
The Information Funnel: Exploiting Named Data
for Information-maximizing Data Collection

Shiguang Wang ∗, Tarek Abdelzaher ∗, Santhosh Gajendran ∗, Ajith Herga ∗, Sachin Kulkarni ∗, Shen Li ∗,
Hengchang Liu ¶, Chethan Suresh ∗, Abhishek Sreenath ∗, Hongwei Wang ∗, William Dron †, Alice Leung †,

Ramesh Govindan ‡, John Hancock §
∗University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

†BBN Raytheon Technologies, Cambridge, MA 02138, USA
‡University of Southern California, Los Angeles, CS 90089, USA

§ArtisTech, Inc. Fairfax, VA 22030, USA
¶University of Science and Technology of China, Suzhou, Jiangsu 215123, China

Abstract—This paper describes the exploitation of hierarchical
data names to achieve information-utility maximizing data collec-
tion in social sensing applications. We describe a novel transport
abstraction, called the information funnel. It encapsulates a data
collection protocol for social sensing that maximizes a measure
of delivered information utility, that is the minimized data
redundancy, by diversifying the data objects to be collected. The
abstraction leverages named-data networking, a communication
paradigm where data objects are named instead of hosts. We ar-
gue that this paradigm is especially suited for utility-maximizing
transport in resource constrained environments, because hier-
archical data names give rise to a notion of distance between
named objects that is a function of only the topology of the
name tree. This distance, in turn, can expose similarities between
named objects that can be leveraged for minimizing redundancy
among objects transmitted over bottlenecks, thereby maximizing
their aggregate utility. With a proper hierarchical name space
design, our protocol prioritizes transmission of data objects over
bottlenecks to maximize information utility, with very weak
assumptions on the utility function. This prioritization is achieved
merely by comparing data name prefixes, without knowing
application-level name semantics, which makes it generalizable
across a wide range of applications. Evaluation results show that
the information funnel improves the utility of the collected data
objects compared to other lossy protocols.

I. INTRODUCTION

The expanding proliferation of sensors available in social

spaces (such as smartphone sensors, cameras, and GPS de-

vices) and the exponential growth in digital data generated in

recent years, far outstrip the human capacity to consume the

resulting information. This trend suggests that an important

category of future networked applications and services will

focus around information sampling to bridge the widening gap

between data generation rate and human consumption capacity.

Current transport abstractions, such as reliable transmission

in TCP, offer pipes where each bit of input must be delivered at

the output. In the future, driven by information overload, a new

higher-level abstraction will become increasingly important:

namely, one that offers at the output a representative sampling
of information at the input, thereby reducing the large body

of input to a readily consumable size. For wider applicability,

this sub-sampling must be done in an application-independent

manner. Nevertheless, it must do better than random selection.

The information funnel implements such an abstraction.

The information funnel is targeted for scenarios, where

resource constraints (e.g. limited transmission bandwidth or

constrained power) or efficiency considerations prevent trans-

mission of all collected data. In these scenarios, with limited

number of data objects can be transmitted, the information

funnel tries to sample a representative subset of the data

objects that maximizes the information utility by minimizing

data redundancy. Much prior work on data collection in sensor

networks addressed the challenge of optimal data selection

(based on different application-level metrics) (e.g.[15]), that

judiciously chooses the best data objects to transmit when

transmission of all data is impossible or undesirable. Un-

like ours, such protocols are application specific, as they

use application-specific information and optimize application-

specific performance metrics. Therefore, their work is not

general; it will have a poor performance or even not work

in a different application.

We also distinguish ourselves from work on sampling theory

that determines how to sub-sample time series data in ways

that generically minimize a measure of loss(e.g. [7] [14]). In

contrast to these approaches, and in seeking a general service,

we do not impose any specific requirements on the underlying

data type. For example, the collected data may constitute

images, text, or sound clips, as opposed to numeric data types.

The paper complements the aforementioned literature

by exploring the potential and limitations of application-
independent maximization of delivered information utility

(that is to minimize delivered redundant data). By application-

independent, we mean that the solution does not use any

application-specific knowledge or semantics. It only uses the

hierarchical data names, treated as bit strings with no semantic

interpretation. This is a major difference from sampling theory

that requires understanding the application-specific semantics

of data objects.

We exploit the named-data networking (NDN) paradigm [9]

as an enabler for information utility maximization. NDN is

originated because of the fact that people care more about

what data they received but not where they get the data.

2014 IEEE International Conference on Distributed Computing in Sensor Systems

978-1-4799-4618-1/14 $31.00 © 2014 IEEE

DOI 10.1109/DCOSS.2014.32

92

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357627663?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Therefore, NDN names data objects, not hosts, which dis-

tinguishes it from the mainstream communication paradigm

based on TCP/IP. In NDN, the information consumer (e.g.,

the data collection point) sends interests in information objects

described by a given name prefix. Objects that match the

specified prefix are returned in response to the respective

interests. The information funnel is implemented on top of

NDN as a thin layer that decides on the order of data

transmission.

The paper investigates (and confirms) the hypothesis that

by giving data objects hierarchical names, where the length
of the common prefix between two names is a rough measure
of similarity between the corresponding objects, information-
maximizing ordering can be achieved using policies that
diversify the transmitted names. Here the similarity between

two data objects refers to the possibility that the value of one

can be approximated by the other’s. Our service is geared

for social sensing applications in which a receiver (such as a

remote back-end server) acts as a collection point for a group

of (typically mobile) nodes that report data from the physical

environment. Often the nodes are disconnected and come

only into sporadic contact with the collection point. The data

collected usually carries much overlap. For example if data

names encode location and time of data collection, the more

similar the names are, the more likely the overlap between

the named measurements and the less is their aggregate utility.

A data collection protocol that diversifies the collected names
will tend to maximize information utility as well. It remains to

show how exactly names should be diversified in the presence

of resource constraints, which is the topic of this paper.

The rest of the paper is organized as follows. Section II

reviews related work. Section III presents our notion of

optimality and suggests heuristics with near-optimal behavior.

Section IV presents evaluation results. The paper concludes

with Section V.

II. RELATED WORK

Cyber-physical and sensing applications, where data ob-

jects are collected from the physical world, typically exhibit

significant redundancy in collected data. This calls for pri-

oritizing data collection in a way that reduces redundancy

received. The problem was recently described by the authors

in PhotoNet [20], where a picture-collection service was

developed for disaster-response applications that maximize

situation-awareness. Dron et. al. [5] proposed a novel caching

design aiming to maximize the information utility. Another

illustration of such redundancy was covered in CarSpeak [11],

where autonomous vehicles share cloud-point data for obstacle

avoidance. In these papers, application-specific data priori-

tization policies were described that aim at improving an

information utility metric.

Our paper points out one aspect of application utility max-

imization (for data originating in the physical environment)

that can be broadly generalized independently of other appli-

cation details. Namely, within the scope of a query, received

information is maximized when redundancy is minimized,

since redundancy reduces information content. Hence, it makes

sense to dedicate such information-maximization to a layer

that is independent of and supports the specific application.

NDN enables the development of such a layer. One big ben-

efit of NDN is that data has name, which makes the designing

and implementing some kinds of applications easier, like the

dataset synchronization [31]. Specifically, if data names can

approximately denote similarity between objects, information

maximizing data ordering (e.g., in data transmission across

bottlenecks) can be done in a completely generic fashion by

applying a breadth-first traversal algorithm to the subtree of

an application’s name space that falls within the scope of the

query. This paper focuses on persistent queries, where the

relevant name-space subtree is expressed as a name prefix

associated with the information funnel.

Our work is related to general efforts that attempt to

handle network resource constraints in an efficient manner.

Prior literature explores how to efficiently transfer (spatially,

temporally or spatio-temporally) correlated data samples over

multi-hop networks to a sink. Usually, one of two approaches

is adopted: either compress samples to reduce redundancy or

select a small subset of nodes to aggregate samples before

sending them to the sink. A few notable examples of the first

approach include Cristescu et al. [4], Pattem et al. [18] and

Vuran et al. [21]. The second approach includes schemes such

as selecting an energy-efficient correlation-dominating set [7],

clustering based on correlations [14], clustering based aggre-

gation [16], routing through a set of mobile sinks [25], sensor

data dissemination for mobile users [17] and distributed data

collection by localized coding [29]. In [15], authors propose

distance entropy as a metric to formalize communication cost

for collecting correlated data. While the above work focused

on time-series data, some more recent work [20], [10], [24]

focuses on more complex data types (such as pictures). In

contrast to the above literature, this paper focuses on generic

prioritization policies based on named-data networking.

Several approaches were considered for efficient data col-

lection in intermittently connected networks and DTNs. These

include interest profiles [6], cooperative sensing [30], vehicular

data collection [22], publish/subscribe methods [27], [13], and

subscription of channels [12], [3]. In [26], the authors studied

caching, where nodes cache data based on popularity, such that

future queries can be answered with less delay. Some research

efforts [19], [8] improve data accessibility from infrastructure

networks such as WiFi Access Points [8] or the Internet [19].

Our work is complementary in that we focus on maximizing

information utility by minimizing redundancy in collected

data. Specifically, we do so by designing an appropriate name

space in the context of named-data networking.

III. THE INFORMATION FUNNEL

Social sensing applications share in common the fact that

they (i) collect data objects from one or more (typically

mobile) sources, (ii) do not need all sender data to operate

correctly, and (iii) perceive a quality of information wherein

receiving more data on the same “topic” has diminishing

93

return. For example, to estimate the current speed of traffic

on city streets, it is sufficient to obtain representative speed

measurements from a subset of vehicles. More data will have

diminishing return. Similarly, in a disaster-response applica-

tion where first-responders pictorially document damage and

report it to a rescue site, only a few pictures of each problem

spot are needed to understand the situation. More pictures

have diminishing return. This motivates the information funnel
abstraction, described below. We discuss challenges in im-

plementing it and define a notion of optimality. Finally, we

present its design and implementation on top of a named-

data-networking stack.

A. The Basic Abstraction

The information funnel targets applications that implement

persistent data collection tasks. We require that data objects

have a hierarchical name space. A funnel is associated with a

name prefix in that space (analogous to a path prefix in a UNIX

directory tree), defining the subtree in which data of interest

to the application resides. Content that belongs to the subtree

starting with that prefix is the target of collection. Senders

publish content under appropriate names. If those names fall

within the target subtree, the corresponding objects become

targets for collection.

For example, in an urban traffic speed monitoring ap-

plication, the name space might look something like

this: /ndn/app/city/street/block/speed. The collec-

tion point creates a funnel (defined by the name prefix of

the above tree, say /ndn/app) to populate this space with

data from senders. The design of the name space is up to the

application developer. In applications where mobile entities

share a physical environment in which they measure some

quantity, such as cars measuring traffic speed, the name space

might associate names with parts of the physical environment

(e.g., street blocks). In this case, mobile sensors will assign

data names depending on what part of the environment they

are sensing. In applications where sensors are fixed, such as

security cameras in rooms, data names may be associated with

sensor IDs.

An important goal of our design is to accommodate mobility

and disconnected operation. Hence, we assume that the normal

state of senders is “offline”. For example, mobile sensors may

not have connectivity until they meet an access point. Smart

phone users may disallow an application from using their

3G/4G data plan quota. First responders in a post-disaster

scenario may communicate only using short-range radios, and

thus be disconnected unless in close proximity, because other

communication infrastructure is out of power or destroyed.

In general, at a given time, the receiver has a partially

populated content tree. When a sender has a transmission

opportunity (e.g., encounters an access point), the receiver

needs to be updated on any new data the sender has, under

that tree, that the receiver has not yet received. Two interesting

questions arise: how to inform the sender efficiently of data

gaps at the receiver, and in what order should such missing

data objects be sent? Below, we first describe the underlying

challenges, then define a notion of optimality and present our

algorithm.

B. Data Ordering Challenges

To implement an update between a sender and the receiver

of the funnel, the trivial solution is to have each sender collect

data under /ndn/app and forward it when possible to the

receiver. Once data is delivered, it can be discarded at the

sender locally or marked as delivered. This solution works well

when senders populate non-overlapping parts of the content

tree, and when they do not exchange their collected data

among themselves for uploading to the server. In this case,

each sender can easily tell which of its data does not yet

reside on the receiver. In social sensing applications, many

senders may report data on the same event. Hence, sending

all of one’s newly collected data to the receiver may be

suboptimal because the receiver may have already received

that (or similar) content from another sender. The receiver

needs to tell the sender (either exactly or approximately) what

information it already has.

Summarizing the receiver’s information state to the sender

is easy when data has a linear order (e.g., “I have all data

up to time-stamp X”). This, unfortunately, is not true in our

case. Two factors compound our problem. First, the receiver

may have only partial data that populates the name space

sparsely. Hence, many gaps exist in data coverage, making

their exact enumeration hard. Second, the receiver may not

know the totality of data generated under a given name subtree.

For example, in our vehicular sensing application, a receiver

can never tell that it has “all data from Main Street” because

it does not know how many vehicles drove on Main Street

that may not have uploaded their data yet. Hence, there is no

easy way to prune subtrees from consideration on account of

completeness.

Another question is regarding the order in which a sender

should send the data that its receiver is missing. If the sender

sends such data in the order it was collected, the receiver

may receive a lot of data from one branch of the name

space and no data from other branches, resulting in a very

unbalanced coverage of content. Instead, it is better to diversify

by sending a sampling of data from each branch. The need

for diversification calls for a definition of optimal information

utility to guide the data ordering algorithm, as formulated

below.

C. Optimal Transmission Order

Consider the problem where a sender must order a set of

data objects for transmission to a receiver (that fall within the

content space of the funnel). An optimal transmission order is

sought, where the utility of the transmitted data to the receiver

is maximized. In this section, we formulate this problem more

carefully and describe our solution. We initially assume that all

objects have the same size and the same importance (weight).

In subsequent sections, these assumptions will be removed.

A primary design objective is to keep the formulation as
simple as possible, since quantities such as data utility are

94

notoriously hard to compute exactly. Clearly, if utilities are

set subjectively or arbitrarily, then optimizing them does not

make much sense. To render the problem of finding an optimal

transmission order meaningful, we must seek an approach

that makes minimal assumptions about utility curves. For

example, we explicitly stay away from schemes that require

computing absolute utility values for data objects, since those

are subjective.
Instead, we assume that the following two properties hold

regarding the marginal utility of data objects at different parts

of the content tree:
a) The hierarchical similarity property: The hierarchi-

cal name space is designed such that items that share a

longer name prefix (measured in the number of tree levels)

are more similar. By similarity, we mean that one can approx-

imately be substituted by the other. For example, speeds at

/app/urbana/main/1200 and /app/urbana/main/1000

are more similar than speeds at /app/urbana/main/1200

and /app/urbana/green/1100 since the former pair shares

a longer common prefix. A corollary is that the marginal

utility of a data object increases with the decreasing length

of the longest common prefix between itself and any of the

previously collected items. This is because the smaller that

prefix, the less substitutable the item is by any of the ones

already collected, thus the higher marginal utility it has.
b) The diminishing return property: The marginal util-

ity of adding a data object to a name subspace is diminishing;

adding the first item to /ndn/app/urbana/main has a larger

marginal utility than adding the second item, which in turn has

a larger marginal utility than adding the third one, and so on.
The hierarchical similarity assumption implies that, at each

step, the optimal transmission order must pick the data object

whose maximum common prefix (with all previously collected

ones) is shortest. If there is a tie between two (or more) such

items, the diminishing return assumption implies that we pick

the one that has the least populated prefix. In other words, we

count how many data objects were collected under each prefix,

then pick the one whose prefix has the smaller count. We call

it the occupancy count of the prefix. If there is a tie again,

we break the tie by picking the item on the left-most branch

(which is the one with the most recent timestamp assuming

branches are chronologically sorted).
More formally, let �i(J) denote the longest common name

prefix of a data object i with respect to a data set J , |�i(J)|
denote its length, and �i(J) denote its occupancy count. We

denote the marginal utility of a data object i with respect to

a data set J as U(i|J). Given any two data objects, i and j,

and a data set J , we can compare the marginal utilities of the

two data objects as follows.
Marginal utility comparison rules:
• If |�i(J)| < |�j(J)|, then U(i|J) > U(j|J),

• Otherwise, if |�i(J)| = |�j(J)| and �i(J) < �j(J), then

U(i|J) > U(j|J),

• Else (i.e., if |�i(J)| = |�j(J)| and �i(J) = �j(J)),

U(i|J) = U(j|J).

An optimal transmission order is one that maximizes the

marginal utility, for every count k of transmitted objects,
over all ways of picking k objects for transmission. A greedy

solution is to transmit the object with the minimum |�i(J)|. In

case of a tie, transmit the object with the minimum �i(J). In

case of a a second tie, break the tie arbitrarily (e.g., transmit

the left-most child). In the following section, we illustrate our

idea through an example and discuss optimality.

D. An Example

An example of the proposed algorithm is shown in Figure 1.

The square boxes indicate data objects at the leaves of the

content tree. The circles are intermediate nodes (directories)

in the name space.

A2A1

M1 G1 G2 P1U1 U2 U3

main
prospect

speeds

champaign

alerts

urbana

green
university

/ndn/map

Fig. 1. An Example

Let the receiver have no data objects initially. There is

a tie between all the items in that none share a common

prefix with what the receiver has, and the name space has

zero occupancy count. Picking the left-most branch, we send

item M1 first. Next, the items that minimize the longest the

common prefix with M1 are A1 and A2. Their longest common

prefix with previous items (i.e., M1) is the same; namely,

/ndn/map, which has zero occupancy count. The tie is broken

by following the leftmost branch (i.e., send A1). The next

items that minimize the longest common prefix with those

transmitted earlier are P1 and A2. Their respective longest

common prefixes with earlier items are /ndn/map/speeds

and /ndn/map/alerts. Tying on occupancy count (namely,

one item was transmitted under each prefix), the leftmost item

(i.e., P1) is transmitted next. Following that, A2 minimizes

the longest common prefix and is transmitted next. The next

items that minimize the longest common prefix with those

transmitted earlier are G1, G2, U1, U2, and U3. They tie

on occupancy of their prefixes and so the leftmost one is

transmitted (i.e., G1). Next, items U1, U2, and U3 tie and

U1 is transmitted. It can be seen that, following the above

logic, we then transmit G2, U2, and U3 in that order.

E. Receiver Feedback

In the previous section, we have not addressed the case

where the receiver already has a partially populated name

space. To accommodate this scenario, when a sender comes

in contact with the receiver, the receiver first sends the sender

a packet that contains occupancy counts of all prefixes up

to a configurable tree level n. The sender will initiate the

occupancy number of the name tree based on the receiver’s

feedback. The initialization will cause transmission to favor

data that resides in prefixes that the receiver has less (or no)

data from. Consider again the example shown in Figure 1.

Assume that the receiver already has items G0 and P0 that

95

reside at the same prefixes as G1 and P1, respectively. The

transmission order will be A1, then A2 (minimizing longest

common prefix with previously collected items and favoring

the prefix with lowest occupancy count), followed by M1 and

P1 (since they are the next to minimize the longest common

prefix with previously collected items), then U1, G1, U2, G2
and U3 (tie on longest common prefix, so round robin on

occupancy count).

F. The Algorithm

In this section, we present the prioritization algorithm and

prove its optimality. Its time complexity analysis is in the

appendix. At the first look of the above tree traversal, it seems

that our algorithm is just a simple breadth-first traversal, with

round robin. However, after a careful examination, the breadth-

first traversal does not always give the optimal prioritization

by the marginal utility comparison rules; it only guarantees

optimality when all the data nodes (leaves) reside at the same

tree level. We implement the algorithm in a recursive fashion,

as shown in Algorithm 1.

Algorithm 1 The prioritization algorithm

Input: The application root name prefix R, the named data set I of
the sender, the occupancy tree T of the receiver
Output: A prioritized order of object names

1: Return PRI(R, I, T)
2:

3: procedure PRI(name prefix P, data set I, occupancy tree T)
4: if P is leaf node then
5: Return the corresponding data object I.get(P)
6: end if
7: order = [] � Initiate an empty list of lists
8: for Each branch b of P do
9: order.append(PRI(P/b, I, T)

10: end for
11: result = [] � Initiate an empty list
12: while order is not empty do:
13: S = MINCHILD(order, T)
14: e = LEASTOCCUPANCY(S, T)
15: result.append(e)
16: UPDATEOCCUPANCY(e, T)
17: if result[e.setIndex] is empty then
18: result.pop(e.setIndex)
19: end if
20: end while
21: Return result
22: end procedure

In this algorithm, the input parameters include the applica-

tion root name prefix R under which all the application data

resides in the name space, the data set at the sender side

I, and the occupancy tree T summarizing the name space

occupancy at the receiver side. The algorithm calculates the

prioritization order for each node at each level in the name tree

in a bottom-up fashion. To compute the prioritization order of

an inner node in the name tree, it “merges” the prioritization

results of all its children nodes in a prioritized order. The

merge process has three steps: (1) finding the data objects

having the least common prefix with respect to the data set

on the receiver side and assign highest priority to them (in the

procedure MINCHILD), (2) balancing the occupancy tree at the

receiver side by finding the data object residing at the name

tree branch with least occupancy number (in the procedure

LEASTOCCUPANCY) , and (3) update the occupancy number of

the occupancy tree T (by the procedure UPDATEOCCUPANCY).

The return of Algorithm 1 is the prioritized order of the data

objects at the sender side.

Theorem 1: By marginal utility comparison rules in Sec-

tion III-C, Algorithm 1 returns the optimal prioritization order

of the data objects at the sender side when data objects have

the same size and weight.

The proof of Theorem 1 is in the appendix. Please note

that the optimality of Algorithm 1 holds without assumption
on the number of data objects transmitted in one transmission
session. In other words, for any k data objects transmitted in

one transmission session Algorithm 1 is optimal, where k is

no greater than the total number of data objects at the sender

side.

G. Variable Object Length and Differentiated Service

In the above discussion, we assumed that all objects have

the same length. In general, objects in some parts of the tree

might be longer than others. For example, one branch might

contain images with high quality (i.e. high resolution), whereas

another contains images with low quality. To balance data

collection from different branches, rather than maintaining a

collected occupancy count for different prefixes, we maintain

the number of collected bytes. Hence, when an object is

selected, the occupancy count of its ancestor nodes in the

name space is incremented by its length, as opposed to by

one in UPDATEOCCUPANCY (see Algorithm 1). The approach

will balance the bytes collected instead of objects. Besides the

difference in balancing occupancy compared with the uniform

data size, in this variable data object size case, we also want

to transmit the data objects with the highest marginal utility

“density”, which means that in the MINCHILD procedure,

if two data objects under the same name prefix have the

same marginal utility (i.e. the same length of the common

name prefixes), the one with smaller size will be selected to

transmit first. By modifying Algorithm 1, we can guarantee

that the output prioritization order of the procedure PRI is in

decreasing order of the data marginal utility density. However,

due to the occupancy balancing of Algorithm 1, the property

of decreasing marginal utility density is not guaranteed of the

final returned prioritization order as shown in Theorem 3 in

the appendix.

Finally, we can offer some prefixes preference over others

by specifying a transmission weight, wp for each prefix p.

Accordingly, the function UPDATEOCCUPANCY in Algorithm 1

updates the occupancy count by the total bytes transmitted

divided by the weight of the prefix. Hence, prefixes with

higher weights will grow their (weighted) occupancy count

at a slower rate resulting in an amount of received content

that is proportional to the weight of the prefix.

96

H. System Design and Implementation

The system contains three layers as shown in Fig. 2; (1)

the application layer, (2) the information funnel layer, and

(3) the NDN layer. The application layer contains all the

application specific tasks, such as sensing and naming the data

objects. The information funnel layer is designed for the gener-

alized application-independent information-maximizing trans-

mission. This novel design of separating application specific

tasks from application independent tasks greatly simplifies the

application development for both the sensing application on

mobile devices (the clients) and the data collection application

running on the backend server. In the rest of this section, we

first introduce the APIs provided by the information funnel

layer to the applications on both the mobile devices and

the backend server respectively. Then we present how the

information funnel layer interacts with the NDN layer.

Storage Prioritization

Information Funnel

NDN Layer

Data flow

Control flow
(1) & (2)

(3)

(4)

Application
NamingSensor

Fig. 2. Information Funnel Structure

For mobile sensing applications, the funnel layer provides

three APIs. The first one is CREATEFUNNELSOURCE() to start

the client funnel thread for the information-maximizing data

transmission. This API takes two parameters, the name prefix

of the funnel and the device ID. The client funnel thread first

allocates the funnel repo to cache the data objects under the

name prefix of the funnel, and it actively probes the WiFi

connection status. Once the connection is built, the thread

initiates the data transmission in the prioritized order, which

will be discussed later. Another API is PUTTOFUNNEL() to

put data objects to the funnel repo. Its parameters are the

funnel prefix, the data name, and the data object pointer. This

function checks the name of the data object and only put

the data with the funnel name prefix to the repo. The third

API is RELEASEFUNNELSOURCE() for removing the funnel and

recycling the resources to the OS. It takes only one parameter

which is the name prefix of the funnel.

For the backend server application, the funnel layer also

provides three APIs. All the three APIs only take one pa-

rameter, the name prefix of the funnel. The first API is

CREATEFUNNELSINK() to allocate a local repo and start a thread

called server funnel thread with a name prefix, the second

one is EXTRACTFROMFUNNEL() to extract data objects from

repo to the above server application, and the third one is

RELEASEFUNNELSINK() to remove the funnel and recycle the

OS resource.

After introducing the funnel APIs to the application layer,

we present how the funnel interacts with the NDN layer for

information-maximizing data transmission. The client funnel

thread running on the mobile device actively probes the WiFi

connection status. Once the WiFi connection is setup, it

broadcasts an interest packet with the funnel name prefix. For

example, /ndn/uiuc/maps/[ID]/[timestamp]/summary,

where ID is the device ID and timestamp is the cur-

rent local time. If the server funnel thread is created un-

der the same name prefix, say /ndn/uiuc/maps, then

the server responds with a data packet that contains the

local occupancy tree of the name space (summarized to

some level) as defined in Algorithm 1. Meanwhile, the

sever funnel thread sends an interest packet with name

/ndn/uiuc/maps/[ID]/[new_timestamp]/list to ask

for the prioritized name list, where ID is the mobile device

ID and new_timestamp is the server local time. After

the client receives the occupancy summary of the server, it

runs Algorithm 1 to prioritize the cached data objects in the

repo and generate a name list. Upon receiving the interest

packet /ndn/uiuc/maps/[ID]/[new_timestamp]/list

from the server, the client funnel thread responds with a data

packet of the name list. Then, the server fetches the data

objects one-by-one according to the list.

Note that we add timestamp to the interests that are

either sent by client asking for the server occupancy tree or

sent by the server requesting the name list. The timestamp
guarantees that those interests finally reach the end node

rather than some intermediate cache. Although the in-net

caching design of NDN accelerates the data transmission

(for example, data dissemination from a content provider to

content consumers), in our application we need those requests

reach the end nodes because the state of either the server or

the mobile device probably has already changed since last

communication, thus the cached data probably be meaningless.

However, the interests requesting data objects do not contain

timestamp. With the assumption that the application will

name different data objects differently, the funnel can use the

NDN in-net caching to accelerate the data transmission.

IV. EVALUATION

In this section, we study the performance of our algorithm to

maximize the marginal information utility. We first introduce

our methodology for the evaluation, and then evaluate the

performance of the information funnel.

A. Methodology

We evaluate two aspects of the system: (1) the overhead of

the prioritization, and (2) its performance by comparing with

other state-of-the-art solutions. To measure the overhead in

practical scenarios, we implement the information funnel on

Google Galaxy Nexus phones [2]. Each phone is equipped

with a 1.2 GHz dual-core CPU, 1GB RAM, and running

Android OS 4.1. The information funnel is implemented using

the Java programming language on top of the PARC’s CCNx

prototype software [1]. The data set used in the evaluation

is the T-Drive data set [28] collected by MSRA. We use

the taxi traces in the urban area of Beijing, China, with

GPS coordinates from latitude 39.5oN to 40.5oN and from

longitude 116oE to 117oE, where most data points reside.

97

In the evaluation, we assume the social sensing application

provides a hypothetical service called “city view everyday”,

which is an improved version of the Google street view,

where the user can see up-to-date street changes day-by-

day as recorded by cameras in cars on street. This social

sensing application needs to collect data objects (i.e. pictures)

continuously from participants (i.e. cars).

To study the prioritization performance of the information

funnel, we run a simulation on the T-Drive data set with

assumptions that:

1) There are two WiFi sinks (gateways to one central

server) to collect data that are located on two busy streets

as shown in Fig 3(c),

2) The coverage range of each WiFi gateway is 100 meters,

3) The pictures are 100KB each,

4) The WiFi bandwidth is from 700Kbps to 1Mbps, which

is estimated using the campus WiFi network, and

5) The speed of each cab is from 40km/h to 80km/h, which

is estimated from the street speed limits of Beijing.

We simulate for 10 hours during which 50,000 data objects

are collected by cabs (of which only 15% are uploaded to

the server) and we assume that at the very beginning of the

simulation the server does not have any data.

The area in the simulation is partitioned into 400 tiles, and

each tile is further partitioned into 16 cells. The name of

each data object (picture) is following the structure defined

as /citysense/tile_idx/cell_idx/filename. So

there are two possible levels of summary for the occupancy

tree at the receiver (the central server) side.

We compare the performance of the Information Funnel

with three baseline algorithms: (1) FIFO, which transmits the

data objects in the fifo order of their time stamps, (2) Distance-
based prioritization algorithm in PhotoNet [20] which always

transmits the data object with the longest minimum distance

from the data objects at the receiver side first, and (3)

Coverage-based prioritization in Minerva [23], which always

transmits the data object with the largest marginal coverage,

where the side length of the coverage area of each data object

defined to be 100 meters and we consider the information

space is 2D. (Please refer to Minerva [23] for the detailed

explanation of the configuration.) In the following section, we

present the evaluation results of the information funnel, and we

henceforth call the algorithm used in the information funnel

as the “name-based” algorithm.

B. Evaluation Results

The computational overhead of data ordering results are

shown in Table I. The prioritization computation of the Infor-

mation Funnel is on a Google Galaxy Nexus phone, because

it is a client-side algorithm, while the computations of the

distance-based and coverage-based algorithms are on a desktop

with a 3.2GHz Intel i5 quad-core CPU, because they are

designed to run on the data collection server. The average,

maximum, and 80th percentile overheads are shown in the

table, where the 80th percentile means that in 80% of the

transmission sessions the computation time is no more than

this value. In the table, we also compare different levels of

receiver feedback, denoted by X (as in Named-based(X)),

where X = 0 means no feedback, and X = 1 (resp. X = 2)

means the receiver summarizes the occupancy of the top one

level (resp. two levels) of its name tree of all the local data

objects under the funnel’s prefix. Note how the computational

overhead introduced by data ordering in the named-based

algorithm is much less than that introduced by distance-

based and coverage-based algorithms. This is because the

previous algorithms were quadratic in the number of items to

prioritize, where ours is in the order of O(n log n) (Theorem 2

in appendix). Considering that the WiFi connection time is

around 2 seconds, the computational overhead introduced by

the Information Funnel is negligible.

TABLE I
OVERHEAD STUDY RESULTS

Algorithm avg(ms) max(ms) 80%(ms)
Name-based(0) 0.000 0.001 0.000
Name-based(1) 0.310 7.491 0.180
Name-based(2) 0.315 7.658 0.189
Distance-based 14.212 609.992 6.441
Coverage-based 14.418 369.931 7.286

Fig. 3 shows coverage performance of the algorithms, where

we consider a cell of the map covered if at least one picture

was uploaded from there. Please note that more uniform

distribution of points in the figure implies a larger coverage.

From Fig. 3, we clearly observe that FIFO is the worst

algorithm, since the data collected by it covers the smallest

area, and the distance-based and coverage-based algorithms

performs better than FIFO, whereas our name-based algorithm

is the best (covers the largest area).

TABLE II
COVERAGE STUDY RESULTS

Algorithm tile cover. cell cover.
Name-based(2) 100% 95.54%
Name-based(1) 100% 94.23%

FIFO 85.96% 68.90%
Distance-based 94.74% 78.74%
Coverage-based 98.25% 89.76%

The actual percentage of cells (and tiles) covered by the

compared algorithms is shown in Table II. Note that, our

algorithm maximizes both metrics.

Fig. 3(f) illustrates the impact of our differentiated service

extension, where we assign a higher weight to the area

[0.35, 0.4]× [0.4, 0.45], identified by the blue rectangle. Com-

pared to Fig. 3(a) where the data has the same weight, we

clearly observe that more data (more red) is collected within

this rectangle than in Fig. 3(a).

TABLE III
COVERAGE STUDY WITH VARIABLE DATA SIZE

Algorithm tile cover. cell cover.
Name-based(2) 100% 95.41%
Name-based(1) 100% 93.70%

FIFO 85.09% 68.50%
Distance-based 93.86% 78.22%
Coverage-based 97.37% 88.45%

Next, we study the coverage performance of the algorithms

with variable data sizes. In this experiment, we randomly

98

0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

2

1

(a) Name-based(2) (b) Name-based(1) (c) FIFO

0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

(d) Distance-based (e) Coverage-based (f) Name-based (weighted)

Fig. 3. Performance of Information Funnel.

assign data objects sizes ranging from 100KB to 200KB.

Please note that in our simulation, we first generate the random

data size and then run the simulation, which guarantees that

all the algorithms run on the same data set. The coverage

performance is shown in Table III. Note that, our algorithm

maximizes both metrics.

The evaluation shows that named-data networking can be

leveraged for efficient automatic coverage (and hence, infor-

mation utility) maximization simply by giving data hierarchi-

cal names, where length of the common prefix grows with

data similarity.

V. CONCLUSIONS

In this paper, we introduced the information funnel, a data

collection scheme that leverages the ability to name data (as

in named-data networking) to offer information-maximizing

content delivery for resource constrained social sensing ap-

plications. Our evaluation shows that our scheme increases

the information coverage compared with the state-of-the-art

solutions, while offering a very low overhead.

ACKNOWLEDGEMENT

This work was sponsored by the Army Research Laboratory

(ARL), DTRA grant HDTRA1-10-1-0120, and NSF grants

CNS 1040380 and CNS 09-05014, and was accomplished

under Cooperative Agreement Number W911NF-09- 2-0053.

The views and conclusions contained in this document are

those of the authors and should not be interpreted as repre-

senting the official policies, either expressed or implied, of

the ARL or the U.S. Government. The U.S. Government is

authorized to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation here on.

REFERENCES

[1] CCNx prototype software. http://www.ccnx.org.
[2] Google galaxy nexus. http://www.google.com/nexus.
[3] C. Boldrini, M. Conti, and A. Passarella. ContentPlace: social-aware data

dissemination in opportunistic networks. In Proc. of MSWiM, 2008.
[4] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer.

Network correlated data gathering with explicit communication: Np-
completeness and algorithms. IEEE/ACM Trans. Netw., 14:41–54, 2006.

[5] W. Dron, A. Leung, M. Uddin, S. Wang, T. Abdelzaher, R. Govindan,
and J. Hancock. Information-maximizing caching in ad hoc networks
with named data networking. In Network Science Workshop (NSW),
2013 IEEE 2nd, pages 90–93. IEEE, 2013.

[6] W. Gao and G. Cao. User-centric data dissemination in disruption
tolerant networks. In Proc. of IEEE Infocom, 2011.

[7] H. Gupta, V. Navda, S. Das, and V.Chowdhary. Efficient gathering of
correlated data in sensor networks. In Proc. of MobiHoc, 2005.

[8] Y. Huang, Y. Gao, K. Nahrstedt, and W. He. Optimizing file retrieval
in delay-tolerant content distribution community. In Proc. of ICDCS,
pages 308–316, 2009.

[9] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard. Networking named content. In Proc. of the
5th international conference on Emerging networking experiments and
technologies, CoNEXT ’09, New York, NY, USA, 2009. ACM.

[10] Y. Jiang, X. Xu, P. Terlecky, T. Abdelzaher, A. Bar-Noy, and R. Govin-
dan. Mediascope: selective on-demand media retrieval from mobile
devices. In Proceedings of the 12th international conference on
Information processing in sensor networks, pages 289–300. ACM, 2013.

[11] S. Kumar, L. Shi, N. Ahmed, S. Gil, D. Katabi, and D. Rus. Carspeak:
a content-centric network for autonomous driving. In Proceedings of
the ACM SIGCOMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communication, SIGCOMM
’12, pages 259–270, New York, NY, USA, 2012. ACM.

[12] V. Lenders, G. Karlsson, and M. May. Wireless ad hoc podcasting. In
Proc. of IEEE SECON, pages 273–283, 2007.

[13] F. Li and J. Wu. MOPS: Providing content-based service in disruption-
tolerant networks. In Proc. of ICDCS, 2009.

[14] C. Liu, K. Wu, , and J. Pei. An energy-efficient data collection
framework for wireless sensor networks by exploiting spatiotemporal
correlation. IEEE Trans. Parallel Distrib. Syst., 18:1011–1023, 2007.

[15] J. Liu, M. Adler, D. Towsley, and C. Zhang. On optimal communication
cost for gathering correlated data through wireless sensor networks. In
Proc. of MobiCom, 2006.

[16] Y. Ma, Y. Guo, X. Tian, and M. Ghanem. Distributed clustering-based
aggregation algorithm for spatial correlated sensor networks. Sensors
Journal, IEEE, 11(3):641–648, 2011.

[17] E. Ngai, M. B. Srivastava, and J. Liu. Context-aware sensor data
dissemination for mobile users in remote areas. In INFOCOM, 2012
Proceedings IEEE, pages 2711–2715. IEEE, 2012.

[18] S. Pattem, B. Krishnamachari, and R. Govindan. The impact of spatial
correlation on routing with compression in wireless sensor networks.
ACM Trans. Sensor Networks, 4:24–33, 2008.

[19] M. J. Pitkanen and J. Ott. Redundancy and distributed caching in mobile
DTNs. In MobiArch, 2007.

[20] M. Uddin, H. Wang, F. Saremi, G.-J. Qi, T. Abdelzaher, and T. Huang.
PhotoNet: a similarity-aware picture delivery service for situation aware-
ness. In Proc. of IEEE RTSS, 2011.

[21] M. Vuran, O. Akan, and I. Akyildiz. Spatio-temporal correlation: theory
and applications for wireless sensor networks. Computer Networks,
45:245–259, 2004.

99

[22] J. Wang, R. Wakikawa, and L. Zhang. Dmnd: Collecting data from
mobiles using named data. In Vehicular Networking Conference (VNC),
2010 IEEE, pages 49–56. IEEE, 2010.

[23] S. Wang, S. Hu, S. Li, H. Liu, M. Uddin, and T. Abdelzaher. Minerva:
Information-centric programming for social sensing. In Proc. of IEEE
ICCCN, 2013.

[24] U. Weinsberg, Q. Li, N. Taft, A. Balachandran, V. Sekar, G. Iannac-
cone, and S. Seshan. Care: content aware redundancy elimination for
challenged networks. In Proceedings of the 11th ACM Workshop on Hot
Topics in Networks, pages 127–132. ACM, 2012.

[25] X. Xu, J. Luo, and Q. Zhang. Delay tolerant event collection in sensor
networks with mobile sink. In Proc. of INFOCOM, 2010.

[26] L. Yin and G. Cao. Supporting cooperative caching in ad hoc networks.
IEEE Trans. on Mobile Computing, 5, 2011.

[27] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft. A socio-aware overlay for
publish/subscribe communication in delay tolerant networks. In Proc.
of MSWiM, 2007.

[28] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. T-
drive: driving directions based on taxi trajectories. In Proceedings of the
18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 99–108. ACM, 2010.

[29] K. Yuan, B. Li, and B. Liang. A distributed framework for correlated
data gathering in sensor networks. IEEE Trans. Veh. Technol., 57:578–
593, 2008.

[30] D. Zhao, H. Ma, and S. Tang. Coupon: Cooperatively building sensing
maps in mobile opportunistic networks. In Mobile Ad-Hoc and Sensor
Systems (MASS), 2013 IEEE 10th International Conference on, pages
295–303. IEEE, 2013.

[31] Z. Zhu and A. Afanasyev. Lets chronosync: Decentralized dataset state
synchronization in named data networking. In Proceedings of the 21st
IEEE International Conference on Network Protocols (ICNP 2013),
2013.

APPENDIX

Lemma 1: Algorithm 1 always schedule the data objects with least
common name prefix with respect to the data set on the receiver side
plus the data set already scheduled on the sender side.

Proof: In Algorithm 1, the procedure MINCHILD always returns
the data objects with the shortest common name prefix with respect
to the data objects at the receiver side in each iteration. The
procedure UPDATEOCCUPANCY guarantees that the occupancy tree
of the receiver side is updated by adding the data object currently is
scheduled. Therefore, the lemma holds.

Lemma 2: When data objects to be scheduled share the same
length of the common name prefix with respect to the data set on the
receiver side plus the data set already scheduled on the sender side,
Algorithm 1 always populates the name tree in a balanced fashion to
schedule the data object whose name prefix has the least occupancy.

Proof: This lemma is guaranteed to hold by the procedure
LEASTOCCUPANCY in Algorithm 1. The input of this procedure is
the output data set of MINCHILD such that data objects have the
same length of common name prefix with respect to the data set on
the receiver side union the data set already scheduled on the sender
side. The output of this procedure is the data object residing at the
least populated name prefix branch. Therefore, the lemma holds.

Theorem 1: By marginal utility comparison rules in Section III-C,
Algorithm 1 returns the optimal prioritization order of the data
objects at the sender side when data objects have the same size and
weight. (This optimality holds without assumption on the number
of data objects transmitted in one transmission session. In other
words, for any k data objects transmitted in one transmission session
Algorithm 1 is optimal, where k is no greater than the total number
of data objects at the sender side.)

Proof: Since data objects are assumed to have the same size,
in one transmission session, the number of data objects can be
transmitted is the same for any prioritization. Let’s denote this number
n. Furthermore, the assumption that data objects have the same
weight implies that the marginal information utility of the data objects
only depends on the data names.

By Lemma 1, Lemma 2 and the marginal utility comparison rules
in Section III-C, we know that Algorithm 1 prioritizes the data objects
in the non-increasing order of the marginal utilities. We claim that:

Claim: Given n numbers {m1,m2, · · · ,mn} and two permu-
tations P and Q. P permutes those numbers in the non-increasing
order and Q permutes in an arbitrary order. For any 0 ≤ k ≤ n,∑Pk

i=P0
mi ≥ ∑Qk

i=Q0
mi, where Pi (Qi resp.) means the i-th number

based on the permutation P (Q resp.).
Proof of Claim: Suppose that

∑Pk
i=P0

mi <
∑Qk

i=Q0
mi. Then

there must exist some number mt that in the first k elements by
the Q permutation but not in that by the P permutation and mt >
mPj for some 0 ≤ j ≤ k. Therefore, we got a contradiction with
that P permutes the numbers in the non-increasing order. Therefore,∑Pk

i=P0
mi ≥ ∑Qk

i=Q0
mi.

The above claim actually proves that our prioritization is optimal,
since it permutes data objects in the non-increasing order of infor-
mation utility. And the optimality is guaranteed for any number k of
data objects transmitted in one transmission session, where k is no
greater than the total number of data objects at the sender side by
the above claim.

Theorem 2: The time complexity of Algorithm 1 is O(n log n+
H2n), where H is the height of the name tree composed of the
names of data objects to be transmitted. When H = O(1), the
time complexity is O(n log n), the best complexity bound for sorting
based on comparison.

Proof: The time complexity of MINCHILD and LEASTOCCU-
PANCY is O(log(Δ)), where Δ is the maximum number of children
of every node in the name tree, i.e., Δ := maxv∈tree |v.child|.
The time complexity of UPDATEOCCUPANCY is O(H), where H
is the height of the name tree. For each level in the name tree, the
time complexity of the while loop is O(n(logΔ + H)), thus the
total time complexity of Algorithm 1 is O(H · n(logΔ + H)) =
O(n log n +H2n), since n = O(ΔH), which completes the proof.

Consider the fact that H << n in practical, we have the time
complexity of Algorithm 1 is O(n log2 n) if H = O(log n), or
O(n log n) if H = O(1), which means the time complexity of our
algorithm is almost the same as the sorting algorithm.

Theorem 3: Compared with the optimal offline algorithm satis-
fying the hierarchical similarity property and deminishing return
property, in one transmission session, the approximation ratio of
Algorithm 1 in the general case is N

N+δ
, where N is the total number

of packets transmitted in the transmission session by Algorithm 1
and δ = �Lmax

Lmin
�, Lmax (resp. Lmin) is the size of the largest (resp.

smallest) data object.
Proof: The optimality requires the two properties must be

satisfied, which means the occupancy should be well balanced in
the name tree. By Theorem 1, Algorithm 1 balances the occupancy
in the name tree optimally in the uniform data size case, which can be
generalized straightforward in the variable data size case. Thus, all the
data objects transmitted by using Algorithm 1 should be transmitted
using the optimal algorithm. Otherwise, the occupancy balancing is
violated.

In the worst case, using Algorithm 1 we can waste Lmax − ε
transmittable bytes by scheduling a largest data object in the end of
the transmission session. However, we can use those bytes to transmit
several small data objects. So the number of packets transmitted by
the optimal algorithm is at most N + �Lmax/Lmin� = N + δ, which
proves the theorem.

100

