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Abstract: In this paper, we apply the decoding matrix for 2-D convolution
codes to reconstruct information sequences. It is suitable for non-square matri-
ces with multivariate polynomial elements. Next, development of a syndrome
decoder for 2-D convolutional codes based on Gröbner bases is introduced. The
computation of the syndrome vector employs the computation of the syzygy
module, found by means of the Gröbner basis of a certain module. Then, es-
timated error vector can be identified by using m-variate division algorithm.
Simulation results show error-correcting capability of decoding process.
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1. Introduction

The representation of codes can be given in terms of either generator matrix or
parity-check matrix. In our daily life, there are several applications of channel
coding such as image storage in magnetic disks, data storage in silicon memory,

Received: May 11, 2014 c© 2014 Academic Publications, Ltd.
url: www.acadpubl.eu

§Correspondence author



22 P. Jangisarakul, C. Charoenlarpnopparut

and data transmission in optical media. These applications require reliable pro-
cesses in order to correctly recover the original information. These significant
processes include encoding, detecting and decoding. In particular, an efficient
decoding process is not straightforward to develop, and in general, the decoding
process is more difficult and more complex than the encoding process. Theory
and application of m-D convolutional codes in last two decades can potentially
solve those problems, especially the error-correcting code part. The overview
of applications of m-D error-correcting codes given in [2] described potential
practical implementations such as transmission of image and video signals over
noisy channels.

In a noise-free channel, the decoded information can be retrieved from the
convolutional encoded codewords without correcting errors by using a pseudo-
inverse encoder, which follows from the non-square polynomial nature of the
encoding matrix. One classical pseudo inverse is the Moore-Penrose generalized
inverse. However, it is unlikely to assume that most communication channels
are noise-free. Methods to find out a solution in the presence of noise are an ac-
tive research area. In the last decade, research on m-D convolutional decoding
with error-correcting capability has been reported in [7, 10], although the the-
ories of m-D signals and systems continue to be a flourishing field. Literature
on this field is vast; the attention of this research focuses on 2-D convolutional
codes based on an algebraic approach. The path breaking results in this area
can be found in Wiener [13], where several fundamental concepts and aspects
of m-D convolutional code have been proposed systematically. During past
decade, Rosenthal and his research group [11, 12] have developed several fun-
damental concepts on convolutional coding theory by deriving the relationship
between convolutional codes and linear systems theory, using a behavior based
approach. Another independent approach [5] is to investigate the problems of
m-D convolutional code by using Gröbner basis/module theory. Several results
are concerned with m-variate polynomial matrix factorization. An example of
such applications was also reported in [6]. Fornasini and Valcher [8] consid-
ered 2-D convolutional codes over the Laurent polynomial ring, by using both
the behavioral approach and a state-space procedure to construct encoders and
decoders. Convolutional code aspects were reported as well.

In this paper, we apply an approach based on [4, 14] for computing the
decoding matrix for 2-D cases. The purpose of using this approach is to re-
construct information sequences. An example is carried out to illustrate the
approach. It is suitable for non-square matrices with multivariate polynomial
elements. Next, the computation of the syndrome vector employs the compu-
tation of the syzygy module, found by means of the Gröbner basis of a cer-
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tain module. Development of a syndrome decoder for 2-D convolutional codes
based on Gröbner bases has some limitations of term orderings. By testing
error-correcting capability, reverse lexicographical ordering is the best for this
problem. However, using universal Gröbner bases or other term orderings may
achieve good accuracy of decoding. The Singular [9] is chosen to implement
several algebraic procedures.

2. Decoding Matrix

Let F = Fq be the finite field with q elements and let R = F[D1,D2,
. . . ,Dm] be the ring of m-variate polynomials whose coefficients belong to
the field F. An m-dimensional convolution code of length n over F is an R-
submodule C ⊆ Rn. An element v ∈ C is called a codeword.

In 2-D case, there are two directions of delays (shift registers) named hor-
izontal delay (D1) and vertical delay (D2) [5]. The realizations of 2-D con-
volutional encoders illustrate that the correlations between delay elements in
generator matrix can be constructed with row and column locations in a circuit
diagram. Next, we consider encoder primeness or matrix primeness, a property
that is necessary to impose on the m-variate polynomial matrices generating a
convolutional code. In the past, many properties of convolutional codes have
been introduced based on these primeness, such as the papers [4, 5, 8] that
introduced the right inverse of a polynomial matrix, syndrome decoder, and
factorization matrices. These papers provided complete descriptions of prime-
ness. Moreover, the paper by Youla and Gnavi [14] about primeness notions
is fundamental. It is therefore necessary to discuss and summarize them as
follows.

Definition 1. A full row rank convolutional encoder G(D) ∈ Rk×n, R ∈
F2[D1,D2] and k < n, is said to be:

1. left zero prime(LZP) if all the k × k minors of G(D) generate the unit
ideal in R;

2. left minor prime(LMP) if all the k × k minors of G(D) have no common
divisors in R except for units;

3. left factor prime(LFP) if whenever G(D) is factored as G(D) = T (D)G1(D)
with T (D) ∈ Rk×k and G1(D) ∈ Rk×n, then T(D) is necessarily a uni-
modular matrix i.e., det(T) is a unit.
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Generally, the relationship between the codeword sequence represented by
vector v and the corresponding information sequence represented by vector u

can be expressed as: v = u · G, where G is an k × n generator matrix, whose
elements are m-variate polynomials. If one can find a polynomial matrix Z as
v · Z = u · G · Z = u, such that G · Z is equal to an identity matrix, then
one can directly retrieve the original information sequence under the noise-free
environment. The matrix Z is called a right inverse of matrix G or decoding
matrix. A suitable method for computing Z based on the algebraic approach
and Gröbner bases is investigated. By using the constructive proof of Theorem
2 by Youla and Gnavi in [14], the algorithm for finding a right inverse of an
m-variate polynomial matrix has been derived by Charoenlarpnopparut [4], and
an appropriate example has been provided.

Catastrophic encoders for codes over the m-D polynomial ring

R = F[D1,D2, . . . ,Dm]

have been studied by Weiner [13]. To test a catastrophic encoder, one needs
to evaluate the gcd of the full-size minors of generator matrix. In the 1-D and
2-D cases, a convolutional encoder is noncatastrophic if and only if the gcd of
the full-size minors of encoder is in the form Dl, for l ≥ 0.

Proposition 1. Let an k × n polynomial matrix, G whose elements are

m-variate polynomials in the ring F[D1,D2, . . . ,Dm] has a right inverse if and

only if G is LZP.

Proof. If G is LZP, all the k × k minors of G generate the unit ideal in R.
We can get

∑

(j)

dj(D1,D2, . . . ,Dm)δj(D1,D2, . . . ,Dm)= 1,

where δj , j = 1, 2, . . . ,
(

n
k

)

, are all k×k minors of G. The formula
(

n
k

)

= n!
k!(n−k)!

is called a binomial coefficient. Consider the identity δjIk = G 1
kj

∂n(ΛKAdj(GΛK))
∂λj1

∂λj2
,··· ,∂λjn

,

where Λ denotes the diagonal matrix with elements {λ1, λ2, . . . , λk}. A ma-
trix K is any n × k real constant matrix whose k × k minors are denoted by
kj , j = 1, 2, . . . ,

(

n
k

)

. Note that such a K always exists. Therefore, we can get

Ik =
∑

(j)

dj(D1,D2, . . . ,Dm)δj(D1,D2, . . . ,Dm)Ik

= G
∑

(j)

dj(D1,D2, . . . ,Dm)
1

kj

∂n(ΛKAdj(GΛK))

∂λj1∂λj2 , · · · , ∂λjn

.
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Then, we imply that a matrix Z is a right inverse of G as follows:

Z =
∑

(j)

dj(D1,D2, . . . ,Dm)
1

kj

∂n(ΛKAdj(GΛK))

∂λj1∂λj2 , · · · , ∂λjn

.

Example 2. Consider the 2-D generator matrix G(1):

G(1) =

[

1 +D1D2 D1 D2
2

D2 1 D2
1D

2
2

]

.

By referring to Definition 1, G(1) is both LZP and LMP. Also G(1) is noncatas-
trophic, since the gcd of the full-size minors of G(1) is 1. As a result, one can
obtain Z such that G(1)Z = I2, for instance:

Z =





1 D1

D2 D1D2 + 1
0 0



.

3. Syndrome Decoder

Due to various kinds of interference in transmission channel, the transmitted
codeword is subject to errors and hence it can be written as: ṽ = v+ e, where
ṽ is called received codeword, and e is called error vector. Later, the received
codeword goes into the parity-check matrix H for syndrome computation: s =
ṽ · HT , where s is called syndrome vector. If the syndrome vector is nonzero,
the presence of error vector is detected. Zero syndrome implies that ṽ is a
correct codeword and therefore the error vector is assumed to be null, i.e. no
error correction. The relationship between the syndrome vector and the error
vector can be derived as:

s = (v + e) ·HT = e ·HT .

The error-correcting process can be performed by first estimating the error
vector for solving e in above syndrome equation, which has an infinite number
of solutions. The estimated error vector ê, that corresponds to the computed
syndrome, is, then subtracted from the received vector for correction purposes.
In the binary field, addition and subtraction are interchangeable. The decoding
process can be performed by the equations: v̂ = ṽ + ê and û = v̂ · Z, where v̂

is called estimated codeword, û is called estimated information sequence, and Z
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is the decoding matrix, computed as a pseudo inverse of the generator matrix
G by using Proposition 1. If ê is determined correctly, i.e. ê = e the decoded
information contains no errors, i.e. û = u. A technique is to directly calculate
ê from the syndrome equation and use it for the error-correcting process to
recover the original information. The m-D generalized version of this scheme is
proposed in this section, based on the Gröbner bases and the theory of syzygy.
The evaluation of ê is the main objective of a syndrome decoder.

Gröbner bases are powerful tools to deal with polynomial ideals. The com-
putation of a Gröbner basis is generally done by employing the Buchberger
algorithm [1, 3]. The extension of Gröbner bases to the module case can be
found in [1]. The syzygy is a module whose members are annihilators of the
ideal generator, analogous to the null space of a given matrix. The computation
of the syzygy module is generally done by first computing the Gröbner basis.

Definition 3. Let g1, g2, . . . , gk be m-variate polynomial row vectors in
Rn. A syzygy of the k × n generator matrix

G =











g1
g2
...
gk











,

is a vector h = [h1, h2, . . . , hk] such that
∑k

i=1 higi = 0. The set of all such
syzygies is called the syzygy module of G and is denoted by Syz(g1, g2, . . . , gk)
or Syz(G).

Definition 4. The bit error probability (Pe) is the probability that an
information bit of codeword is erroneously transmitted to the destination.

Definition 5. The correctable percentage of a code is defined as the ratio
of the number of detected and corrected codewords (v̂ = v) and the number of
received codewords ṽ.

Proposition 2. If sygyzy module of the parity-check matrix H can be

expressed as Syz(H) = 〈p1,p2, . . . ,pt〉, where the subscript t denotes a number

of syzygies and a polynomial vector q is a solution of s = q · HT , then the

estimated error vector can be defined as q
{p1,p2,...,pt}

−→+ ê.

Proof. By using the m-variate division algorithm [1], the syndrome vec-
tor s = ṽ · HT is reduced to the remainder vector r modulo H that can be
calculated by using s

H
−→+ r. The computation returns quotients represented

by a polynomial vector q and a remainder r = 0, i.e. s = q · HT since r
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is a member of the module generated by H. The q is a particular solution
of the estimated error vector. We find Syz(H) = 〈p1,p2, . . . ,pt〉, and then
then expression of all possible estimated error vectors can be written as [4]:
ê = q + α1p1 + α2p2 + · · · + αtpt, where α1, α2, . . . , αt are polynomials in
F[D1,D2]. Also we can express q = α1p1 + α2p2 + · · ·+ αtpt + ê. Completely
reduce the vector q to ê with respect to the module generated by polynomial
vectors p1,p2, . . . ,pt. The computation returns quotients α1, α2, . . . , αt and the
remainder vector ê i.e.

q
{p1,p2,...,pt}

−→+ ê.

Example 6. This example is to simulate error-correcting performance
of the decoding process based on Proposition 2 for three different polynomial
generator matrices G(1), G(2), G(3)[10]. These matrices are shown as following:

G(1) =

[

1 +D1D2 D1 D2
2

D2 1 D2
1D

2
2

]

,

G(2) =

[

1 +D2
1 0 D1

1 +D2 1 +D1 +D2
2 0

]

,

G(3) =

[

D2
1D2 0 D2 D2

1 1 0
0 1 +D2

1D2 0 D1D2 D1 1 +D2
1 +D2

]

.

It is assumed that the binary information sequences have 10,000 random sym-
bols, each of them consists of 8 binary bits, and that the transmission channel
has a bit error probability Pe, as defined in Definition 4. We assume all bits
of transmitted codeword have the same probability, and have Pe ≤ 1. The
generated binary information sequences are transformed into polynomial vec-
tors. The performance of this decoding process can be measured in term of
correctable percentage, given in Definition 5.

Table 1 illustrates the correctable percentage of errors in decoding the con-
volutional codes corresponding to various term orderings. For this decoding
problem, the degree reverse lexicographical ordering is the most efficient order-
ing. However, for every particular problem, one of the term orderings can be
the most effective.

Example 7. The original image for testing has 512× 512 pixels and each
pixel has 8 bits as shown in Fig. 1(a). Using encoder G(1) given in Example
6, G(1) provides the ratio 8/48 for binary input and binary output bits. We
assume all bits of transmitted codeword have the same Pe. In Fig. 1(b), many
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Table 1: Correctable percentage of errors based on Proposition 2 for
G(1), G(2) and G(3) with different term orderings.

Term ordering G(1) G(2) G(3)

Lexicographical ordering 62 50 79
Degree reverse lexicographical ordering 62 68 79
Degree lexicographical ordering 56 63 78

random erroneous bits (Pe = 0.02) are imposed on the image, and consequently
erroneous pixels have colours different from the original colours. A gray scale
colour is used for implementation. Once applied to the encoded image, the
decoding procedure is required to retrieve the original image. Consequently,
using both the syndrome decoder with lexicographical ordering (this section)
and the decoding matrix (previous section), almost all these random erroneous
bits on the image are corrected as shown in Fig. 1(c). The peak signal-to-
noise ratio (PSNR) is used to evaluate the image quality, and is here defined

as PSNR = 10log10
2552

MSE . The mean square error (MSE) can be denoted as

MSE =
∑

M,N [Iij−Iij ]2

M ·N , where M and N are the number of rows and columns in
the images, and Iij and Iij are original image and noisy/reconstructed image
respectively. The higher the PSNR, the better the quality of the reconstructed
image.
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Figure 1: Decoding image with noise

damental Theory and Applications, 49, No.6 (2002), 709-714. doi:
10.1109/TCSI.2002.1010026.
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