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ABSTRACT

This paper considers the problem of construction of low-pass fil-
ters on the unit sphere, which has wide ranging applications in the
processing of signals on the unit sphere. We propose a design cri-
terion for the construction of strictly bandlimited low-pass filters in
the spectral domain with optimal concentration in the specified po-
lar cap region in the spatial domain. Our approach uses the weighted
sum of the first optimally concentrated eigenfunctions from appro-
priately formulated Slepian concentration problems on the sphere.
Furthermore, in order to reduce the computational complexity of the
proposed algorithm, we develop a closed-form expression to accu-
rately model these eigenfunctions. We illustrate the construction of
low-pass filters using the proposed approach and demonstrate the
advantage of our method approach compared to a diffusion based
approach in the literature in terms of control over both bandwidth in
the spectral domain and concentration in the spatial domain.

Keywords: Filtering, unit sphere, bandlimited signals, Slepian
concentration problem, convolution.

1. INTRODUCTION

Motivated by the growing number of applications in diverse fields
such as geodesy and cosmology [1], 3D beamforming [2], image
processing [3], computer graphics [4] and medical imaging [5], there
has been an increasing interest in developing theories and techniques
for processing of signals on the sphere. In this regard, the design and
construction of low-pass filters on the sphere is an important problem
which has direct applications in all the above fields where signals are
defined in the unit sphere domain.

Recently, some work has been done to extend the well known fil-
tering methods in the Euclidean domain to the spherical domain, but
many key challenges still remain. In general, the closed geometry of
the sphere makes it complex and non-trivial to emulate and extend
familiar operations in Euclidean domain to the spherical domain.
The problems of filtering and sampling on the sphere have been stud-
ied in [6] and [5], which provide the equivalents of Nyquist-Shannon
sampling theorem and the generalised Papoulis sampling theorem on
the sphere, respectively. A general framework, that unifies the dif-
ferent and often apparently conflicting notions of convolution on the
sphere is proposed in [7]. The matched filter on sphere has been de-
rived in [8] and is used for detection of objects embedded in stochas-
tic backgrounds. The theoretical conditions on the invertibility of
filter banks on the sphere are investigated in [5], but no design cri-
terion is proposed. A low-pass filter based on diffusion approach
is proposed in [3]. It is shown that this approach is equivalent to
Gaussian smoothing on the sphere and is computationally efficient,
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but it does not provide explicit control over either the filter band-
width or the concentration of filtering kernel in spatial domain. The
work in [1] poses and solves the analogue of Slepian’s concentration
problem [9] on the sphere, that of optimally concentrating a signal in
both spatial and spectral domains. The authors propose a numerical
technique to determine a family of eigenfunctions which are opti-
mally concentrated in spatial domain and strictly bandlimited in the
spectral domain. The use of these eigenfunctions for localized spec-
tral analysis on the unit sphere is investigated in [10]. It is suggested
in [5, 10] that these eigenfunctions could be suitable candidates for
filter design on the sphere. However, to the best of author’s knowl-
edge, no such technique exists in the literature.

In this work, we focus on the design of an azimuthally-
symmetric low-pass filter. We propose a novel design criterion for
low-pass filter construction in spectral domain such that the spatial
response of the filter is optimally concentrated in a specified polar
cap region. Our approach is based on Simon’s bandlimited eigen-
functions [10] and the resultant filter confines the spatial response
in a defined polar cap region at the cost of a small ripple in spectral
domain. In addition, the proposed filter is perfectly band-limited
in spectral domain with no side lobes. We develop a closed-form
expression to accurately model the eigenfunctions being used in
construction process, which greatly reduces the computational com-
plexity of the proposed algorithm. We illustrate the construction
of low-pass filters using the proposed approach and demonstrate
the advantage of our technique compared with the diffusion based
low-pass filtering in [3] in terms of control over filter response in
both spectral and spatial domains.

This paper is organized as follows. The mathematical back-
ground is summarized in Section 2. The problem formulation is
discussed in Section 3. The proposed low-pass filter design algo-
rithm and closed-form formulation is proposed in Section 4. Results
are discussed in Section 5. Finally, Section 6 concludes the paper.

2. MATHEMATICAL BACKGROUND

Let g(θ,φ) be a square integrable function, defined on the unit
sphere S2 ! {x ∈ R3 : ‖x‖ = 1} in complex Hilbert space
L2(S2), where x is the unit vector, θ ∈ [0,π] denotes the co-latitude
measured with respect to positive z-axis, φ ∈ [0, 2π) denotes the
longitude and is measured with respect to positive x-axis in the x−y
plane. Note that θ = 0 corresponds to the north pole.

The spherical harmonics, Y m
! (θ,φ), for degree $ ≥ 0 and order

|m| ≤ $ are defined as [11]

Y m
! (θ,φ) = Nm

! Pm
! (cos θ)eimφ (1)

where i is the imaginary unit and Nm
! is the normalization constant

Nm
! =

√
2$+ 1
4π

($−m)!
($+m)!

(2)



and Pm
! are the Associated Legendre Polynomials defined as

Pm
! (x) =

(−1)m

2!$!

√
(1− x2)m

d!+m

dx!+m
(x2 − 1)! (3)

P−m
! (x) = (−1)m

($−m)!
($+m)!

Pm
! (x) (4)

for |x| ≤ 1 and m ≥ 0. With above definitions, spherical harmonic
functions form an orthonormal set of basis functions for L2(S2).
Thus, any function g(θ,φ) defined on unit sphere can be expanded
in terms of spherical harmonics as

g(θ,φ) =
∞∑

!=0

!∑

m=−!

gm! Y m
! (θ,φ) (5)

where gm! is the spherical harmonics coefficient, which is obtained
by projecting the function g(θ,φ) onto Y m

! (θ,φ) as

gm! ! 〈g, Y m
! 〉 =

∫

Ω

g(θ,φ)Y m
! (θ,φ)dΩ (6)

where Ω denotes integration over the whole unit sphere, dΩ =
sin(θ)dθdφ and (·) denotes the complex conjugate operation. Note
that if g(θ,φ) is an azimuthally-symmetric function (independent of
φ), then only order m = 0 harmonic coefficients are non-zero.

3. PROBLEM FORMULATION

A suitable approach to formulate filtering on the sphere is to emu-
late the filtering in Euclidean domain. Following the analogy, low-
pass filtering on the unit sphere may be defined as spherical convolu-
tion. If f(θ,φ) represents the signal to be filtered using filter kernel
h(θ,φ), the filtered output g(θ,φ) is given by

g(θ,φ) = f(θ,φ) ∗ h(θ,φ) (7)

where ‘*’ denotes the convolution operation. There are different no-
tions of spherical convolution available in the literature [7]. Due
to its importance in the sequel, we first summarize the definition of
convolution used in this work, before defining the design criteria for
the construction of low-pass filters on the sphere.

3.1. Convolution on Unit Sphere

In the Euclidean domain, convolution is a function of translations
of one function relative to the other. On the sphere, rotations are
the analog of translations in Euclidean domain. The convolution of
spherical filter h(θ,φ) and a spherical signal f(θ,φ) is given by [6]

g(α,β, γ) =

∫

S2
[D(α,β, γ)h](θ,φ)f(θ,φ)dΩ (8)

where g(α,β, γ) is a function on SO(3), α ∈ [0, 2π), β ∈ [0,π],
γ ∈ [0, 2π) are the Euler angles which parameterize rotations on the
sphere, D(α,β, γ) is the rotation operator which gives ‘αβγ’ rota-
tion about ‘zyz-axis’. The effect of rotation on spherical harmonics
coefficients can be evaluated using Wigner-D functions [11]. For
z-axis symmetric filter h(θ,φ) = h(θ), rotation by γ about z-axis
causes no effect on h(θ,φ). Thus with γ = 0, g(α,β, 0) = g(α,β)
is a function on S2 parameterized by φ = α and θ = β.

If h(θ,φ) = h(θ), the convolution of two signals in (8) is
equivalent to the following multiplication in spherical harmonics do-
main [7]

gm! =

√
4π

2$+ 1
fm
! h0

! . (9)

where gm! = 〈g, Y m
! 〉, fm

! = 〈f, Y m
! 〉, hm

! = 〈h, Y m
! 〉. Note

that (9) is a frequency domain version of (8) and in general, not
commutative. In addition, there is a scaling factor which decays
with $. Due to the m = 0 action on one of the arguments, we can
see that the filter h scales spectral coefficients fm

l for every degree
of particular order by the same order spectral coefficient h0

! .

3.2. Design Criteria

An ideal low-pass filter in the time-frequency domain is a rectan-
gular function in the frequency domain, i.e. the filter eliminates all
frequencies above a desired cut-off frequency. Drawing inspiration
from this analogy, we propose that the low-pass filter h(θ,φ) should
meet the following two conditions:
(A1) The low-pass filter is strictly limited in spectral domain with

spectral bandwidth Lc, i.e.,

hm
! =

{
1 ; 0 ≤ $ ≤ Lc,

0 ; otherwise.
(10)

With this definition, the spectral response of filter h =
[h0

0 h0
1 h0

2 · · ·h0
Lc

] can be characterized as a row vector of
size Lc + 1 with all ones.

(A2) The spatial response of the filter is optimally concentrated
within the polar cap region characterized by angle Θc.

The notion of concentration in the spatial domain is explained in the
next subsection.

3.3. Concentration Problem on Sphere

The bandlimited eigenfunctions in [10] are used as building blocks in
this work. To maximize the spatial concentration of a signal f(θ,φ)
with maximum harmonic degree L within a region R on the sphere,
one needs to maximize the spatial concentration ratio [10]

λ =

∫
R
fHfdΩ∫

Ω
fHfdΩ

(11)

where 0 < λ < 1 measures the spatial concentration. The ratio
in (11) can be expressed in spectral domain using matrix form [10]

λ =
fT Df
fT f

(12)

Considering azimuthally symmetric region R (polar cap) as a spe-
cial case, D is the (L + 1) × (L + 1) symmetric matrix where the
entries are given by D!!′ =

∫
R
Y 0
! (θ,φ)Y

0
!′(θ,φ)dΩ. The solution

that maximizes (12) gives rise to the standard eigenvalue problem

Df = λf (13)

which can be solved numerically and results in a constellation of real
valued (L + 1) orthonormal eigenvectors, each of length (L + 1).
The eigenvalue associated with each eigenvector is a measure of con-
centration of corresponding spectrally limited spatial eigenfunction
in the desired region R. It has been shown in [1, 10] that most of
these eigenvalues lie either near zero or unity. The largest of the
(L+ 1) eigenvalues is near unity and the smallest is slightly greater
than zero. If the area of interest is the polar cap characterized by
angle Θ, there will be N0 − 1 significant optimally concentrated
eigenfunctions with corresponding eigenvalues > 0.90, where N0 is
a space-bandwidth product given by [10]

N0 =
(L+ 1)Θ

π
(14)



Note that the above relationship shows the inverse relationship be-
tween Θ in spatial domain and L in spectral domain.

The proposed algorithm for designing a low-pass filter by sys-
tematically choosing bandlimited spatially concentrated eigenfunc-
tions is described in Section 4.

4. PROPOSED FILTER DESIGN ALGORITHM

Our objective is to design a filter with bandwidth Lc in spectral do-
main whose spatial response is optimally concentrated in polar cap
angle Θc. As discussed in Section 3.3, the solution to the concentra-
tion problem on the sphere gives rise to L+1 eigenfunctions, N0−1
of which are optimally concentrated in the chosen polar cap region
of interest. Thus an intuitive approach to construct a low-pass filter
is to use the weighted sum of these N0 − 1 optimally concentrated
eigenfunctions. However, if we choose L = Lc in (14), the N0 − 1
bandlimited eigenfunctions may not be sufficient to produce a fil-
ter that satisfies the strict condition (A1). On the other hand, if we
choose L > Lc, the resultant filter exhibits some spectral leakage.

It must be noted that for a given bandwidth and polar cap region
(L,Θ) pair, the first eigenfunction (with associated largest eigen-
value) is the most optimally concentrated in the polar cap region.
The most concentrated eigenfunction exhibits the best localization
in both spatial and spectral domains. Rather than using the weighted
sum of N0 − 1 optimally concentrated eigenfunctions arising from
a given (L,Θ) pair, we propose to use weighted sum of the first
perfectly concentrated eigenfunction from different (L,Θ) pairs to
construct the filter. In this regard, we first modify (14) to ensure that
the first N0 − 1 eigenfunctions for a (L,Θ) pair have eigenvalues
> 0.99 as

N0 =
(L− 2)Θ

π
(15)

The systematic method of choosing (L,Θ) pairs using (15), while
meeting conditions (A1) and (A2) is described below:

Step 1: For a given filter bandwidth Lc and polar cap region Θc,
calculate L1 using (15) with Θ = Θc and N0 = 2. Choosing N0 =
2 gives one eigenfunction with the minimum possible bandwidth L1

which is optimally concentrated in polar cap region Θc.
Step 2: Starting from L1, increment the value of L in (15) by 1

until L = Lc and calculate the corresponding Θ using (15), to get
(L,Θ) pairs of the form

(L,Θ) = [(L1,Θ1), (L2,Θ2), · · · , (Lc,ΘLc−L1+1)] (16)

Step 3: Solve the eigenvalue problem in (13) for each (Lk,Θk)
pair, to get the corresponding first bandlimited eigenfunction
fk(θ,φ) with bandwidth Lk and spatial response optimally con-
centrated in the polar cap Θk (Θ1 = Θc and Θk < Θc for k > 2)

f1(θ,φ), f2(θ,φ), · · · , fLc−L1+1(θ,φ). (17)

Define F to be the eigenfunction matrix of size Lc × (Lc −L1 +1)

F = [f1 f2 · · · fLc−L1+1] (18)

where

fk = [f0
k,0 f0

k,1 f0
k,2, · · · , f0

k,Lc+1] (19)

denotes the spectral response of fk(θ,φ).
Step 4: Let w denotes the row vector of weights assigned to

(Lc−L1+1) eigenfunctions determined in Step 3. Define the error
function between desired and constructed low-pass filter response

E(w) = ‖FwT − h‖ (20)

0 10 20 30 40 500

0.1

0.2

0.3

0.4

Degree, l

(a)

0 10 20 30 40 50 600

2

4

6

8

10

12

Co latitude, θ

(b)
Fig. 1. Series of eigenfunctions in (17) for Lc = 50 and Θc = π/6
in (a) spectral and (b) spatial domain.

where h is defined in condition (A1). The weights are calculated
such that the error function above is minimized. Note that since the
number of variables Lc−L1+1 is less than the number of equations
Lc+1, we have an over determined system of linear equations which
can be solved using standard norm $2−minimization technique [12].

Step 5: Generate the desired low-pass filter in spectral do-
main (10) as a weighted sum of eigenvectors as

ĥ = FwT (21)

where ĥ is the constructed version of the desired response h.
Note that since Lc − L1 + 1 eigenfunctions are being used to

construct the filter, this imposes a constraint on the choice of the
filter design parameters (Lc,Θc) that Lc − L1 + 1 > 0 or Lc −
(2π/Θc)− 1 > 0.

4.1. Closed-Form Formulation of Eigenfunctions

The proposed filter design algorithm requires the first eigenfunction
for each (L,Θ) pair in Step 3. This means that the eigenvalue prob-
lem in (13) must be solved Lc − L1 + 1 times. Using the least
number of samples in the spatial domain [6], the computational com-
plexity of calculating the D matrix alone for each (L,Θ) pair, which
is the first step in solving the eigenvalue problem, is O(L3). Utiliz-
ing the efficient numerical approach for solving eigenvalue problems
in [13], the complexity to obtain first eigenvector of the eigenvalue
problem in (13) is O(L). For a given filter cut-off frequency Lc,
the number of (L,Θ) pairs is Lc and hence the overall computa-
tional complexity of calculating the eigenfunction matrix F in (18)
is O(L5

c).
In order to reduce the computational complexity of the proposed

algorithm, we introduce a closed-form expression to accurately
model the eigenfunctions in Step 3. Consider the series of eigen-
functions in (17) which are plotted in Fig. 1 for Θc = π/6 and
Lc = 50 for illustration. We can see that the eigenfunctions for dif-
ferent (L,Θ) pairs exhibit certain symmetry in their shape and form.
We propose to model the eigenfunctions in the spectral domain using
a polynomial-exponential expression of the form

f0
k,! =

{
A($+ 1)B exp(C($+ 1)2) ; if 0 ≤ $ ≤ (k + L− 1),

0 ; else
(22)

where the variables A, B and C are computed as a function of spatial
parameter Θk using non-linear least square curve fitting approach
and their optimized values used in this work are given below:

A = 0.317Θ0.9271
k , B = 0.876Θ0.2133

k , C = −0.0545Θ1.8344
k

(23)
Note that with the above parameter values, the mean square error be-
tween the eigenfunction generated using (22) and the corresponding
eigenfunction generated using exact numerical solution is close to
10−4 for a wide range of polar caps of interest (π/16 ≤ Θk ≤ π/2).
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Fig. 2. Constructed low-pass filter using the proposed algorithm for
Lc = 50 and Θc = π/6 in (a) spectral domain, (b) spatial domain,
(c) spatial domain on displaced unit sphere and (d) spatial domain
on surface unit sphere.

The closed form in (22), along with the variable values in (23),
generates an eigenvector with spectral bandwidth Lk = k+L−1 and
optimal concentration in the polar cap region Θk which is required
in Step 3. Thus using (22), the overall computational complexity of
calculating eigenfunction matrix F in (18) is reduced to O(L2

c).

5. RESULTS

In this section, we demonstrate the low-pass filter design procedure
formulated in the previous Section for Θc = π/6 and Lc = 50. The
weighted sum of the eigenfunctions in Fig. 1 is used to construct the
filter response, shown in Fig. 2. It can be seen that the constructed
filter meets both conditions (A1) and (A2). We can see that the pro-
posed approach in Section 4 minimizes the concentration outside the
desired polar cap region at the cost of a small ripple in the pass-band.

We also compare our proposed approach with a parametric form
of low-pass filtering based on spherical diffusion in [3]. This Bu-
low’s filter has the form h0

! !
√

(2$+ 1)/(4π) exp(−$($+ 1)kt),
where kt controls the spherical harmonic bandwidth. Fig. 3 shows
the comparison of the proposed filter (in blue) and Bulow’s filter (in
red) for Lc = 26, and Θc = π/6 in both spatial and spectral do-
mains. The parameter kt is set to 0.015, such that the energy within
the desired bandwidth Lc is equal for both filters. The response of
both filters is also normalized to have unit energy for fair compari-
son. We can see that in terms of energy concentration, both filters
meet condition (A2) and have above 99% energy concentration in
the desired polar cap region Θc = π/6. However, the spectral re-
sponse of Bulow’s filter depicts exponential decay and does not satis-
factorily meet condition (A1). In addition, the relationship between
kt and the filter parameters (Lc,Θc) is not clear. Our proposed filter,
while having a small ripple in the spectral response, satisfies both de-
sign criteria and is directly parameterized by the spectral bandwidth
Lc and width of polar cap region Θc. This makes the proposed ap-
proach a good alternative for spherical filter design.

6. CONCLUSIONS

In this paper, we have proposed a novel algorithm for construc-
tion of low-pass filters on the sphere with strictly limited bandwidth
in the spectral domain and optimal concentration in the spatial do-
main. The proposed algorithm is based on a weighted sum of the
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Fig. 3. Comparison of the proposed approach with Bulows’ filter
for Lc = 50 and Θc = π/6 in (a) spectral and (b) spatial domain.

first perfectly concentrated eigenfunction from appropriately formu-
lated spatial concentration problems on the sphere. We have also
presented a closed-form expression to accurately model these eigen-
functions in the spectral domain to reduce the computational com-
plexity of our proposed algorithm. Finally, we have demonstrated
the advantage of the proposed technique over an existing popular
diffusion based method, in terms of providing precise and systematic
control over both bandwidth in the spectral domain and concentra-
tion in the spatial domain.
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