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Abstract  
 A hierarchical register allocation approach in high-level synthesis is presented. First, we accomplish 
the trivial register allocation and then we attempt to optimize the number of required registers. In this 
work, we extend conventional register allocation algorithms to handle behavioral descriptions containing 
conditional branches and loops. However, in our approach the register optimization will carried out with 
explicit consideration of interconnection cost. Results show that our approach is more efficient for data 
flow graphs that contain nested conditional blocks and loops.  
 
Keywords: Hierarchical register allocation; Register merging; Interconnection cost. 
 
1. Introduction  
     High-Level Synthesis (HLS) is the design 
process which transforms a behavioral description 
of a digital design into its description of Register 
Transfer Level (RTL) structure [1]. Two major 
tasks are usually distinguished in HLS process: 
Scheduling and Hardware allocation. Hardware 
allocation involves assigning operations to 
functional units, allocating variables to registers 
and providing interconnections between functional 
units and registers. It’s usually subdivided into 
three interdependent subtasks: operation 
assignment, register allocation and data transfer 
allocation.  
     This paper is concerned with the register 
allocation. Variables, whose source and 
destination operations are  scheduled in different  
states, have to be stored  in registers during the 
intermediate state transitions. Register allocation 
is the problem of mapping variables onto a 
minimum set of registers according to their 
lifetime analysis. The lifetime of a variable is the 
time of a period in which the value of the variable 
must be saved in a register. Behavioral 
descriptions usually contain control structures 
such as conditional branches and loops. In order to 
synthesize efficient circuits, it is important to deal 
with these structures especially in the register 
allocation. Since the conventional register 
allocation algorithms (clique partitioning 
algorithm [2, 3], left edge algorithm [4], bipartite 
weighted matching algorithm [5]) are based on 
data dependencies analysis in basic blocks, they 
do not deal with conditional branches and loops. 
However, having less registers does not 
necessarily guarantee that the final design will be 
optimal. Register allocation will have a major 
impact on interconnection cost. The 

interconnections constitute a substantial part of 
register transfer level design cost. Omitting them 
results in implementations that are far from 
optimal. The multiplexers and buses that have to 
be added have a large impact on both the area and 
the delay of implementations. In order to have 
significant savings in interconnect, some 
informations on source and destination operations 
of the registers are needed. These informations are 
deducted from functional units binding that we 
assume has been performed. If two operations 
have been mapped to a same functional unit, it 
will be advantageous to merge registers at their 
inputs and outputs. Kim et al [6] transform a data-
flow graph with conditional branches into one 
without conditional branches by doing some pre-
merging of variables. The research of the sets of 
variables that can be merged is modelled by a 0/1 
Linear Programming (ZOLP) formulation. Since 
the ZOLP formulation increases rapidly with the 
number of local mutually exclusive variables, this 
approach is applicable only to very small 
problems. Although this approache can find near-
optimal allocations in the existence of conditional 
branches, it does not consider the effect on 
interconnection cost. Next, Park et al [7] extend 
the previous transformational technique to handle 
cyclic data-flow graphs with conditional branches. 
In such cases, two ZOLP formulations are used, 
that proves the large increase in the CPU time. 
The first one is for transforming mutually 
exclusive variables into non-mutually exclusive 
variables while maximizing the sum of overlaps. 
The second formulation is used for allocating 
registers to the transformed variables while 
minimizing the number of register transfer 
operations. As was pointed out above, the 
interconnect cost is not considered.  
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     In this work, we propose a hierarchical 
approach that consists in extending conventional 
allocation techniques to handle Data Flow Graphs 
(DFG) that contain nested conditional branches 
and loops, by considering data dependencies and 
control structures in the behavioral specification. 
However, our approach takes into account the 
effect of register optimization on interconnection 
cost. In our approach, we first perform the trivial 
register allocation, and then the problem of 
register allocation can be seen as a register 
optimization problem. 
     This paper is structured as follows. Some 
definitions and notations are given in section 2. 
Our hierarchical register optimization algorithm is 
described in section 3, followed by experimental 
results in section 4. Finally, section 5 concludes 
the paper.   
 
2. Definitions and notations  
     In the following we give some definitions of 
terms used in the remainder of this paper. Since, 
we first perform the trivial register allocation and 
then we try to optimize the number of required 
registers, registers and variables will be used in an 
interchangeable manner. 
 A state graph SG = (S, ES) is a directed graph 
possibly cyclic. Any node Si∈S represents a state 
and   it   is   annotated   by   the   set  of  operations  
 

scheduled in this state, and any unidirectional edge 
eij = (Si, Sj) ∈ ES represents a state transition from 
the state Si to the state Sj. We represent a 
scheduled Data Flow Graph (DFG) by a State 
Graph according to Moore’s model [8], where any 
state of a conditional block is divided in some 
states, said coupled states, so that the mutually 
exclusive operations will be executed in distinct 
states. Generally, the number of states in the 
mutually exclusive branches is not the same. In 
such cases, some dummy states will be added to 
the shortest branches, so that all branches have the 
same length that the longest branch. Even though 
some supplementary states have been added, the 
behavioral of the digital design must not be 
modify. The Fig. 1(b) shows a SG derived from 
the scheduled DFG (Fig. 1(a)) given by Park et al 
in [7]. We assume that the scheduling and the 
functional unit binding have been done previously. 
The design can be described by a SG. The SG 
includes informations on both control and data 
flows, on the schedule and on functional unit 
binding. Each state of the SG is annoted by 
operations scheduled in this state, and by the 
functional units bound to these operations. 
 A register is said to be defined in a state if there 
exists an operation scheduled in this state that can 
possibly modify its content.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: (a) A scheduled DFG and (b) The associated State Graph. 
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 A register is said to be used in a state if it 
appears as operand in the expression of an 
operation scheduled in this state.  
 A register is said to be useful in a state, if it 
contains the value of a variable that might be used 
later. A register is useful from the time where it is 
first written until the time that its content is last 
read.  
 The utility phase of a register is the time of 
period (subset of states, not necessarily 
contiguous) during which the register is useful. 
The determination of utility phases of registers is 
based on the analysis of data flow in the 
description program. We can represent the utility 
phase of a register Ri by an interval <SS(Ri), 
ES(Ri)>, where the Starting State of the register Ri 
(SS(Ri)) is the state at which the register Ri is 
defined and the Ending State  of the register Ri 
(ES(Ri)) is the state at which the register Ri is used 
for the last time [8]. Utility phases of registers can 
be regrouped in a table said the utility phases 
table. 
 Two registers are said to be compatible if they 
are not useful simultaneously, i.e. if their utility 
phases are not overlapping.    
 Two registers are said to be mutually exclusive 
if they are defined and used in different branches 
of a conditional block.  
 A register is said to be local with respect to a 
conditional block if it is useful only inside of the 
conditional block.  
 A register is said to be global with respect to a 
conditional block if it is useful both inside and 
outside of the conditional block.  
 A source operation of a register is the operation 
whose output operand should be mapped into this 
register. 
 A destination operation of a register is an 
operation whose one of its input operands has 
been bound to this register. 
Two registers have source operations (or 
destination operations) in common1 if their source 
(or destination) operations are mapped into a same 
functional unit. 
 Two registers have different source operations 
(or destination operations) if their source (or 
destination) operations are bound to different 
functional units. 
 To facilitate our representation, we assume that 
any conditional block has only two branches (bl: 
the left branch, and br: the right branch) and we 
define the following notations: 
- Ri

l: a register useful in bl, 
- Rj

r: a register useful in br, 
- Gm

l: a group of compatible registers useful in 
bl, 

- Gn
r: a group of compatible registers useful in br. 

 
3. The hierarchical register optimization 
algorithm  
     Our approach employs a hierarchical bottom-
up method. That is why, a Flow Graph FG (B, EB) 
is generated from the SG. The nodes bi ∈B are 
basic blocks and the edges define a precedence 
relationship in the global control flow: there is an 
edge eb = (bi,bj)∈EB if and only if control flow can 
be transfered directly from basic block bi to basic 
block bj. The Fig. 2(b) shows an example of a FG 
constructed from the SG given in Fig. 2(a). Any 
node of the FG has some attributes. In the Fig. 
2(c), we have indicated in particular List of States 
(LS), List of Used Registers (LUR) and Priority 
Index (PI) for basic blocks b1, b2 and b3. The 
priority indexes are affected to different blocks of 
a FG so that the innermost blocks should have the 
highest priority index. Blocks representing 
branches of a same conditional block must have a 
same priority index.  
 
3.1 Impact on interconnection cost  
     The register merging can have a direct impact 
on interconnection cost. We will focus our 
discussion on interconnections between functional 
units and registers. The typical situations that 
occur when two registers are merged into a single 
register are (see Fig. 3): 
(a) Merging registers that have different source 
and different destination operations, 
(b) Merging registers with the source operation of 
one register is the destination operation of  the  
other register, 
(c) Merging registers that  have a common 
destination operation but different source 
operations, 
(d) Merging registers that  have a common source 
operation but different destination operations, 
(e) Merging registers that have both a common 
source operation and a common destination  
     operation. 
 The corresponding increase or decrease in 
multiplexers is also shown in the Fig. 3. Some 
situations show that there is a local interconnect 
reduction of merging registers associated to a 
same functional unit. Consequently, the register 
optimization can be done much better when the 
functional units binding has been done previously. 
Since the source and destination operations of any 
register are known, only the possibilities of 
register merging which result in a reduction in the 
interconnect cost should be selected.
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LS(b1) = {1} ;                      LRU(b1) = {a, b} ;              PI(b1) = 1 ; …

LS(b2) = {2, 3, 4, 5, 6} ;      LRU(b2) = {a, b, c, x} ;      PI(b2) = 2 ; …

LS(b3) = {7, 8, 9, 10, 11};   LRU(b3) = {b, c, y, z} ;       PI(b3) = 2 ; …
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Figure 2: (a) A State Graph, (b) A corresponding Flow 

Graph and  (c) Somes attributes of basic blokcs. 
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Figure 3: Effect of register merging on interconnect. 
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3.2 Register merging  
     After that the trivial register allocation has been 
done, some registers can be merged into a single 
register, if their utility phases do not overlap 
(unconditional register merging), or if they are 
mutually exclusive (conditional register merging).  
 
3.2.1 Unconditional register merging  
     In each branch bi of a conditional block, we can 
define the unconditionally register merging in 
terms of a bipartite weighted matching between 
the set of registers useful in this conditional 
branch, R = {R1, R2, …, Rr}, and the set of 
compatible registers groups G = {G1, G2, …, 
Grmin}, where any group Gj represents a set of 
registers to be merged, and rmin is the minimal 
number of registers required beforehand 
determined. There is a weighted edge, eij, between 
Ri and Gj if and only if the register Ri  can be 
merged with registers in the group Gj. The weight 
wij on the edge eij reflects the impact on 
interconnection cost due to assigning the register 
Ri to the group Gj: 

ij2ijij1ij ZC)YX(CW ++=                                 (1) 
where, C1, C2: are parameters to tune the 
interconnection cost, 
Xij = 1, if none of the registers that have been 
assigned to Gj has a source operation  in common  
            with Ri, 
        0, otherwise.  
Yij = 1, if none of the registers that have been 
assigned to Gj has a destination  operation in 
            common with Ri,       
        0, otherwise.  

Zij = number of different source operations of  all 
registers belong to group Gj when register Ri is 
attributed to Gj.  
Each register Ri in R is attributed to a group Gj in 
G according to a minimal weighted matching for 
the bipartite weighted graph WBG = (R∪G, E). 
 
3.2.2 Conditional register merging  
     Two mutually exclusive registers R1

l and R2
r in 

a conditional block can be merged into one 
register R1,2 since one of them will be used during 
an execution instance. To maximize the use of 
R1,2, registers R1

l and R2
r must have the maximal 

overlap. The overlap between registers R1
l and R2

r 
is defined to be the total number of pairs of 
coupled states in which R1

l and R2
r are useful 

simultaneously. In the case of merging between 
two groups of registers Gi

l and Gj
r, the overlap is 

computed as the sum of the overlaps between 
registers in groups Gi

l and Gj
r. The Fig. 4 

illustrates overlaps between some registers and 
groups of registers. The registers will can be 
merged separately or by groups. There are four 
possibilities of merging any register Ri

l useful in 
the left branch (bl) with registers useful in the right 
branch (br): 
a.   Merging Ri

l with a single register Rj
r, 

b. Merging Ri
l with  a group of registers Gn

r (if 
|Gn

r(Rj
r)|>1)2,3, 

c. Merging a group Gm
l that contains the register 

Ri
l (if |Gm

l (Ri
l)|>1), with a single register Rj

r, 
d. Merging a group Gm

l that contains the register 
Ri

l (if |Gm
l(Ri

l)|>1) with a group of registers Gn
r(if 

|Gn
r( Rj

r)|>1). 
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Figure 4: An example of overlaps between Registers. 
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3.3 Objective function  
     In order to maximize  the use of merged 
registers and to reduce the multiplexers cost 
(number of inputs) required in certain cases, we 
introduce an objective function F. The possibility 
that presents more advantages is the one that 
maximizes the value of the objective function F. 
The expression of the objective function F 
depends upon the case under consideration: 
 
3.3.1 Merging of two registers Ri

l and Rj
r  

)Rr
j,Rl

i(SDOij)Rr
j,Rl

i(F =                           (2a) 

where, Οij: Overlap between registers Ri
l and Rj

r,  

))Rr
j(P ,)Rl

i(Pmax(

))(Rr
jP ),Rl

imin(P(
 )Rr

j ,Rl
iSD( =  : the sharing 

degree between registers Ri
l and Rj

r. 
P(Ri

l): the utility phase of  the register  Ri
l,   

P(Rj
r): the utility phase of  the register Rj

r,  
Although in Fig. 4 registers R2

l and R4
r on the one 

hand, registers R2
l and R5

r on the other hand have 
the same number of overlaps (O24 = O25 = 4), their 
respective merging does not present the same 
advantage. In fact, since P(R2

l) = P(R5
r) then SD 

(R2
l, R5

r) = 1 this means that the merged register 
R2,5 is used during the same interval for each 
execution instance. Whereas, since P(R2

l) < P(R4
r)  

then SD(R2
l, R4

r) = 0.66 this means that the 
merged register R2,4 is not used during the same 
interval for each execution instance. In other 
words, in the left branch the merged register R2,4 is 
used only 66 % of the interval if the merged 
register R2,4 is used in the right branch.  
 
3.3.2 Merging of a register Ri

l (or Ri
r ) with a group 

of registers Gj
r (or Gj

l)  

)Gr
j,Rl

i(SDOij
Gr

j

1)Gr
j,Rl

i(F =                  (2b) 

where, |Gj
r|: the cardinal of the group Gj

r,  
Οij: the sum of overlaps between register Ri

l and 
all registers in Gj

r,  

))Gr
j(P ,)Rl

i(Pmax(

))(Gr
jP ),Rl

imin(P(
 )Gr

j ,Rl
iSD( =  : the 

sharing degree between register Ri
l and registers  

in Gj
r. 

P(Ri
l): the utility phase of  the register Ri

l,   
P(Gj

r): the entire utility phase of all registers in Gj
r,  

Note that the objective function F(Gi
l, Rj

r) of 
merging of a group Gj

l with a register Rj
r has the 

same expression that the objective function F(Ri
l, 

Gj
r) enough for replacing Ri

l by  Gi
l and Gj

r by Rj
r. 

 
3.3.3 Merging two groups of registers Gi

l and Gj
r  

)Gr
j,Gl

i(SDOij
Gr

jGl
i

1)Gr
j,Gl

i(F =             (2c) 

where, |Gi
l|: the cardinal of the group Gj

l, Gj
r|: the 

cardinal of the group Gj
r,  

Οij: the sum of overlaps between registers in Gi
l 

and in Gj
r, 

))Gr
j(P ,)Gl

i(Pmax(

))(Gr
jP ),Gl

imin(P(
 )Gr

j ,Gl
iSD( = : the sharing 

degree between registers in Gi
l and  registers  in 

Gj
r, 

P(Gi
l): the entire utility phase of all registers in Gi

r, 
P(Gj

r): the entire utility phase of all registers in Gj
r,   

     However, since two global registers with 
respect to a conditional block can not be merged 
during the processing of this conditional block, 
then it is needless to compute overlaps between 
global registers and/or groups that contain global 
registers. In addition, note that a register can be 
merged only one time with some registers during 
the processing of the current conditional block. It 
follows that our approach does not compute values 
of the objective function for all possible pairs of 
registers and/or groups of registers and hence a 
gain in both memory and time. 
 
3.4 Implementation   
     Our hierarchical register optimization approach 
is described by the algorithm 1. First, we 
determine the minimal number rmin of registers 
required, rmin is the number of registers useful in 
the state Smax in which the density of the utility 
phases table is maximal. The conditional and 
unconditional register merging are carried out in 
innermost conditional block first (block with the 
highest priority index), and they are carried out in 
the outermost conditional block last (block with 
the lowest priority index). For each step, the 
conditional block to handle is the one that has the 
highest value of the priority index. Since the 
global registers with respect to any conditional 
block can not be merged in this conditional block, 
we must identify them. For each iteration, we 
accomplish first the unconditional register 
merging in any conditional branch and next the 
conditional merging between registers useful in all 
conditional branches. As stated earlier, the 
unconditional register merging in each conditional 
branch is modelled as a matching on a weighted 
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bipartite graph WBG = ((R∪G), E). The registers 
useful in each conditional branch bi

x (x=l for the 
left branch or r for the right branch) are divided 
into some clusters, such as registers in a cluster are 
mutually incompatible. Then, each register in a 
cluster Ck

x is attributed to a distinct group Gi
x 

according a minimal weighted matching found by 
using the Hungarian method [9]. Finally, each 
group Gi

x contains a set of registers to be 
unconditionally merged into one register. Then, 
we perform the conditional merging of registers 
useful in each conditional branch with registers 
useful in the others conditional branches. Next, the 
unconditional register merging between registers –
not yet merged- in any group determined in step 
(b), is then performed. Then, the utility phases 
table is folded at levels of states corresponding to 
the current conditional block. The folding 
operation consists of minimizing  the size of the 
utility phases table (reduction of number of lines) 
by merging pairs of coupled states. This process is 
continued until all conditional blocks are handled. 
In the last step we perform the unconditional 
register merging between registers useful in the 
principal block of priority index 1 (the utility 
phases table and the FG completely reduced). The 
complexity       of     our      hierarchical      register  
 

optimisation algorithm is O(rmin.r2), r is the 
number of the registers assigned by the trivial 
allocation and rmin is the minimal number of 
registers required (rmin < r).  
 
4. Experimental results  
     The proposed algorithm has been implemented 
in the C language, executed on PC Pentium III 
running at 700Mhz, and tested on some 
benchmarks, available in the literature [gcd, 10]; 
[ex1 and kim1, 7] and [maha, 10], that comprise 
nested conditional blocks and loops. The 
experimental results are summarised in the table 1. 
We have compared our results with results 
obtained by Park [7]. Our results show that our 
approach has sufficient performance in terms of 
run time and quality of solutions. Although we do 
not compare run time under the same computer 
condition , the run time of our approach is short 
enough, since the solution of 0-1 integer linear 
programming problems is in general very time 
consuming. Although we have found the same 
optimal number of registers for each example, our 
results differ from results in [7] by the fact that we 
have not the same sets of registers (or variables) to 
merge. Our approach selectively merges registers 
that reduce the interconnection cost. 

 
________________________________________________________________________________ 
                                                       Ours                                                               Park 

  __________________________________________         _______________________ 
 

      No. of      No. of      No. of     No. of      CPU time        No. of      No. of    CPU time 
 

Examples       cb(1)          fu(2)         reg.        mux.(3)    (secondes)          reg.         mux.    (secondes) 
                  _________________________________________         _______________________ 

 
   gcd               1               1             2             2              0.04                   2               -            0.17 

 
   ex1               1               2             2             4              0.12                   2               -            0.66 

 
  kim1             2               3             8            20              0.72                   8              -            9.55 

 
  maha            6                2             7            19             0.18                   7              -            1.06 

 
__________________________________________________________________________________ 

 
Table 1: Experimental results. 

(1) cb: conditional branches, 
(2) fu: functional units, 
(3) We use a multiplexer with two input ports and one output port as an interconnection unit. 
 
5. Conclusion  
     We have proposed a hierarchical register 
optimization approach that is more efficient for 
data flow graphs which contain nested conditional 

blocks and loops. In addition, we have taken into 
account the interconnection cost. This constraint is 
very important in current designs using deep 
submicron technology. Indeed, interconnections 
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have a large impact on both the area and the delay 
of implementations. Experimental results show 
that our approach is more efficient for data flow 
graphs that contain nested conditional blocks and 
loops. 
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Algorithm 1  
1. Determine the minimal number of registers 
required (rmin). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Identify the maximal priority index (PImax). 
3. while (PImax >1), do 
For each conditional block of priority index    
PImax, do 
a. Identify global registers with respect to the 
current conditional block, 
b. Apply the improved Bipartite Weighted 
Matching Algorithm (BWMA) to have groups of 
registers to be unconditionally merged in each 
conditional branch, 
c. Identify, merge registers and/or groups of 
registers that maximize the objective function F, 
d. Merge registers in  groups  (determine in step 
(b)) not yet merged. 
e. Fold the utility phases table at levels of 
mutually exclusive states correspondent to the 
current  conditional block. 
f. Update the Flow Graph. 
g. Decrease the value of  the priority index (PImax 
= PImax –1) and return to step 3. 
4. Apply the improved BWMA to merge some 
registers useful in the principal basic block   
(PI = 1).  
5.   End. 
 
Notes  
1. Source (or destination) operations in common 
with respect two registers do not means  
 necessarily that operations are of the same type, 
but means that operations are mapped to a same  
 functional unit. 
2. Gj

x(Ri
x):  a group of compatible registers, that 

contains the register Ri
x. The groups Gj

x (Ri
x),     

 with j = 1, 2, …, rmin, are determined in the step of 
unconditional register merging.   
3. |Gj

x (Ri
x)| >1 means that the group of registers 

Gm
x(Ri

x) contains the register Ri
x and at least an 

other register useful in the conditional branch bx. 
 


