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Fixed-order sampled-data estimation

WASSIM M. HADDADt, DENNIS S. BERNSTEIN:j:,
HSING-HSIN HUANGt and YORAM HALEVI§

For the Kalman filter-type sampled-data estimation problem utilizing an averag
ing AID device, the equivalent discrete-time problem is shown to be of increased
order. The fixed-structure optimal projection approach for reduced-order, dis
crete-time estimation is applied to the equivalent discrete-time problem in order to
characterize reduced-order estimators.

Nomenclature
In O"sO, r X r identity matrix, r x s zero matrix, and r x r zero matrix

( ) T, tr transpose, trace
[, IR, IR' x S expected value, real numbers, r x s real matrices

11, I, 11" q positive integers, I ,;; lie ,;; 11 + 1
x, y, X e, Ye II, I, lie' q-dimensional vectors

A, C II X 11, I x II matrices
Ae, Be, Ce , De lie X II" lie X I, q X lie, q X I matrices

W" W 2 II, I-dimensional, zero-mean, continuous-time white noise pro-
cesses

V, II X II non-negative-definite intensity of w,
V2 I x I positive-definite intensity of W 2

V , 2 II X I cross intensity of W" W2

R q x q positive-definite matrix
L q x II matrix

I, k 1 E [0, 00), discrete-time index, 1,2,3, ...

1. Introduction
Owing to the advances in digital computers, discrete-time filtering and control

of continuous-time systems have been developed and used in numerous applica
tions. In the present paper we consider a Kalman filter-type, sampled-data, prob
lem. It is well known that the optimal discrete-time estimates of the dynamic states
of a continuous-time model are given by a discrete-time Kalman filter, which is
based on an equivalent discrete-time model. Thus, we derive here an equivalent
discrete-time problem and apply the fixed-structure approach developed by Bern
stein et al. (1986 b), and Haddad (1987), to obtain reduced-order filters.
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130 W. M. Haddad et al.

Specifically, we consider the case in which the measurements of the continuous
time system are corrupted by white noise and we develop an equivalent discrete
time model which employs an averaging-type AID device, as did Astrom (1970),
Shats and Shaked (1989), and Bernstein, et al. (1986 a).

The goal of the present paper is to present a novel design procedure which is
applicable to the equivalent discrete-time problem. Since the discrete-time model is
of augmented order n + I (n = number of states, I = number of sensors), we seek
dynamic filters of reduced order. To this end we apply the optimal projection,
fixed-structure, approach for discrete-time estimation of the equivalent discrete-time
problem, in order to characterize optimal filters of order n, < n + I. These equations
are discussed in Bernstein et al. (1986 b), and derived in Haddad (1987). Since the
sample interval in real-time estimation implementation depends directly upon the
estimator order n., a reduced-order estimator can effectively increase the sample
rate. Thus, the engineering trade-offs of performance against estimator order and
sample interval can be investigated using the approach of the present paper.
Finally, using the identities of Van Loan (1978) we derive formulae for integrals of
matrix exponentials arising in the sampled-data/discrete-time conversion.

2. Sampled-data estimation problem and equivalent discrete-time formulation
In this section we state the fixed-order, sampled-data, estimation problem. In

the problem formulation the sample interval h and the estimator order n; are fixed
and the optimization is performed over the estimator parameters (Ae, Be' Ce' Dc).
For design trade-off studies hand n, can be varied and the problem can be solved
for each pair of values of interest. Finally, we assume that the plant dynamics, A,

is asymptotically stable. The case in which A may contain unstable modes (i.e. rigid
body dynamics) is significantly more involved and is deferred to a future paper. For
details on the unstable estimation problem, see Bernstein and Haddad (1989), and
Haddad and Bernstein (1990).

2./. Fixed-order, sampled-data estimation problem

Given the nth order continuous-time system

itt) = Ax(t) + W,(t), t E [0, 00)

with continuous-time measurements

yet) = Cx(t) + w2 (t)

design an nc th-order discrete-time non-strictly proper estimator

xe(k + I) = Aexe(k) + Bcy(k)

Ye(k) = Cexe(k) + Dey(k)

which, with AID averaged measurements

I lkhy(k) .. - yet) dt
h (k-l)h

and DI A zero-order-hold estimates

Ye(t) =Ye(k), t E [kh, (k + I)h]

( 2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)



D
ow

nl
oa

de
d 

B
y:

 [R
og

er
s,

 E
.] 

A
t: 

17
:0

1 
5 

Ju
ne

 2
00

8 

Fixed-order sampled-data estimation

minimizes the least squares estimation criterion

I I'J(Ae,Be, Ce, De) ~ Jim IE - [Lx(s) - Ye(sWR[Lx(s) - Ye(s)] ds
t-....'XJ t 0

131

(2.7)

In (2.7) the matrix L identifies the linear combinations Lx of states x whose
estimates are desired. Furthermore, note that the feedthrough term De permits the
utilization of a static least-squares estimator in conjunction with the dynamic
estimator (Ae , Be, Ce ) . The main result of this section concerns the propagation of
the plant and the digitized measurements over one time step. For notational
convenience in stating the main result define

(2.8)

Theorem 2.1

For the fixed order, sampled-data estimation problem, the plant dynamics (2.1),
averaged measurements (2.5) and least-squares estimation criterion (2.7) have the
equivalent discrete-time representations

x(k + I) = A 'x'(k) + w', (k)

y(k) = C'x(k - I) + w~(k - 1)

I I'J(A e, Be' c; De) = s+ lim IE -h ([LeASx(k) - Ye(kWR[LeA'x(k) - Ye(k)]
k-H.t:) 0

(2.9)

(2.10)

where

C'~! CH(h)
h

(2.12)

(2.13)

(2.14)

w', (k) and w~(k) are zero-mean, white noise processes with

IE [w" (k)] ['T(k) 'T(k)] = [ V',
w;(k) W, W

2 V',~

(2.16)

(2.17)
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where

W. M. Haddad et al.

I 1" T IV' -- eA'VeA'd~CT+-H(h)V
12 - hOi . h 12

I I r"
V~ = h V2+ h2 C Jo H(s) V,HT(s) «c:

+ h\ VT2rHT(s) dsC" + h\ CrH(s) dsV,2·

The proof of this theorem is a straightforward calculation involving integrals of
white noise signals, and hence is omitted. See Bernstein et al. (1986 a) for further
discussion.

Note that (2.10) shows that the averaged measurements depend upon delayed
samples of the state. Thus, by augmenting the discretized state equation (2.9) to
include these measurements, it is possible to state the original sampled-data
problem as a discrete-time problem involving non-noisy measurements. 0

Corollary 2.I
With the notation

• t> [X'(k)J
x(k) = y(k) ,

II' k ~ [11"1 (k)J
() w~(k)'

~ t> [A'A=
C'

O"X/J
01 '

V;2J
VS '

L ~ [LeAS 0 ]
'1 x l

the fixed-order, sampled-data estimation problem is equivalent to the following
discrete-time problem. Given the (n + I)th-order discrete-time system

.i(k + I) = Ax(k) + w(k)

with discrete-time measurements

irk) = C.i(k)

(2.18)

(2.19)

design an n; th-order discrete-time estimator of the form (2.3), (2.4) which mini
mizes

J(A", Be. c; De) = c5 + lim IE I~ r" {lUrk) - Ye(kj]TR[Li(k) - Ye(k)]
k ..... o: 1 Jo

- w;T(s)LTRYe(k) - Y ~(k)RLw', (s)} ds (2.20)

o

Remark 2.1

Note that the equivalent discrete-time least squares estimation criterion involves
a constant offset c5 which serves as a lower bound on the sampled-data performance
due to the discretization process. 0
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Fixed-order sampled-data estimation 133

Remark 2.2

Note that the measurements }(k) are noise free, however, due to the discrete
time setting this singularity is not as serious as singular measurement noise in
continuous-time settings where the Kalman filter gains are expressed in terms of the
inverse of the measurement noise intensity. However, as in non-strictly proper
continuous-time estimation with non-noisy measurements this formulation leads to
a static projection matrix v defined below. See Haddad and Bernstein () 987) and
Halevi (1989) for further details.

Remark 2.3

The increase in plant order from n to n + I is due to the discretization process.
Since discrete-time, steady-state, Kalman filter theory yields a possibly unwieldy
(n + I)th-order filter, we seek reduced-order filters. Note that in this context an
nth-order estimator can be regarded as being of reduced order.

Next, note that the augmented equivalent discrete-time system (2.18), (2.19),
(2.3), (2.4) can be written as

i(k + I) = Ai(k) + w(k) (2.21)

where

ilk) £ [i(k) ] , A £ [ A_ OJ, w(k) £ [W(k)]
xe(k) BeC Ae 0

The cost can be expressed in terms of the augmented second-moment matrix. 0

Proposition 2.1

A is asymptotically stable if and only if A e is asymptotically stable. In this case,
the state estimation error criterion (2.20) is given by

J(Ae, Be' Ce , De) = <5 + tr [QR - 2[D~R( V, + V'2)]]

where the steady-state covariance

Q(k) £ lim lE[i(k)\,T(k)]
k -+ if.;,

exists and satisfies the algebraic Lyapunov equation

Q=AQAT + V
and

(2.22)

(2.23)

(2.24)

_" [I J'L= hLH(h) O"xl =[L O"xtl

I
[
".... AT. TV, - h 2 L H(s) V, H (s) a«: ,

,0

I 1"- "V'2 = h 2 L 0 H(s) tis V12

o
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134 W. M. Haddad et al.

3. Necessary conditions for the equivalent discrete-time prohlem
We now apply the optimal projection equations for discrete-time estimation to

the equivalent discrete-time problem in order to obtian necessary conditions for
optimality. The following lemma is needed before stating the main results.

Lemma 3.1

Let Q, P be (n + I) x (n + I) non-negative-definitive matrices and assume
rank (QP) = n + I. Then, there exist n, x (n x I) matrices G, rand n, x n, invertible
matrix M, which are unique except for a change of basis in Ihln" such that the
product QP can be factored as

QP=GTMr

rGT = [ n,

Furthermore, the (n + I) x (n + I) matrices

r~GTr

are idempotent and have rank n; and (n + /) - nco respectively.

Proof

For the proof, see Hyland and Bernstein (1985).

(3.1 )

(3.2)

(3.3)

(3.4)

o

o

To guarantee that J is finite and independent of initial conditions, we restrict
our consideration to the open set

ff ~ {(A" B" C" Dc): Ae is stable and (A" B" C,) is minimal}

The following main result gives the necessary conditions that characterize
solutions to the fixed-order, sampled-data, estimation problem. For convenience in
stating this result define

v ~ QC-T(C-QC-T)-I C-, l:> Iv.L = (11+1) - V

for arbitrary Q E lR(n + I) x (n + '',

Theorem 3.1

Suppose A' is stable and (A e , B" C" D,) E ff solves the fixed-order, sampled
data estimation problem. Then there exist (n + I) x (n + I) non-negative definite Q,
Qand P such that A" Be' C" De are given by

Be = rAQCT(CQCT)-1

C; = (L - DeC)G T

De= (LQCT + VI + Vd( CQCT)-I

(3.5)

(3.6)

(3.7)

( 3.8)
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Fixed-order sampled-data estimation

and such that Q, Qand P satisfy

Q=AQAT + V+,~(AQAT + AvQvTAT),I -AvQvTAT

Q= ,~(AQAT + AvQvTAT),I
p=,TvIATPAv~,+,T([-DeC)TR([ -DeC),

Furthermore, the minimal cost is given by

J(A e, Be' Ce , De) = [) + tr [QR 1 + Q[R 1 - ([ - DeC)TR([ - DeC)]

-2[D~R(VI + V12)]]

135

(3.9)

(3.10)

(3.11 )

(3.12)

o

o

Next, we present a partial converse of the necessary conditions. First, we need
the following definition.

Definition 3.J
An estimator (A e, Be' Ce , De) is an extremal of the optimal fixed-order sampled-

data estimation problem if it satisfies the stationary conditions (3.9) -( 3.11). 0

Theorem 3.2
Suppose there exist non-negative definite matrices Q, Q, P satisfying (3.9)

(3.11) and (Ae , Be' c.. De) satisfying (3.5)-(3.8). Then the estimator
(Ae , Be' Ce , De) is an extremal of the optimal fixed-order, sampled-data estimation
problem. Furthermore, the following are equivalent

(i) Ae is stable

(ii) ([! 0 J, [V 0JI
/2) is stabilizable.

BeC Ae 0 0

In this case (Ae , Be) is controllable and (Ae , Ce ) is observable.

The proofs of Theorems 3.1 and 3.2 follow as a special case from the reduced
order, discrete-time, estimation proofs given by Haddad (1987).

Remark 3.1

Theorem 3.1 can immediately be specialized to the more restrictive problem in
which the estimator is strictly proper. This can be done by ignoring (3.8) and
replacing the last term in (3.11) by [TRL. 0

Remark 3.2

In the full-order case lie = n + l, the projection, becomes the identity and (3.10)
and (3.11) play no role. In this case GTr = rGT = lin + I) and thus G and r can be
chosen to be the identity. In this case the estimator is characterized by

(3.13)

(3.14)
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136 W. M. Haddad et al.

Cc = [-DJ;
Dc=([QCT + V, + V.2)(CQC

T ) - 1

( 3.15)

( 3.16)

where Q satisfies

( 3.17)

o

4. Numerical evaluation of integrals involving matrix exponentials
To evaluate the exponential/integral expressions appearing in Theorem 2.1, we

utilize the approach given by Van Loan (1978). This approach eliminates the need
for integration by computing the matrix exponential of appropriate block matrices.
For details on numerical matrix exponentiation see Moler and Van Loan (1978).

Proposition 4.1

Consider the following partitioned matrix
(3/1 + f) x (3n + I) and (3n) x (3n), respectively.

[ ~: ~: ~~ ~:],g exp [~,: ';

0" 0" FB F9 0" 0"
0/x" O'XII O/XII If O/XII o.,;

exponentials of order

0"
0"
AT

O'x /I

0"
V.
AT

0/></1

0" •V, h

A

I"

I"
-A

0"

-A

LTRL

I"
0"

O'XII

[

- A

0"
0"

«..

[

- A

0"

0"

,g eXI:

,g exp

,g exp

F 17 FIB
F20 F2 •

0" F2J

D,x" O'x"

F26 F27

F29 FJO

0" FJ2

O/XII 0/X1I

[

F'6
0"

0"
O,x"

Then

A' = FJ. C' 1 FT=" 9'

VI = FJ F6 , VI2= ~ FJF7

,I( I TIT TIT)
V2 =" V,+"CFBF4+"F4FBC -"CFBFI9

IT' I T
R I = It F 29 F26 , L = It F JJ

o
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Fixed-order sampled-data estimation 137

The proof of the above proposition involves straightforward manipulations of
matrix exponentials and hence is omitted.

5. Illustrative numerical example
In this section we present a numerical example involving a simply supported

Euler-Bernoulli beam. The partial differential equation for the transverse deflection
w(x, t) is given by

m(x)w,,(x, t) = -[EI(x)w,,(x, t)J" + ftx, t)

w(x, t) lx~oL = 0, EI(x)w,,(x, t) I"'~O.L = 0

where mIx) is the mass per unit length, EI(x) is the flexural rigidity with E denoting
Young's modulus of elasticity and I(x) denoting the cross-sectional area moment of
inertia about an axis of the plane of vibration and passing through the centre of the
cross-sectional area. Finally, [tx, t) is a disturbance acting on the beam. Assuming
uniform beam properties, the modal decomposition of this system has the form

if~

w(x, t) = l: W,(x)q,(t)
r=l

rL

Jo m W~(x) dx = I

/
1/" r nx

W,(x) = (2 mL) - SIn L

where, assuming uniform proportional damping, the modal coordinates q, satisfy

ii,(I) + 2(w,q,(t) + w~q,(t) = rftx, t) W,(x), r = 1,2, ...

For simplicity assume L = nand m = EI = 2/n so that (2/mL) 1/2 = I. Furthermore,
we assume a sensor located at x = O· 65n, and a point force disturbance located at
x = O· 40n. As inputs to the estimator design we choose to weight the performance
of the beam displacement at x = O· 65n. Finally, modelling the first five modes and
defining the plant state as x = [q" ql' ..., qs, qsf, the resulting state space model
and problem data are

A=bl?~C~-~i;g[_:7 _2
1,wl w;=i

2
, i=I, ...,5, (=005

C=[O'9877 0 -0,30900 -0·891000·587800·7071 OJ

L=[O'8910 0 -0,80900 -0·156400·95110 -0·7071 01

D=[O 0·951100·58780 -0·58780 -0·9511 OOIT

V, = DDT, V2 = 0,001, R = 1

For the full-order case, n; = II, discrete-time, sampled-data, estimators were ob
tained using (3.17) and Proposition 4.1 for continuous-time to discrete-time conver
sions. A straightforward iterative scheme was employed for solving (3.17). The
results are summarized as follows. The Table shows respective estimation error
costs for sampling intervals of 10 Hz, 30 Hz, and 60 Hz sensors. Corresponding
simulation plots for error states 3 and 4 are shown in Figs 1 and 2.
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138 W. M. Haddad et al.

Zeroth estimator (B, = 0)
10 Hz estimator
30 Hz estimator
60 Hz estimator

18·6714
1·6732
0·2895
0·1573

Estimation error costs.

Time (second)

Figure 1. Error state 3 simulation.

Time (second)

Figure 2. Error state 4 simulation.
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Fixed-order sampled-data estimation 139

6. Directions for further research
The following extensions and related developments immediately suggest them

selves: reduced-order, discrete-time modelling of continuous-time systems (see
Hyland and Bernstein 1985): robust sampled-data estimation of uncertain systems
(see Bernstein and Hollot 1989): multi-rate sampling (see Glasson 1982, Andrisani
and Fu-Gau 1987, Araki and Yamamoto 1986, and Haddad et al. 1990): alternative
AID and DIA devices and asynchronous sampling.
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