
 September 2002

 Phys. Chem. News 7 (2002) 63-70 PCN

 63

A HIERARCHICAL REGISTER OPTIMIZATION APPROACH

M. Fettach1*, A. Hamdoun1, O. Sentieys2
1 Laboratoire de Traitement de l’Information, Faculté des Sciences Ben M‘Sick, B.P. 7955 , Sidi Othmane, Casablanca, Morocco

2 ENSSAT, LASTI, Université de Rennes I, 6 Rue de Kérampont, 22305 Lannion, France
* Corresponding author. Email: fettachm@yahoo.fr

Received : 14 November 2001; revised version accepted : 06 June 2002

Abstract
 A hierarchical register allocation approach in high-level synthesis is presented. First, we accomplish
the trivial register allocation and then we attempt to optimize the number of required registers. In this
work, we extend conventional register allocation algorithms to handle behavioral descriptions containing
conditional branches and loops. However, in our approach the register optimization will carried out with
explicit consideration of interconnection cost. Results show that our approach is more efficient for data
flow graphs that contain nested conditional blocks and loops.

Keywords: Hierarchical register allocation; Register merging; Interconnection cost.

1. Introduction
 High-Level Synthesis (HLS) is the design
process which transforms a behavioral description
of a digital design into its description of Register
Transfer Level (RTL) structure [1]. Two major
tasks are usually distinguished in HLS process:
Scheduling and Hardware allocation. Hardware
allocation involves assigning operations to
functional units, allocating variables to registers
and providing interconnections between functional
units and registers. It’s usually subdivided into
three interdependent subtasks: operation
assignment, register allocation and data transfer
allocation.
 This paper is concerned with the register
allocation. Variables, whose source and
destination operations are scheduled in different
states, have to be stored in registers during the
intermediate state transitions. Register allocation
is the problem of mapping variables onto a
minimum set of registers according to their
lifetime analysis. The lifetime of a variable is the
time of a period in which the value of the variable
must be saved in a register. Behavioral
descriptions usually contain control structures
such as conditional branches and loops. In order to
synthesize efficient circuits, it is important to deal
with these structures especially in the register
allocation. Since the conventional register
allocation algorithms (clique partitioning
algorithm [2, 3], left edge algorithm [4], bipartite
weighted matching algorithm [5]) are based on
data dependencies analysis in basic blocks, they
do not deal with conditional branches and loops.
However, having less registers does not
necessarily guarantee that the final design will be
optimal. Register allocation will have a major
impact on interconnection cost. The

interconnections constitute a substantial part of
register transfer level design cost. Omitting them
results in implementations that are far from
optimal. The multiplexers and buses that have to
be added have a large impact on both the area and
the delay of implementations. In order to have
significant savings in interconnect, some
informations on source and destination operations
of the registers are needed. These informations are
deducted from functional units binding that we
assume has been performed. If two operations
have been mapped to a same functional unit, it
will be advantageous to merge registers at their
inputs and outputs. Kim et al [6] transform a data-
flow graph with conditional branches into one
without conditional branches by doing some pre-
merging of variables. The research of the sets of
variables that can be merged is modelled by a 0/1
Linear Programming (ZOLP) formulation. Since
the ZOLP formulation increases rapidly with the
number of local mutually exclusive variables, this
approach is applicable only to very small
problems. Although this approache can find near-
optimal allocations in the existence of conditional
branches, it does not consider the effect on
interconnection cost. Next, Park et al [7] extend
the previous transformational technique to handle
cyclic data-flow graphs with conditional branches.
In such cases, two ZOLP formulations are used,
that proves the large increase in the CPU time.
The first one is for transforming mutually
exclusive variables into non-mutually exclusive
variables while maximizing the sum of overlaps.
The second formulation is used for allocating
registers to the transformed variables while
minimizing the number of register transfer
operations. As was pointed out above, the
interconnect cost is not considered.

M. Fettach et al, Phys. Chem. News 7 (2002) 63-70

 64

 In this work, we propose a hierarchical
approach that consists in extending conventional
allocation techniques to handle Data Flow Graphs
(DFG) that contain nested conditional branches
and loops, by considering data dependencies and
control structures in the behavioral specification.
However, our approach takes into account the
effect of register optimization on interconnection
cost. In our approach, we first perform the trivial
register allocation, and then the problem of
register allocation can be seen as a register
optimization problem.
 This paper is structured as follows. Some
definitions and notations are given in section 2.
Our hierarchical register optimization algorithm is
described in section 3, followed by experimental
results in section 4. Finally, section 5 concludes
the paper.

2. Definitions and notations
 In the following we give some definitions of
terms used in the remainder of this paper. Since,
we first perform the trivial register allocation and
then we try to optimize the number of required
registers, registers and variables will be used in an
interchangeable manner.
 A state graph SG = (S, ES) is a directed graph
possibly cyclic. Any node Si∈S represents a state
and it is annotated by the set of operations

scheduled in this state, and any unidirectional edge
eij = (Si, Sj) ∈ ES represents a state transition from
the state Si to the state Sj. We represent a
scheduled Data Flow Graph (DFG) by a State
Graph according to Moore’s model [8], where any
state of a conditional block is divided in some
states, said coupled states, so that the mutually
exclusive operations will be executed in distinct
states. Generally, the number of states in the
mutually exclusive branches is not the same. In
such cases, some dummy states will be added to
the shortest branches, so that all branches have the
same length that the longest branch. Even though
some supplementary states have been added, the
behavioral of the digital design must not be
modify. The Fig. 1(b) shows a SG derived from
the scheduled DFG (Fig. 1(a)) given by Park et al
in [7]. We assume that the scheduling and the
functional unit binding have been done previously.
The design can be described by a SG. The SG
includes informations on both control and data
flows, on the schedule and on functional unit
binding. Each state of the SG is annoted by
operations scheduled in this state, and by the
functional units bound to these operations.
 A register is said to be defined in a state if there
exists an operation scheduled in this state that can
possibly modify its content.

Figure 1: (a) A scheduled DFG and (b) The associated State Graph.

(b)

b, c

b > 0

a, b

a > b

b = z + c
 (fu1) c = x * x

(fu2)

y = - b
(fu1)

z = b +1
(fu1)

c = y * z
(fu2)

x = a +1
 (fu1)

3

2

1

7

8

9

10

4

5

6 11

(a)

………………………………

………………………………

………………………………

………………………………

………………………………

………………………………

..….…………………………

5

4

States

1

2

3

6

c = y * z

b = z + c

b > 0

y = - b

x = a + 1

b, c

a > b

z = b + 1

a, b

c = x * x

 *

 +

 >

 +

 *

 >

 +

M. Fettach et al, Phys. Chem. News 7 (2002) 63-70

 65

 A register is said to be used in a state if it
appears as operand in the expression of an
operation scheduled in this state.
 A register is said to be useful in a state, if it
contains the value of a variable that might be used
later. A register is useful from the time where it is
first written until the time that its content is last
read.
 The utility phase of a register is the time of
period (subset of states, not necessarily
contiguous) during which the register is useful.
The determination of utility phases of registers is
based on the analysis of data flow in the
description program. We can represent the utility
phase of a register Ri by an interval <SS(Ri),
ES(Ri)>, where the Starting State of the register Ri
(SS(Ri)) is the state at which the register Ri is
defined and the Ending State of the register Ri
(ES(Ri)) is the state at which the register Ri is used
for the last time [8]. Utility phases of registers can
be regrouped in a table said the utility phases
table.
 Two registers are said to be compatible if they
are not useful simultaneously, i.e. if their utility
phases are not overlapping.
 Two registers are said to be mutually exclusive
if they are defined and used in different branches
of a conditional block.
 A register is said to be local with respect to a
conditional block if it is useful only inside of the
conditional block.
 A register is said to be global with respect to a
conditional block if it is useful both inside and
outside of the conditional block.
 A source operation of a register is the operation
whose output operand should be mapped into this
register.
 A destination operation of a register is an
operation whose one of its input operands has
been bound to this register.
Two registers have source operations (or
destination operations) in common1 if their source
(or destination) operations are mapped into a same
functional unit.
 Two registers have different source operations
(or destination operations) if their source (or
destination) operations are bound to different
functional units.
 To facilitate our representation, we assume that
any conditional block has only two branches (bl:
the left branch, and br: the right branch) and we
define the following notations:
- Ri

l: a register useful in bl,
- Rj

r: a register useful in br,
- Gm

l: a group of compatible registers useful in
bl,

- Gn
r: a group of compatible registers useful in br.

3. The hierarchical register optimization
algorithm
 Our approach employs a hierarchical bottom-
up method. That is why, a Flow Graph FG (B, EB)
is generated from the SG. The nodes bi ∈B are
basic blocks and the edges define a precedence
relationship in the global control flow: there is an
edge eb = (bi,bj)∈EB if and only if control flow can
be transfered directly from basic block bi to basic
block bj. The Fig. 2(b) shows an example of a FG
constructed from the SG given in Fig. 2(a). Any
node of the FG has some attributes. In the Fig.
2(c), we have indicated in particular List of States
(LS), List of Used Registers (LUR) and Priority
Index (PI) for basic blocks b1, b2 and b3. The
priority indexes are affected to different blocks of
a FG so that the innermost blocks should have the
highest priority index. Blocks representing
branches of a same conditional block must have a
same priority index.

3.1 Impact on interconnection cost
 The register merging can have a direct impact
on interconnection cost. We will focus our
discussion on interconnections between functional
units and registers. The typical situations that
occur when two registers are merged into a single
register are (see Fig. 3):
(a) Merging registers that have different source
and different destination operations,
(b) Merging registers with the source operation of
one register is the destination operation of the
other register,
(c) Merging registers that have a common
destination operation but different source
operations,
(d) Merging registers that have a common source
operation but different destination operations,
(e) Merging registers that have both a common
source operation and a common destination
 operation.
 The corresponding increase or decrease in
multiplexers is also shown in the Fig. 3. Some
situations show that there is a local interconnect
reduction of merging registers associated to a
same functional unit. Consequently, the register
optimization can be done much better when the
functional units binding has been done previously.
Since the source and destination operations of any
register are known, only the possibilities of
register merging which result in a reduction in the
interconnect cost should be selected.

M. Fettach et al, Phys. Chem. News 7 (2002) 63-70

 66

LS(b1) = {1} ; LRU(b1) = {a, b} ; PI(b1) = 1 ; …

LS(b2) = {2, 3, 4, 5, 6} ; LRU(b2) = {a, b, c, x} ; PI(b2) = 2 ; …

LS(b3) = {7, 8, 9, 10, 11}; LRU(b3) = {b, c, y, z} ; PI(b3) = 2 ; …

 (c)

(a)

b, c

b > 0

a, b

a > b

b = z + c
 (fu1)c = x * x

(fu2)

y = - b
(fu1)

z = b +1
(fu1)

c = y * z
(fu2)

x = a +1
 (fu1)

 3

 2

 1

7

8

9

10

 4

 5

6 11

(b)

b, c

 b2 b3

 b1

Figure 2: (a) A State Graph, (b) A corresponding Flow

Graph and (c) Somes attributes of basic blokcs.

O1

O3

O2

(0 mux)

O3

O1 O2

O3O2

O1

O3O2

O1

(0 mux)

O2

O1

(-1 mux)

O3

O1

O4

O2

(+ 1 mux)

O1 O2

O3 O4

Case After mergingBefore merging

(e)

 (d)

 (c)

 (b)

 (a)

O3O2

O2O1

O2

O1

(+ 1 mux)

O1

O3

Figure 3: Effect of register merging on interconnect.

M. Fettach et al, Phys. Chem. News 7 (2002) 63-70

 67

3.2 Register merging
 After that the trivial register allocation has been
done, some registers can be merged into a single
register, if their utility phases do not overlap
(unconditional register merging), or if they are
mutually exclusive (conditional register merging).

3.2.1 Unconditional register merging
 In each branch bi of a conditional block, we can
define the unconditionally register merging in
terms of a bipartite weighted matching between
the set of registers useful in this conditional
branch, R = {R1, R2, …, Rr}, and the set of
compatible registers groups G = {G1, G2, …,
Grmin}, where any group Gj represents a set of
registers to be merged, and rmin is the minimal
number of registers required beforehand
determined. There is a weighted edge, eij, between
Ri and Gj if and only if the register Ri can be
merged with registers in the group Gj. The weight
wij on the edge eij reflects the impact on
interconnection cost due to assigning the register
Ri to the group Gj:

ij2ijij1ij ZC)YX(CW ++= (1)
where, C1, C2: are parameters to tune the
interconnection cost,
Xij = 1, if none of the registers that have been
assigned to Gj has a source operation in common
 with Ri,
 0, otherwise.
Yij = 1, if none of the registers that have been
assigned to Gj has a destination operation in
 common with Ri,
 0, otherwise.

Zij = number of different source operations of all
registers belong to group Gj when register Ri is
attributed to Gj.
Each register Ri in R is attributed to a group Gj in
G according to a minimal weighted matching for
the bipartite weighted graph WBG = (R∪G, E).

3.2.2 Conditional register merging
 Two mutually exclusive registers R1

l and R2
r in

a conditional block can be merged into one
register R1,2 since one of them will be used during
an execution instance. To maximize the use of
R1,2, registers R1

l and R2
r must have the maximal

overlap. The overlap between registers R1
l and R2

r
is defined to be the total number of pairs of
coupled states in which R1

l and R2
r are useful

simultaneously. In the case of merging between
two groups of registers Gi

l and Gj
r, the overlap is

computed as the sum of the overlaps between
registers in groups Gi

l and Gj
r. The Fig. 4

illustrates overlaps between some registers and
groups of registers. The registers will can be
merged separately or by groups. There are four
possibilities of merging any register Ri

l useful in
the left branch (bl) with registers useful in the right
branch (br):
a. Merging Ri

l with a single register Rj
r,

b. Merging Ri
l with a group of registers Gn

r (if
|Gn

r(Rj
r)|>1)2,3,

c. Merging a group Gm
l that contains the register

Ri
l (if |Gm

l (Ri
l)|>1), with a single register Rj

r,
d. Merging a group Gm

l that contains the register
Ri

l (if |Gm
l(Ri

l)|>1) with a group of registers Gn
r(if

|Gn
r(Rj

r)|>1).

 Rl
1 Rl

2 Rl
3 Rr

4 Rr
5 Rr

6

 ………………………………………

 ………………………………………

 ………………………………………

 ………………………………………

 ………………………………………

 ………………………………………

 ………………………………………

 ………………………………………

 ………………………………………

 ………………………………………

 ………………………………………

 ………………………………………

 ………………………………………

 ………………………………………

……………………………………………………..

br

bl

O14(Rl
1, Rr

4) = 2 ;

O15(Rl
1, Rr

5) = 1 ;

O24(Rl
2, Rr

4) = 4 ;

O25(Rl
2, Rr

5) = 4 ;

Gl = {Rl
1, Rl

2};

Gr = {Rr
5, Rr

6};

OG
l
G

r = 4.

Figure 4: An example of overlaps between Registers.

M. Fettach et al, Phys. Chem. News 7 (2002) 63-70

 68

3.3 Objective function
 In order to maximize the use of merged
registers and to reduce the multiplexers cost
(number of inputs) required in certain cases, we
introduce an objective function F. The possibility
that presents more advantages is the one that
maximizes the value of the objective function F.
The expression of the objective function F
depends upon the case under consideration:

3.3.1 Merging of two registers Ri

l and Rj
r

)Rr
j,Rl

i(SDOij)Rr
j,Rl

i(F = (2a)

where, Οij: Overlap between registers Ri
l and Rj

r,

))Rr
j(P ,)Rl

i(Pmax(

))(Rr
jP),Rl

imin(P(
)Rr

j ,Rl
iSD(= : the sharing

degree between registers Ri
l and Rj

r.
P(Ri

l): the utility phase of the register Ri
l,

P(Rj
r): the utility phase of the register Rj

r,
Although in Fig. 4 registers R2

l and R4
r on the one

hand, registers R2
l and R5

r on the other hand have
the same number of overlaps (O24 = O25 = 4), their
respective merging does not present the same
advantage. In fact, since P(R2

l) = P(R5
r) then SD

(R2
l, R5

r) = 1 this means that the merged register
R2,5 is used during the same interval for each
execution instance. Whereas, since P(R2

l) < P(R4
r)

then SD(R2
l, R4

r) = 0.66 this means that the
merged register R2,4 is not used during the same
interval for each execution instance. In other
words, in the left branch the merged register R2,4 is
used only 66 % of the interval if the merged
register R2,4 is used in the right branch.

3.3.2 Merging of a register Ri

l (or Ri
r) with a group

of registers Gj
r (or Gj

l)

)Gr
j,Rl

i(SDOij
Gr

j

1)Gr
j,Rl

i(F = (2b)

where, |Gj
r|: the cardinal of the group Gj

r,
Οij: the sum of overlaps between register Ri

l and
all registers in Gj

r,

))Gr
j(P ,)Rl

i(Pmax(

))(Gr
jP),Rl

imin(P(
)Gr

j ,Rl
iSD(= : the

sharing degree between register Ri
l and registers

in Gj
r.

P(Ri
l): the utility phase of the register Ri

l,
P(Gj

r): the entire utility phase of all registers in Gj
r,

Note that the objective function F(Gi
l, Rj

r) of
merging of a group Gj

l with a register Rj
r has the

same expression that the objective function F(Ri
l,

Gj
r) enough for replacing Ri

l by Gi
l and Gj

r by Rj
r.

3.3.3 Merging two groups of registers Gi

l and Gj
r

)Gr
j,Gl

i(SDOij
Gr

jGl
i

1)Gr
j,Gl

i(F = (2c)

where, |Gi
l|: the cardinal of the group Gj

l, Gj
r|: the

cardinal of the group Gj
r,

Οij: the sum of overlaps between registers in Gi
l

and in Gj
r,

))Gr
j(P ,)Gl

i(Pmax(

))(Gr
jP),Gl

imin(P(
)Gr

j ,Gl
iSD(= : the sharing

degree between registers in Gi
l and registers in

Gj
r,

P(Gi
l): the entire utility phase of all registers in Gi

r,
P(Gj

r): the entire utility phase of all registers in Gj
r,

 However, since two global registers with
respect to a conditional block can not be merged
during the processing of this conditional block,
then it is needless to compute overlaps between
global registers and/or groups that contain global
registers. In addition, note that a register can be
merged only one time with some registers during
the processing of the current conditional block. It
follows that our approach does not compute values
of the objective function for all possible pairs of
registers and/or groups of registers and hence a
gain in both memory and time.

3.4 Implementation
 Our hierarchical register optimization approach
is described by the algorithm 1. First, we
determine the minimal number rmin of registers
required, rmin is the number of registers useful in
the state Smax in which the density of the utility
phases table is maximal. The conditional and
unconditional register merging are carried out in
innermost conditional block first (block with the
highest priority index), and they are carried out in
the outermost conditional block last (block with
the lowest priority index). For each step, the
conditional block to handle is the one that has the
highest value of the priority index. Since the
global registers with respect to any conditional
block can not be merged in this conditional block,
we must identify them. For each iteration, we
accomplish first the unconditional register
merging in any conditional branch and next the
conditional merging between registers useful in all
conditional branches. As stated earlier, the
unconditional register merging in each conditional
branch is modelled as a matching on a weighted

M. Fettach et al, Phys. Chem. News 7 (2002) 63-70

 69

bipartite graph WBG = ((R∪G), E). The registers
useful in each conditional branch bi

x (x=l for the
left branch or r for the right branch) are divided
into some clusters, such as registers in a cluster are
mutually incompatible. Then, each register in a
cluster Ck

x is attributed to a distinct group Gi
x

according a minimal weighted matching found by
using the Hungarian method [9]. Finally, each
group Gi

x contains a set of registers to be
unconditionally merged into one register. Then,
we perform the conditional merging of registers
useful in each conditional branch with registers
useful in the others conditional branches. Next, the
unconditional register merging between registers –
not yet merged- in any group determined in step
(b), is then performed. Then, the utility phases
table is folded at levels of states corresponding to
the current conditional block. The folding
operation consists of minimizing the size of the
utility phases table (reduction of number of lines)
by merging pairs of coupled states. This process is
continued until all conditional blocks are handled.
In the last step we perform the unconditional
register merging between registers useful in the
principal block of priority index 1 (the utility
phases table and the FG completely reduced). The
complexity of our hierarchical register

optimisation algorithm is O(rmin.r2), r is the
number of the registers assigned by the trivial
allocation and rmin is the minimal number of
registers required (rmin < r).

4. Experimental results
 The proposed algorithm has been implemented
in the C language, executed on PC Pentium III
running at 700Mhz, and tested on some
benchmarks, available in the literature [gcd, 10];
[ex1 and kim1, 7] and [maha, 10], that comprise
nested conditional blocks and loops. The
experimental results are summarised in the table 1.
We have compared our results with results
obtained by Park [7]. Our results show that our
approach has sufficient performance in terms of
run time and quality of solutions. Although we do
not compare run time under the same computer
condition , the run time of our approach is short
enough, since the solution of 0-1 integer linear
programming problems is in general very time
consuming. Although we have found the same
optimal number of registers for each example, our
results differ from results in [7] by the fact that we
have not the same sets of registers (or variables) to
merge. Our approach selectively merges registers
that reduce the interconnection cost.

__
 Ours Park

 __ _______________________

 No. of No. of No. of No. of CPU time No. of No. of CPU time

Examples cb(1) fu(2) reg. mux.(3) (secondes) reg. mux. (secondes)
 ___ _______________________

 gcd 1 1 2 2 0.04 2 - 0.17

 ex1 1 2 2 4 0.12 2 - 0.66

 kim1 2 3 8 20 0.72 8 - 9.55

 maha 6 2 7 19 0.18 7 - 1.06

__

Table 1: Experimental results.

(1) cb: conditional branches,
(2) fu: functional units,
(3) We use a multiplexer with two input ports and one output port as an interconnection unit.

5. Conclusion
 We have proposed a hierarchical register
optimization approach that is more efficient for
data flow graphs which contain nested conditional

blocks and loops. In addition, we have taken into
account the interconnection cost. This constraint is
very important in current designs using deep
submicron technology. Indeed, interconnections

M. Fettach et al, Phys. Chem. News 7 (2002) 63-70

 70

have a large impact on both the area and the delay
of implementations. Experimental results show
that our approach is more efficient for data flow
graphs that contain nested conditional blocks and
loops.

References
[1] M. C. McFarland, A. C. Parker,
R. Camposano, Tutorial on High-Level Synthesis,
Proc. of the 25th Design Automation Conference,
July 1988, pp. 330-336.
[2] C. -J. Tseng, D. Siewiorek, IEEE Transaction
on CAD, 5, N°3 (1986) 379-395.
[3] P. G. Paulin, J. P. Knight, IEEE Transaction
CAD, 8, N°6 (1989) 661-679.
[4] K. Kurdahi, A. Parker, REAL: A program for
register allocation, Proc.24th design
Automation Conference (1987) 210-215.
[5] C. -Y. Huang, Y. -S. Chen, Y. -L. Lin,
Y. -C. Hsu, Data path allocation based on bipartite
weighted matching, Proc. 27th Design Automation
Conference (1990) 499-503.
[6] T. Kim, C. L. Liu, Journal of VLSI Signal
Processing, 12 (1996) 265-285.
[7] C. Park, T. Kim,, C. L. Liu, Journal of VLSI
Signal Processing, 9 (1998) 269-285.
[8] M. Fettach, A. Hamdoun, O. Sentieys, An
Efficient Register Allocation for Data path
Synthesis systems, Proc. 6th Maghrebian
Conference on Computer Sciences,
MCSEAI’2000, Fès, 1-3 November, 2000.
[9] C. H. Papdimitriou, K. Steiglitz, Combinatorial
optimization, Prentice-Hall (1982).
[10] Benchmarks for the 6th international
workshop on high-level synthesis (1991).

Algorithm 1
1. Determine the minimal number of registers
required (rmin).

2. Identify the maximal priority index (PImax).
3. while (PImax >1), do
For each conditional block of priority index
PImax, do
a. Identify global registers with respect to the
current conditional block,
b. Apply the improved Bipartite Weighted
Matching Algorithm (BWMA) to have groups of
registers to be unconditionally merged in each
conditional branch,
c. Identify, merge registers and/or groups of
registers that maximize the objective function F,
d. Merge registers in groups (determine in step
(b)) not yet merged.
e. Fold the utility phases table at levels of
mutually exclusive states correspondent to the
current conditional block.
f. Update the Flow Graph.
g. Decrease the value of the priority index (PImax
= PImax –1) and return to step 3.
4. Apply the improved BWMA to merge some
registers useful in the principal basic block
(PI = 1).
5. End.

Notes
1. Source (or destination) operations in common
with respect two registers do not means
 necessarily that operations are of the same type,
but means that operations are mapped to a same
 functional unit.
2. Gj

x(Ri
x): a group of compatible registers, that

contains the register Ri
x. The groups Gj

x (Ri
x),

 with j = 1, 2, …, rmin, are determined in the step of
unconditional register merging.
3. |Gj

x (Ri
x)| >1 means that the group of registers

Gm
x(Ri

x) contains the register Ri
x and at least an

other register useful in the conditional branch bx.

