
Analyzing the Strength of Undergraduate Misconceptions
About Software Engineering

Leigh Ann Sudol
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

leighann@cmu.edu

Ciera Jaspan
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA

ciera@cmu.edu

ABSTRACT
While many computer science students plan to pursue ca-
reers as software engineers, research shows that most tradi-
tional undergraduate CS programs fail to prepare students
for the realities of programming in industry. Many mis-
conceptions that are interfering with the transition to in-
dustry are belief-oriented, not skill-oriented, in nature, so
traditional misconception assessments will not yield a deep
understanding of them.

In this paper we present a novel methodology that shows
interactions among the misconceptions based on a forced
choice paradigm and reveals the relative strength of the mis-
conceptions. By analyzing students’ repeated responses and
response times, we construct a model of participants’ mis-
conceptions. We used this methodology to assess CS under-
graduates at Carnegie Mellon University and compared their
results to those from industry practitioners at several highly
regarded companies. The results show that the students
have misconceptions about process and teamwork. Surpris-
ingly, we found that several misconceptions are correlated
with elective courses that we expected to weaken miscon-
ceptions about software engineering but instead appeared
to strengthen them.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer and Infor-
mation Sciences Education; D.2 [Software]: Software En-
gineering

General Terms
Human Factors

Keywords
Misconceptions, Software Engineering Education

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICER’10, August 8–11, 2010, Aarhus, Denmark.
Copyright 2010 ACM 978-1-4503-0257-9/10/08 ...$10.00.

1. INTRODUCTION
While many computer science students enter software en-

gineering jobs after graduation, prior research has shown
that students are not prepared for industry positions. They
lack the “soft skills” necessary for success in a team envi-
ronment [1], they do not have the knowledge and skills for
design and maintenance tasks [3], and new developers are
often surprised to find that these skills are essential for their
professional career [17]. Educators should be addressing this
problem particularly because corporations are spending time
and resources to remediate new developers with these skills
[2, 3].

In this work, we show that students hold many misconcep-
tions about industry practices and the expected responsibil-
ities of software engineers. For example, based on a tradi-
tional CS education, a student may believe that software en-
gineers spend most of their time developing new algorithms
and data structures. A student might also believe, based on
unproductive experiences with team projects in class, that
teams are an ineffective way to approach a programming
task. Such beliefs are dangerous to students because, in
addition to being ill-prepared for industry, they may not ac-
tively seek out the skills and knowledge needed to succeed
in a professional career.

In order to address such problematic misconceptions, ed-
ucators must first be able to discover what misconceptions
students hold and how strongly they hold them. This work
contributes to this goal with:

• a forced-choice survey tool that facilitates educators’
understanding of student misconceptions (Section 3)
and confirms the expected misconceptions as compared
to industry beliefs (Section 3.4),

• a macro-level analysis to correlate misconceptions to
population demographics and to other misconceptions
(Section 4.1), and

• a micro-level analysis to understand the strength of
a student’s (or sub-population’s) misconceptions (Sec-
tion 4.3).

We conducted our survey with 115 CS undergraduates at
Carnegie Mellon University, and we validated the miscon-
ceptions with 45 industry practitioners taking the same sur-
vey. The analysis showed several interesting correlations,
both positive and negative, between software engineering
misconceptions and the age of the participant, whether the
participant had an internship, and which CS courses the
participant took.

31

2. MISCONCEPTIONS
The adage that students “know it or they don’t” sugges-

tions that either students “have” a particular piece of knowl-
edge, or they have no conception of the topic. Research
in the education sciences suggests that there is perhaps a
third state, misconception [11, 9, 14]. Studies in a variety
of domains such as general science [4, 18], mathematics, and
physics [7] have shown that students often have complex,
if incorrect, models of the world that they develop without
formalized instruction.

2.1 Conceptual Change Theory
Conceptual change theories investigate the way in which

naive knowledge is transformed into correct or more sophisti-
cated knowledge in students [9]. Understanding misconcep-
tions of novices is important if we want to promote efficient
conceptual change through our preparatory programs [4, 6,
12, 14, 15]. Research has shown that in many cases, when
presented with correct information, novices will maintain
both the correct knowledge, in addition to the previously
held misconceptions [5, 6, 10, 18]. The misconception must
be activated as a part of the learning process in order to
promote viable conceptual change [4, 5, 6, 14].

The classic example of students showing poor conceptual
change after instruction is the motivation behind the physics
force concept inventory [9]. Even though students were able
to apply formulas and give correct definitions for concepts on
exams, they often were unable to apply the same knowledge
in similar situations. Only by understanding the misconcep-
tions that students held, and addressing them explicitly are
professors able to promote conceptual change of students’
mental model of force.

2.2 Misconceptions in Software Engineering
Work in computer science education has shown us that the

current model of software engineering education is not dis-
pelling the misconceptions that students hold [1, 2, 13, 17].
These misconceptions have such a negative impact on the
performance of software engineers that major corporations
have had to implement their own in-house training programs
in order to re-educate their employees. In 2002 Microsoft
halted all operations on the Windows Operating System to
train all 8,000 of their developers in software processes [3].
This type of intervention is not only time consuming but
costly. Businesses are also calling for students to have a
skill set that includes communication and process skills as
well as traditional theory [17].

Although there is a significant body of research in soft-
ware engineering education, few papers have taken the ap-
proach of understanding the misconceptions that students
have prior to instruction. In particular, there is little work
that describes the misconceptions undergraduate students
have at varying points in their educational progression, and
what experiences correlate with those misconceptions. In
this work we look at undergraduates in varying years of their
degree, as well as what courses they have completed, to see
if any significant correlations occur.

We believed that we would see that students who have
taken courses that involve a large software project would
show less misconceptions than students who did not. The
act of working in groups in project-based courses should help
expose students to the knowledge needed to dispel any mis-
conceptions they have. Also, courses such as software en-

gineering explicitly teach the importance of these skills, so
we would expect to see little to no misconceptions in the
students who have completed these courses. Finally, we ex-
pected few misconceptions from students who had completed
internships, since these students may have already resolved
any misconceptions during the internship.

3. METHODOLOGY
In order to confirm our hypotheses about student mis-

conceptions in software engineering, we constructed a list
of misconceptions with the help of the faculty and gradu-
ate students in our institute, as shown in Table 1. We then
used these misconceptions in a survey to assess how strongly
they are held by students. In this section, we describe the
survey methodology, our study population, how we selected
the misconceptions for the survey, and our validation of the
misconception statements on industry practitioners.

3.1 Instrumentation
Declarative knowledge represents a person’s model of the

world [6]. Although the presentation of refutational infor-
mation is desired to promote a change in beliefs or under-
standing, it has been shown that just presenting the new
information will not cause a change in belief [8]. The impli-
cations of this are that we need to understand what students’
misconceptions are, and how strongly they hold them.

Previous measures of misconceptions focused on either the
self report of the participants [13, 18] or on their ability to
problem solve in an assessment situation [4, 10]. While these
assessments could tell us what misconceptions students had,
it would be difficult to evaluate the comparative strength of
those misconceptions.

To measure the strength of participants’ misconceptions,
we used a forced-choice survey. This survey presents partic-
ipants with a random misconception from Table 1 alongside
the valid inverse of a different misconception. The survey
then asks participants to select the statement which is“more
true”, and it records their selection and the response time.
The survey shows each misconception three times alongside
a different valid inverse statement, thus participants evalu-
ate each misconception six times (three times as a miscon-
ception and three times as a valid inverse). Figure 1 shows
a screen shot of one survey question. The survey randomly
swaps whether the misconception is on the left or the right,
however, all participants see the same pairs in the same or-
der.

Pairing elements in this way and timing the responses al-
lows us to analyze how strongly students held their beliefs
and rank the misconceptions based upon the participant’s
selections. Responses with a short decision time indicated
that the participant was able to make a quick choice be-
tween the two options, clearly confident in his answer. This
indicates to us either a strongly held misconception or a con-
fidence in the inverse. Longer decision times indicate that
the participant needed to consider the two options before
making a selection. This indicates the participant did not
have a strong feeling about either statement, or that he felt
strongly about both statements and took time to decide.

3.2 Subjects
The student participants were recruited through an email

sent by the Associate Dean of the school to all CS undergrad-
uates. As an incentive for the students to take the survey,

32

Misconception Inverse
1 A defined software process is only important when you

are working with people who are less skilled.
A defined software process is important for any team of
programmers, regardless of skill.

2 A good software developer will often choose to work
alone on a project in order to get it done faster.

A good software developer will often choose to work in
a team in order to finish a project faster.

3 When you have a team of good programmers who work
well together, a software process will usually get in the
way.

When you have a team of good programmers who work
well together, a software process can increase their ability
to produce quality software.

4 My code should take advantage of the implementation
details in other code.

My code should rely only on the specification of other
code.

5 It is expected that clients will describe their requirements
accurately before a team begins programming.

It is expected that clients will reevaluate and change re-
quirements while a team is programming.

6 As a software developer, most of my time will be spent
designing and implementing new algorithms and data
structures.

As a software developer, most of my time will be spent
determining how my code should interact with other peo-
ple’s code.

7 Most of the time when I start a new programming task
in industry, I will be working on a new project.

Most of the time when I start a new programming task
in industry, I will be modifying existing code.

8 Developers do not need to know the high-level context
of the system; this allows them to concentrate on their
task.

Developers need to know the high-level context of the
system in addition to the details for their task.

9 A software project is successful only if it ships with very
few known defects.

A successful software project can be shipped with many
known defects.

10 Software engineering is about producing lots of docu-
mentation on the requirements and implementation of
the project.

Software engineering is about how to produce software
in an efficient and cost-effective manner.

11 Process, requirements, and team-management are im-
portant to business majors, not software developers.

Process, requirements, and team-management are just
as important to software developers as programming is.

12 The majority of the cost of a successful software project
will be the initial implementation effort.

The majority of the cost of a successful software project
will occur after its initial deployment.

Table 1: List of Misconceptions and Inverse Statements

we held a raffle for two iPod shuffles for the participants.
We had a 22% response rate; 115 undergraduate computer
science students participated in the survey. The survey was
taken by 34 first years, 36 sophomores, 31 juniors, 29 seniors,
and 1 student who selected “Not applicable” in response to
that question.

3.3 Construction of Misconception list
We studied 12 misconceptions in this work, as seen in

Table 1. We selected these misconceptions from a longer list
that was generated by the graduate students and faculty in
the Institute for Software Research at CMU. The original list
contained misconceptions that the people from our institute
had either seen evidence of in students or had suspected
existed in students. In some cases, the misconceptions were
ones which people from our institute had held themselves
while they were studying.

We shortened the original list by selecting misconceptions
that were the least controversial and the most obvious mis-
conceptions about industry. We aimed to select misconcep-
tions that were the least likely to have exceptional cases; it
should not be easy to find cases where the misconception is
actually true in industry. We also chose to select miscon-
ceptions from a wide range of topics that all undergraduates
would be familiar with.

This process has the risk that people from our institute
may have their own misconceptions and pollute the list with
truths, rather than misconceptions. To mitigate this risk, we
evaluated the 12 misconceptions with industry professionals,
as described in Section 3.4. Our evaluation shows that the

industry professionals agree that the statements in Table 1
are indeed misconceptions.

3.4 Validation on Industry
To validate that the misconceptions used in the survey

are indeed beliefs that are not held in industry, we also ran
the survey on 45 industry professionals. The professionals
were contacted through the authors’ professional networks,
so there does exist some bias towards the authors’ beliefs.
In particular, 78% of the respondents attended one of the
same universities as the authors. However, the profession-
als are from several well known software companies; the top
companies represented are Google and Microsoft with eight
respondents each. Other companies with at least 2 respon-
dents are listed in Table 2. They have an average of 7 years of
experience, with a minimum of 1 year and a maximum of 21
years. 71% are currently software developers; Table 3 lists
other positions (percentages do not add to 100% because
the participants could select multiple positions). Given the
years of experience and the type of companies represented,
we believe that while this is not a random sampling of indus-
try professionals, it is a fair sampling of successful industry
professionals.

The industry professionals strongly agreed with the valid
inverse statements listings in Table 1. On average, they dis-
agreed with 1.84 of the 36 pairs that they saw. There were
also three outliers in the group which disagreed with our
“correct” response; two disagreed 8 times and one disagreed
9 times. Upon removing these outliers, the industry practi-
tioners disagreed on an average of 1.38 of the 36 pairs. No

33

Figure 1: Screen Capture of Survey

single misconception stuck out as an invalid misconception;
the disagreements were distributed across all statements.
This low number and good distribution strongly validates
that the misconception statements are truly misconceptions.

Amazon Jambool
Expedia Microsoft
Google Rosetta Stone
Green Hills Software SRI International

Table 2: Industry professional affiliations with two
or more respondents

Position % Respondents
Developer 71%
Tester 9%
Developer in Test 13%
Project/Program Manager 18%
Manager(of people) 16%
Tech Lead/Developer Lead 38%
Software Architect 13%
Reliability/Operations Engineer 7%
Other 11%

Table 3: Current position of industry respondents
(multiple selections allowed)

4. STUDENT RESULTS
There are two particular layers of information that can be

useful to educators and researchers when dealing with mis-
conceptions. At the program, or macro level, it needs to be
understood what general misconceptions emerge and what
parts of the degree program either eliminate or encourage
those misconceptions. At the student, or micro level, it is
important to understand what individual misconceptions are
held and how strong they are. This section presents analysis
of our data at both the macro and micro levels.

4.1 Results
The responses to the assessment indicate that students

do hold ideas about software engineering that are different

from those held by professionals. Figure 2 compares these
populations by the total number of responses that signal a
misconception. While the industry population had an mean
of 2.02 “incorrect” responses out of 36, students had signif-
icantly more misconceptions with an mean of 6.8 out of 36
(t = -5.503, df = 154, p<.0001).

Figure 2: Professional vs. Undergrad Misconception
Counts

We correlated the propensity of a student to hold a mis-
conception with several demographics. The following demo-
graphics, shown in the first column of Table 4, showed in-
teresting correlations to the number of incorrect responses.

Year. Students were asked to select their year in school,
from the options of First Year, Sophomore, Junior, or Senior.
We had an even distribution of students across years.

Age. Students were asked to provide their age.
Intern. Students were asked how many internships they

had. For purposes of correlation model, we only considered
whether or not the student had an internship.

Male. Students were asked their gender. For purposes of
the correlation model, we considered male as a positive bit.
Our proportion of male and female respondents is represen-
tative of the population.

Courses. Students were asked whether they had taken

34

any courses from a list of possible upper-division courses.
Software Engineering, Operating Systems, and Compilers
are all lecture-based introductions to their respective topics.
Each of these courses also has a project component, and
all three courses are optional but count towards a require-
ment. Operating Systems Practical, Software Engineering
Practical, and Web Applications are optional, project-based
electives.

Variable N Direction p-value
Year N/A - < 0.001
Age N/A - < 0.001
Intern 67 - < 0.001
Male 96 - 0.09
Software Engineering 5 - < 0.001
Operating Systems 30 NS 0.28
Compilers 4 NS 0.32
Operating Systems Prac. 2 - 0.01
Software Engineering Prac. 2 - 0.001
Web Applications 13 + 0.004

Table 4: Correlation of demographics with miscon-
ception counts. N describes the number of students
in the sub-group. Direction indicates (+) for corre-
lation with a higher number of misconceptions, (-)
for correlation with a fewer number of misconcep-
tions, and (NS) when the correlation is not signifi-
cant. The final column displays the p-value for the
correlation.

As anticipated, students hold fewer misconceptions as their
year and age increases. However, there was a slight up tick
in the number of misconceptions held by seniors compared to
their junior counterparts, as shown in Figure 2. The number
of internships also displays this trend; misconceptions gener-
ally go down with number of internships, with the exception
of students who reported 4 or more internships. This trend
is clearly correlated, as only senior students could have so
many internships. The cause of this trend is not clear; there
have been no changes to the curriculum in many years. This
trend will be discussed further in Section 5.

The correlations with courses held a few surprises. As ex-
pected, students that have taken the software engineering
courses held fewer misconceptions, though very few of those
students participated in the survey. We also found that com-
pilers and operating systems had no significant correlation.
However, we were surprised to find that web applications
had a significantly positive correlation with the number of
misconceptions. This course is heavily project intensive, the
faculty have worked in industry, and students are required
to work in group projects. As Web Applications is normally
taken by juniors or seniors, this may again be correlating
with the age of the participant, or it could be due to self-
selection into the course. Possible hypotheses and future
work to investigate this, and related trends, are discussed in
Section 5.

4.2 Particular Misconceptions
In addition to analyzing individual students, we also an-

alyzed individual misconceptions. We analyzed both the
strength to which students held the misconception and the
demographic variables that correlated with the strength of
misconceptions.

For each misconception, we calculated a student’s strength
of belief in that misconception on a scale from 0-6. This
number was based on the number of incorrect responses
when seeing either the misconception or the valid inverse.
For example, if a student never selected the misconception
and always selected the valid inverse, the student has a
strength of 0 for that misconception. However, if a stu-
dent always selects the misconception and never selects the
valid inverse, the student has a strength of 6. This allows
us to distinguish between students who strongly hold a mis-
conception, and those who chose it only once, which could
indicate that the deciding factor in the selection was the
opposing statement.

Figure 3 displays the percentage of students who held the
misconception with varying strengths. For readability, we
have divided students into four groups based upon miscon-
ception strength. Two misconceptions, 4 and 9, particu-
larly stand out from the others. Misconception 9 makes
sense based on most students experiences; they are likely
not used to thinking about releasing software with known
defects as most of their class assignments strive for perfec-
tion. However misconception 4 is very concerning; students
are supposed to be familiar with the benefits of abstraction
and interfaces to code, rather than using implementations
directly.

Topic Correlating Features

2
Year in School (-**)

Choose to work alone Operating Systems (+.)
Compilers (+.)

4

Year in School (-*)
Internship (-**)

Implementation details Gender (-**)
Software Engineering (-*)
Web Applications (+*)

5

Year in School (-*)
Clients accurately Age (-.)
describe requirements Operating Systems (+*)

Web Applications (+.)

8 High-level context
Year in School (-**)
Web Applications (+*)

10

Year (-*)
Producing lots Internship (-**)
of documentation Compilers (+*)

Web Applications (+*)

Table 5: Interesting Misconceptions and Correlating
Features. Correlation is shown as either positive (+)
or negative (-). The last column also shows whether
the feature is loosely correlated (. = p<0.1), moder-
ately correlated (* = p<.05), or strongly correlated
(** = p<.01).

Each misconception had one or more correlating factors
associated with it. Table 5 contains several interesting mis-
conceptions and the features that correlated significantly
with those misconceptions. One particular misconception
that can be considered to be dangerous is that a good soft-
ware engineer will choose to work alone on a project in order
to get it done faster. This misconception will directly affect
the way that a future professional will interact with cowork-
ers, and as shown by Begel and Simon[1] it can seriously
hinder an engineer’s productivity. While the correlation in-

35

Figure 3: Strength of Misconceptions

dicates that the longer students are in the program, the less
likely they are to have this misconception, the positive cor-
relation with two courses, and the absence of significance
with the software engineering course (which is supposed to
teach process) is interesting.

A complete listing of correlational features for all miscon-
ceptions can be found in the technical report for this work
[16].

4.3 Individual Student Misconception Maps
The assessment used also presents us with opportunities

to visualize the misconceptions of an individual student or
subgroup in an interesting and informative way. The mis-
conception map exposes information about the choices made
as well as factors surrounding the choice. Although the map
could be used for subsets of the participants of any size, we
have chosen to highlight individual students here.

The misconception map plots the amount of time partici-
pants took to select an option in the forced-choice survey (see
Figures 4 and 5). The horizontal axis represents time, and
has a correct and incorrect region. This allows researchers

to see correct choices on the right and incorrect choices on
the left. In addition the character used to plot each choice
is representative of whether statement was shown as a mis-
conception or inverse. This visualization offers several cues
to the strength of a misconception indicated by a student.

First, it is easy to see if the student was consistent in the
choice of a misconception or its inverse. You can see from
Figure 4 that the participant chose incorrectly every time
they were presented with statement 6. This is an important
cue because not only did the student choose statement 9 in
its misconception form, he also rejected the inverse of the
statement when presented with it. Statement 10 had the
exact opposite result, with the student choosing the inverse
and rejecting the misconception every time. This behavior
would indicate strongly held beliefs about these two state-
ments.

The second cue of strength offered from the misconcep-
tion map is the time that it takes for a student to decide
between the choices presented. In Figure 5, the responses
for both the misconception and inverse of statement 4 are
consistent and relatively quick. This would indicate that the

36

Figure 4: Student 96 Misconception Map

student did not need to take time to weigh the two options
presented, and instead responded mostly with their belief
about statement 4. In contrast, The responses for state-
ment 7 are spread in terms of both time and correctness.
This would indicate that the student had no strong feelings
about statement 7, or it was more important to think about
how statement 7 compared to what it was shown against.
Notice that there is a similar pattern for statement 10 as
well. This additional information offers insight into the de-
cisions of the students as well as the strength of their beliefs.
Inconsistency combined with long decision times would sug-
gest a weak attachment to the misconception, while consis-
tency and quick decisions point to strong misconceptions.

The third cue offered by the map is the character used
to plot the decision. Each choice involved a misconception
statement, and an inverse from another statement. There-
fore each choice is represented by two points on this graph,
one x and one o. The x’s represent the misconception state-
ment, and the o’s represent the inverse statement. If an x is
plotted on the left of the center line, it means that the stu-
dent chose that misconception. If an o is plotted on the left,
it means that the student rejected the inverse (by choosing
another misconception). These are both incorrect actions.

The right side of the graph shows correct actions, and so
an o on the right side indicates the selection of a correct
inverse, while an x on the right indicates the rejection of a
misconception. As we were analyzing the data we ran into
an interesting phenomenon which can be seen in Figure 5 for
statements 5 and 9. Notice that for statement 5 the student
correctly rejected the misconception every time they saw it
(x’s on the right), however also rejected the inverse every
time they saw it (o’s on the left). In statement 9 we had the
opposite behavior; the student correctly selected the inverse
every time that they saw it (o’s on the right), and did so
fairly quickly. They also incorrectly selected the misconcep-
tion every time they saw it (x’s on the left). This behavior
is very interesting, and could indicate several things. Possi-

Figure 5: Student 159 Misconception Map

bly, it could show that the student is in a state of transition
between their old beliefs and new beliefs being fostered.

In addition to visualizing this data at the student level,
the visualization also assists with evaluating at higher levels.
For example, we can graph a group of students with similar
demographics on a single misconception map to see trends
and patterns that are not visible from simple misconception
counts. This information could be useful for assessing and
reforming curriculums.

5. DISCUSSION
In this work we show that students at even a highly re-

garded, top ranked institution have misconceptions about
software engineering. Along with the scientific results come
analysis and hypothesis about some of the findings.

5.1 Impoverished Models
Conceptual change theories can be used to explain some

of the phenomena presented in the results. The surprising
positive correlations and inconsistent choices of individuals
shown by the misconception maps indicate that students
are not successfully integrating all the messages they are
receiving in their academic studies.

In this work we have framed the misconceptions as declar-
ative knowledge, and not as a connected model. It can be
argued that the workings of a software engineering company
and beliefs about appropriate work interactions are an in-
tegral part of the model of a successful business. However,
in this work we show that students can both believe a mis-
conception and its inverse at the same time. This should
cause a conflict in their internal model of the system, and
so we postulate that students are storing this knowledge as
declarative statements that are isolated from a larger model.
Cognitive scientists have shown that novices often store in-
formation as collection of unconnected facts about a domain
[6, 10, 9, 14]. The misconceptions presented here align with

37

this idea of individual pieces of knowledge that do not have
an impact on a larger model or reasoning [6].

In an attempt to have students form complex models of
the software engineering process, we often involve them in
smaller scenarios designed to offer insights or experiences in
projects where communication and effective processes will
yield a more positive experience and, hopefully, a better
project. Unfortunately, small groups working within the
constraints of an academic setting offer a very impoverished
model of industrial practice. Short time lines, lack of re-
sources (in terms of manpower or support/management),
and the individual differences between a team of all students
(novices) and a team more diversified in experience can lead
students to draw incorrect conclusions about the realities of
industry. The impoverished situations that students work
in combined with their novice perspective is contributing to
inconsistent integration of software engineering.

5.2 Internships
The appearance of internships, overall, as a negative sig-

nificant correlating factor is interesting, however it is more
interesting where it does not appear in the individual mis-
conceptions (see Table 5). When completing an internship
students work within a company for a few months in order to
both strengthen their skills and resume, but also to experi-
ence the culture of the company and the software engineering
profession as a whole. The lack of a significant internship
correlation with such process based misconceptions such as
choosing to work alone and accurate description by clients
suggest that students who are participating in internships
may not be explicitly seeing defined process, especially in
companies where the process is so well defined it may be
mistaken for culture.

Although internships did correlate with a decrease in the
number of misconceptions chosen, students who had com-
pleted internships still exhibited a large number of miscon-
ceptions at various levels. If we use the number of times that
students chose the misconception, or rejected the inverse as
a measure, students who participated in internships had on
average 5.8 misconceptions they selected at least once, 3.2
misconceptions that they selected 2 or more times, and .8
misconceptions they selected 4 or more times.

5.3 Course Correlations
One of the largest surprises from the analysis is that the

web applications and operating systems courses correlated
positively with specific misconceptions. Students normally
take these courses their junior year, and participant age and
number of internships did not statistically account for these
correlations. These correlations are particularly interesting
because the faculty in these courses promote good software
engineering practices and have many years of industry ex-
perience. We hypothesis that this is not the problem of the
faculty, but a problem that the students do not understand
the differences between the challenges of a group project in
school and a project in industry.

5.4 Future Work
Future work in this area includes two distinct approaches.

In order to make the findings of the work more generaliz-
able a larger, multi-institution implementation of the assess-
ment would allow us to look for misconceptions that span
a broader student population. In addition, including non-

computer science students in the data could provide insight
into what misconceptions are promoted by society and pop-
ular culture and how they align with misconceptions of com-
puter science students.

The assessment tool itself could use further testing and
validation. Informal feedback indicated that sometimes af-
ter seeing a statement more than once, choices were made
without reading what the statement was compared to. Fur-
thermore, a more qualitative study of the students with mis-
conceptions could yield additional verification that the de-
lay in time for decisions in the misconception map translates
specifically to strength of the misconception.

in this area includes a larger, multi-institution implemen-
tation of the assessment to look for generalizable miscon-
ceptions. We also believe it would be interesting to survey
non-computer science students to see what misconceptions
are promoted by society and popular culture and how they
align with misconceptions of computer science students. The
assessment tool itself could use further testing and valida-
tion. Informal feedback indicated that sometimes after see-
ing a statement more than once, choices were made without
reading what the statement was compared to. Also, a more
qualitative study of the students with misconceptions in or-
der to determine if the claim of strength indicated by the
misconception maps hold up to a qualitative study.

Every misconception was chosen multiple times and by
multiple students indicating that our list was appropriate
for the student population. It may be informative to expand
upon this list for future studies to determine the boundaries
of student misconceptions. It may also be interesting to
conduct qualitative analysis such as interviews to see if stu-
dents misconceptions can be categorized into such divisions
as process, job awareness, and goals.

6. CONCLUSIONS
The contributions of this work exist on two levels. For the

local institution, this work highlights two important pieces
of understanding. First, students at this institution have
misconceptions about many facets of their future in engi-
neering. Secondly, the structure of particular courses needs
to be examined in order to determine why they are correlat-
ing with an increase in misconceptions by students.

For the larger community, we do not claim that our re-
sults are generalizable, but instead hold forth the method-
ology and analysis for implementation at other individual
institutions. The combination of the macro level analysis of
a program, and the student and subgroup analysis offered
by the misconception maps are a powerful combination.

In addition to research in software engineering education,
the forced-choice survey and data analysis with misconcep-
tion maps could be used in other areas where student beliefs
interfere with potential outcomes, or need to be measured
and understood.

Our goals with this research were to develop an assess-
ment to determine (1) if undergraduate students at Carnegie
Mellon University did have misconceptions about software
engineering as a discipline, and (2) if we could also measure
and visualize the strength with which the misconceptions
were held. The overall analysis did show that students held
misconceptions from a list constructed by the software en-
gineering research group, and verified with current profes-
sionals working in the field. The misconception maps offer
a useful visualization for the data, and a potential way to

38

view the strength of the misconceptions in addition to their
existence.

Current undergraduate computer science programs focus
on programming, and the creation of data structures and
algorithms. It is our opinion that this focus as well as the
common practice of having students build well-defined as-
signments from scratch help fuel the misconceptions about
software engineering. One of the most frequently chosen
misconception, that students should take advantage of im-
plementation details in other code, could arise from stu-
dents writing all the code themselves and therefore having
an intimate knowledge of those details. Another miscon-
ception, that most of their time will be spent developing
new algorithms and data structures, echoes the majority of
coursework that students see in their undergraduate pro-
gram. Overall, this work offers awareness of an issue in our
undergraduate programs as well as an assessment that offers
more information than a standard survey.

7. ACKNOWLEDGMENTS
The authors would like to thank our advisors, Mark Stehlik,

Sharon Carver, and Johnathan Aldrich. This work was par-
tially funded by the computer science department at CMU,
as well as the Institute of Education Sciences, US Depart-
ment of Education, through Grant R305B040063 to Carnegie
Mellon University. The opinions expressed are those of the
authors and do not represent the views of the Institute or
the US Department of Education.

8. REFERENCES
[1] A. Begel and B. Simon. Novice software developers, all

over again. In ICER ’08: Proceeding of the Fourth
international Workshop on Computing Education
Research, pages 3–14, New York, NY, USA, 2008.
ACM.

[2] A. Begel and B. Simon. Struggles of new college
graduates in their first software development job.
SIGCSE ’08: Proceedings of the 39th SIGCSE
Technical Aymposium on Computer Science
Education, 40(1):226–230, 2008.

[3] E. Brechner. Things they would not teach me of in
college: What microsoft developers learn later. In
OOPSLA ’03: Companion of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 134–136, New York, NY, USA, 2003. ACM.

[4] P. V. D. Broek and P. Kendeou. Cognitive processes
in comprehension of science texts: The role of
co-activation in confronting misconceptions. Applied
Cognitive Psychology, 22:335–351, 2008.

[5] M. Chi. Commonsense conceptions of emergent
processes: Why some misconceptions are robust. The
Journal of the Learning Sciences, 14(2):161–199, 2005.

[6] M. Chi and S. Ohlsson. Complex Declarative Learning,
chapter 16, pages 371–400. The Cambridge Handbook
of Thinking and Learning. Cambridge University
Press, 2005.

[7] M. Chi and K. VanLehn. The content of physics
self-explanations. Journal of the Learning Sciences,
1:69–105, 1991.

[8] C. Chinn and W. Brewer. The role of anomalous data
in knowledge acquisition: A theoretical framework and
implications for science education. Review of
Educational Research, 63(1):1–49, 1993.

[9] N. R. Council. How People Learn: Brain, Mind,
Experience and School. National Academy Press, 2000.

[10] A. DiSessa. Knowledge in Pieces. Constructivism in
the Computer Age. Erlbaum, 1988.

[11] D. Hammer. Misconceptions or p-prims: How may
alternative perspectives on cognitive structure
influence instructional perceptions and intentions.
Journal of the Learning Sciences, 5(2):97–127, 1996.

[12] K. Hamza and P. Wickman. Describing and analyzing
learning in action: An empirical study of the
importance of misconceptions in learning. Science
Education, 92(1):141–164, 2008.

[13] T. C. Lethbridge. A Survey of the Relevance of
Computer Science and Software Engineering
Education. IEEE Computer Society, Washington, DC,
USA, 1998.

[14] G. Ozdemir and D. Clark. An overview of conceptual
change theories. Eurasia Journal of Mathematics,
Science & Technology Education, 3:351–361, 2007.

[15] D. Perkins and R. Simmons. Patterns of
misunderstanding: An integrative model for science,
math, and programming. Review of Educational
Research, 58(3):303–326, 1988.

[16] L. A. Sudol and C. Jaspan. Declarative
misconceptions in software engineering. Technical
report, Carnegie Mellon University, 2010.

[17] D. Taft. Programming grads meet a skills gap in the
real world. eweek.com, 2007.

[18] S. Vosnaidou and W. Brewer. Mental models of the
day/night cycle. Cognitive Science, 18:123–183, 1994.

39

