean.
This was easily produced from the coefficients of the fitted
surfaces in polar coordinates, because the maps for individual
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Ficure 9. The sizes of the foveal edge and macular ridge were
positively correlated. Each symbol represents one eye and plots the
averages over all meridians of the foveal and macular radii. The open
circles labeled a-g correspond to the eyes in (A-G) of Figure 10. The X
denotes the eye shown in Figures 2 and 7. The dasbed line was fit by
linear regression.

eyes were already centered on the fovea and the coefficients
for the mean of a set of surfaces is simply the means of their
coefficients.?> A map of the mean GCLHPL thickness of the 23
right eyes studied is shown in Figure 11A.

The mean thickness map had an approximately elliptical
symmetry centered on the fovea, as shown by the contour
lines in Figure 11A. As in individual eyes, with increasing radial
distance from the fovea, the mean GCLHPL thickness
increased to a peak and then slowly decreased. The peak
was approximately 10% thinner temporally than elsewhere,
but otherwise the mean thickness map was remarkable for its
uniformity.

The locations of the foveal edge and macular ridge of the
mean thickness map were both smooth curves, as seen in the
expanded image of Figure 11B. The centroids of these curves
fell very close to the common foveal center of the 23 eyes
(Table). The shapes of the locations of the foveal edge and
macular ridge in the mean thickness map were better fit by
ellipses than for individual eyes, with SE of the fits
approximately one-half the average individual values (Table).
Both ellipses were nearly horizontal and, as for individual eyes,
the macular ridge had approximately twice the elongation as
that of the foveal edge. The elongation of the macular ridge
found here with OCT was almost the same as that of the peak
of the macular GC density found histologically (29% vs. 28%).°

DISCUSSION

The shape of the GCLHPL of the normal human macula is
exemplified by the mean map in Figure 11; the GCLHPL forms
an elliptical mound in which a deep fovea with a steep edge is
surrounded by a wide macular ridge that slopes gradually down
toward the periphery. Qualitatively, this topography was
expected from maps of GC density? and OCT layer thick-
ness1%1! and was exhibited by all 23 maculas studied. To
characterize quantitatively the shape of the GCLHPL, smooth
surfaces generated by 2D P-splines in polar coordinates were
used to define and measure two features: the foveal edge and
the macular ridge. The locations of both features could be well
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Ficure 10. Ellipses fit to the shapes of the foveal edge and macular ridge. In (A-G) the scale is given by the 1 mm calibration bar in (G) and Eg, E,,
are the elongation factors for the foveal and macular ellipses, respectively. The small dots are values calculated from the GCLHPL surfaces and the
red lines are fitted ellipses. For clarity only half of the calculated points are shown for the foveal edge. The foveal center is denoted by a cross. (A)
Largest macula; (B) medium fovea, large macula; (C) medium fovea, medium macula; (D) medium fovea, small macula; (E) smallest macula; (F)
smallest fovea; (G) largest fovea, which also had an unusual vertical orientation. (H) Elongation factors and tilt direction for all 23 foveal edges and
macular ridges. For each ellipse a /ine extends in both directions from the origin in the direction of tilt. The length of this line is equal to twice the
elongation factor. The arrow indicates the nearly vertically oriented ellipse fitted to the foveal edge of the eye in (G).

fit by ellipses, which captured their tilt and elongation (Fig.
10H). The tilts of most of the foveal and all of the macular
ellipses spread tightly around the horizontal meridian. The
relative contributions to this spread of head position, ocular
torsion, and anatomical variation are unknown and require
further study. The greater elongation of the macular ridge was
consistent with the shallower slope of the foveal edge along
the horizontal meridian (Fig. 5A). The average radii of the
foveal edge and macular ridge provided measures of their size

that would be suitable for studies of demographic varia-
tion.13-25.26

Position (mm)
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-3

Position (mm)

-3 -2 -1 0 1 2 3

These results have already shown potential clinical appli-
cation; the overall symmetry in the shape of the GCLHIPL of
the normal macula enables a new method for reducing
variance for glaucoma diagnosis'® and ganglion cell loss in
glaucoma can be assessed with a thickness deviation map
formed by subtracting the normal macular shape from a shifted
version of a patient’s map.!®

Essentially no correlation with axial length was found for
the sizes of the foveal edge (» = 0.009) and macular ridge (r =
0.012), but the narrow distribution of axial lengths represented
by the sample in this study precludes drawing any conclusions

-1 0
Position (mm)

Ficure 11. The mean GCLHPL thickness of 23 normal right eyes. (A) Mean map created by averaging the smooth fits in polar coordinates. The
contour interval is 10 um, with every other contour labeled. The dashed square outlines the enlarged area in (B). (B) The central 4 X 4 mm of the
mean map showing the locations of the foveal edge, macular ridge, and their centroids as in Figure 7. Black lines: best-fitting ellipses.
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Tasie. Foveal and Macular Parameters for Mean GCIAIPL Thickness
Parameter Foveal Edge Macular Ridge

Average radius, mm 0.435 1.11
Centroid [x, y], pm [-8.8, +3.5] [-8.8, —4.0]
Fitted ellipse

SE of elliptical fit, pm 8.4 22

Major semiaxis, mm 0.468 1.27

Minor semiaxis, mm 0.407 0.98

Tilt from nasal meridian —2.5° +3.7°

Elliptical elongation 14.9% 29.0%

from this result. Future studies should include eyes selected to
represent a wide range of axial lengths.?”

Although this study was not designed to address foveal
development, it does provide some insight and suggests that
the methods used may be useful to others. Theoretical
modeling and anatomical data support the hypothesis that
the forces of intraocular pressure and ocular growth act on the
structural inhomogeneity of the foveal avascular zone (FAZ), to
produce centrifugal displacement of the inner retina and
centripetal displacement of the cones.>"%1425 The GCLHPL
represents a major fraction of the inner retina. The finding (Fig.
8) that the centroids of the foveal edge and macular ridge fall so
close to one another and to the peak of foveal OS length
suggests that under this hypothesis the forces involved in
foveal development are rather accurately centered on a single
point. In addition, the good correlation, with nearly unity
slope, between the sizes of the foveal edge and macular ridge
(Fig. 9) supports the idea that they move together during
development. There are, however, individual differences in the
relation, as seen in Figure 10. Including the GCL, IPL, and other
retinal layers in studies of the relationship between the FAZ
and foveal pit morphology'# may elucidate these differences.

To summarize, smooth surfaces based on 2D P-splines could
precisely represent GCLHPL thickness data, with errors
comparable to the axial resolution of the SD-OCT instrument.
Using this approach, metrics were developed for the size,
shape, and slope of the edge of the foveal depression and size
and shape of the surrounding macular ridge. The slope of the
foveal edge was negatively correlated with foveal size. The size
of the macular ridge was positively correlated with foveal size
with a slope near unity. The centroids of the foveal edge and
macular ridge clustered very close to the foveal center. The
foveal edge and macular ridge were well fit by ellipses. The
mean GCLHPL thickness formed an elliptical annulus elongat-
ed by approximately 30% in the horizontal direction.
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APPENDIX: METHOD OF 2D P-SPLINES

A smooth surface s(x, 3) can be formed by the summation of a
set of appropriately chosen, localized 2D basis functions, that
is,

K L
:ZZﬁByxy (1)
i=1 j=1

where By(x, ») are the basis functions and /3,-]- are coefficients
that determine the shape of the surface. Each localized basis
function is different from zero only in a relatively small portion
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of the domain where it is defined, but taken together the f3;
cover the entire area. Given a set of basis functions B,; the task
of fitting such a surface to an array of data can be accomplished
by determining the f; that minimize the error between the
data and the surface. The basis functions used for 2D P-splines
are the tensor products of B-splines (Fig. A1), smooth, one-
dimensional (1D) curves formed from piecewise continuous
segments of polynomials.?! The B-splines used have uniformly
spaced knots that span the range of the data grid. Forming each
2D basis function from two 1D functions greatly simplifies the
fitting procedure.

When working with data on a rectangular grid, the problem
can be expressed in terms of matrices. Let M be an m X n
matrix of data. The B-spline number and order (polynomial
degree 4+ 1) can be chosen independently along the two
dimensions of the m X »n grid. Each B-spline is evaluated at each
point of the grid, so that the values for the B-splines in each
direction form matrices, with one column for each spline.
Following the notation of Eilers et al.,'¢ let B denote the m X K
matrix of B-splines down the rows and B the n X L matrix
across the columns of M, where K and L are the corresponding
numbers of B-splines. The aim is then to fit M with a surface
written as

s= BpB (2)

where B is a K X L matrix of basis function coefficients and B’
denotes the transpose of B. It should be noted that B is
typically much smaller than M. Using equation 2, Eilers et al.'®
recently showed that, if a roughness penalty (from which the
name P-spline originates) is used to control smoothing, the
best fit is achieved when the matrix of coefficients B satisfies
the penalized regression equation

(F + P)vec(B) = vec (ﬁ’(W OM) B) . 3)

The vec(-) function in equation 3 “flattens” a matrix into a
column vector by stacking its columns, ® is the element by
element product of two matrices and W is an m2 X n matrix of
weights. The KL X KL matrix F is a function of the spline
matrices B and B and the weights W. The KL X KL penalty
matrix P is described in the following text. This equation can
be solved for vec(p), a KL X 1 column vector, which is then
rearranged to yield the K X L coefficient matrix f.

The m X n weight matrix W allows one to use this approach
even when some of the data are missing; the elements of W
that correspond to missing data are set to zero and the rest are
set to one. The only constraint on W is that the remaining data
must be distributed over the grid in a way that provides
adequate “support” for each estimated coefficient. It should be
noted that the resulting fit is defined over the full grid and
automatically extends the data over the regions where they are
missing.

The spatial variation of the data can be followed more
accurately by a large number of small basis functions, but these
may overfit the data and increase sensitivity to noise. Fewer,
larger basis functions can provide a smoother fit, but may not
accurately portray small details of a surface. This dilemma has
been resolved by using smaller basis functions and then
controlling the smoothness of a curve by penalizing its
roughness.?! With P-splines the roughness penalty is applied
not to the curve itself, but to the coefficients that define the
curve.!> The penalty matrix P, an operator that calculates
differences of the coefficients of the fit,'!” is given by P= I
® DdDd +/D; D,, ® I, where, respectlvely, Ix and I, are
identity matrices of sizes K and L, Dd and D, are matrices
formed by taking the d- and d-th order differences along the
rows of Ix and I;, 4 and / are penalty weights that can vary
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B-splines

AN

( =

> X

mxn-data array

n, L, B, D, X\

Ficure Al. Spatial relationship of the quantities used to fit a smooth
surface to a data array. The red contours show one 2D basis function
formed by the tensor product of two B-splines (red curves) along the
two dimensions of the data array. The symbols along the rows and
columns are used in the text. m, n: dimensions of the data array; K, L:
dimensions of the coefficient array; ]§J B: B-spline matrices; 13;, D,
difference operators of order dV, d; L, L penalty weights. In this
illustration K =11 and L = 13.

from O to o, and ® denotes the Kronecker (tensor) product of
two matrices. Note that the difference orders (ai, d) and
penalty weights (4, 1) can be different for the two directions.
Larger penalty weights correspond to more smoothing.

An important advantage of 2D P-splines is the fact that all
the information about the fit is contained in the matrix of
coefficients and the specifications of the B-splines, in a manner
independent from the grid on which the original data were
defined. One can use equation 1 or its matrix equivalent
equation 2 to evaluate the fitted surface on another set of
points, for instance a different grid or a set of points describing
a line or curve. The points are specified by two vectors x and
y; for points on a grid x and y give the coordinates along the
two edges of the grid; for points not on a grid x and y together
form a list of coordinate pairs. The vectors x and y are used to
calculate the B-spline matrices B and B, respectively, from the
B-spline specifications. For points on a grid the surface is
evaluated directly from equation 2 as S(x, y) = BpB’. For a list
of points the surface is calculated from S(x, 3) = C vec(p),
where C=B ® € x) ® (e ; ® B) is a matrix containing only the
required tensor products of the B-splines and ex and e; are
column vectors of ones of lengths K and L, respectively.
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