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Abstract
The fast determination of ethanol–water concentration in alcohol distillation plants is a
primordial requirement to preserve the quality and reduce production losses. The present
research proposes an optical fibre sensor for the measurement of hydro-alcoholic
concentration in liquids based on the Fresnel reflection principle. The reflection intensities of
ethanol samples with 0–100% of water content were measured at different temperatures for
1310 nm and 1550 nm wavelengths. Calibration curves were prepared by fitting the
experimental data and implemented in a computer algorithm. According to the functional
tests, the sensor is capable of identifying samples with less than 1% error on concentration and
providing practically real-time analysis.
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1. Introduction

The sugar–alcohol agro industry in Brazil has been developing
very fast since the beginning of the use of bioethanol as an
alternative fuel for automotive engines. Today, Brazil has the
largest worldwide production of sugarcane-based ethanol, for
direct use in flex fuel automotive engines (hydrous ethanol
fuel) or blending ethanol with gasoline as a fuel enhancer
(anhydrous ethanol fuel) [1]. The alcohol production process
is characterized by sequential procedures, starting from the
extraction of sugar juice by sugarcane milling. After being
filtered and sterilized, the clarified juice is added to yeast for
fermentation. The gas produced on fermentation is sent to a
scrubber in order to reduce the ethanol losses. The wine and the
recovered ethanol obtained from the above steps are sent to the
distillation column, resulting in hydrated ethanol. Afterwards,
the hydrated ethanol is added to the molecular sieves, resulting
in anhydrous ethanol. During the accomplishment of each
stage, the hydro-alcoholic concentration of the product must
be periodically monitored and compared under standardized
conditions, in order to control the process and preserve the
alcohol quality [2]. Currently, almost all ethanol industries use
laboratorial techniques for the determination of concentration,
such as chromatography [3] and infrared spectroscopy [4]

methods. However, these techniques do not allow the real-
time monitoring of the product, demanding a long laboratorial
analysis in order to achieve an accurate result. Thus, in most
cases, the hydro-alcoholic concentration is not instantaneously
available to feedback to the distillation plant, delaying the
whole process and causing considerable losses to the alcohol
production [5].

Nowadays, a large variety of optical fibre sensors to
determine the concentration in liquid mixtures has been
proposed since the concentration is correlated to the refractive
index and temperature of the sample [6], as can be observed
by long period grating fibre sensors [7], near-infrared
miniaturized spectroscopic sensors [8] and reflectometric
sensors [9]. In contrast to other methodologies, the use of fibre
sensors presents many advantages, such as remote access, non-
destructive measurements and immunity to electromagnetic
interference [10]. Moreover, in the case of ethanol plants,
optical fibres have resistance against the harmful environment
and present no explosion risk. However, in spite of the
high accuracy, most of these technologies demand the use
of expensive equipment, complicated operational procedures
and long time-consuming data analysis, and in general, do not
allow real-time results.

Concerning these problems, the present research reports
the development of an optical fibre sensor based on the Fresnel
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Figure 1. Schematic of the optical fibre sensor.

reflectometry principle [11], for the determination of hydro-
alcoholic concentration in liquids. The proposed technology is
constituted by non-expensive optoelectronic components and
uses a fast algorithm to interpret the measured data, allowing
a practically real-time analysis of water–ethanol mixtures and
can be applied to the distillation (92.5–94% v/v of ethanol)
and scrub recovering (∼5.3% v/v) stages in the ethanol plants.

2. Operating principle

2.1. System design

The optical fibre sensor is provided by two laser sources
(1310 nm and 1550 nm), fibre couplers and a photodetector
(figure 1). The extremity of a single-mode fibre (nD ≈ 1.46)
actuates as the sensor head and it is immersed into the liquid
sample. Part of the propagated light is reflected by the fibre–
liquid interface, in such a manner that the intensity of returned
light is a function of refractive indexes of the fibre and the
liquid mixture [12]. Thus, the reflected intensity is converted
to an electrical signal, and then evaluated by a data acquisition
and processing unit. In order to correct the variations of the
refractive index caused by temperature changes, the sample
temperature is constantly monitored by a thermistor, and
the data processing module correlates the reflected intensity to
the temperature.

2.2. Measurement of ethanol–water concentration

According to the Fresnel principle [13], the intensity of the
reflected light I is given by

I = K

(
nf − nl

nf + nl

)2

, (1)

where nf is the effective refractive index of the fibre, nl is the
refractive index of the liquid and K is a hardware constant that
depends on parameters such as the laser power, the electronic
gain, the coupling ratio and the fibre connections. In the case
of an ethanol–water mixture, nl is defined as a function of
its concentration C, temperature T and the wavelength λ [14].
Therefore, the study of process variables can be simplified to a

correlation of I, C, T and λ parameter values. In order to confer
a model to the calibration curves of the sensor, the refractive
index data for different ethanol–water concentrations
available in the literature [15] were applied to the Fresnel
equation (1). The study of such parameters revealed that
the fifth-order polynomial function is well suited to fit the
reflected intensity curves. The calibration curves that correlate
the reflected intensity I to the concentration C are expressed
by

I =
5∑

i=0

ai(T , λ)Ci (2)

where ai is the ith coefficient of the polynomial, calculated as
a function of the temperature T and the wavelength λ.

The ethanol–water concentration of an unidentified
sample can be determined by inputting I, λ and T values and
solving (2) for C, considering only the solutions obtained from
C = 0–100%. However, due to the volume contraction of the
ethanol–water mixture [16], a nonlinear correlation between nl

and C is observed, resulting in a minimum I value in the range
from C = 10% to 30% of water depending on λ and T [15].
Figure 2 illustrates the nonlinear behaviour of the refractive
index versus the concentration for λ = 589 nm and T = 25 ◦C,
as well as the effect on the reflection intensity calculated from
equation (1), using nf = 1.46 and K = 1. At the volume
contraction range, the volume decreases while the density of
the liquid increases, causing the increment of the refractive
index. In this case, two different concentration values from
0% to 30% are correlated to the same reflection intensity,
causing an ambiguity on the sensor response. This problem
was solved by measuring I for two different wavelengths since
the C value that corresponds to the minimum reflection is
shifted according to λ. Consequently, the algorithm should
return a pair of possible solutions for each λ, and the correct
concentration is determined by identifying the unique value
that is the same in both pairs.

3. Experimental setup

Samples of ethanol–water were prepared mixing pure alcohol
(anhydrous alcohol) and distilled water at 22 ◦C. The volume
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Figure 2. Effect of the volume contraction on the ethanol–water
mixture on the (a) refractive index [15] and (b) reflection intensity,
calculated from equation (1).

concentration of water was varied from 0% to 26% with 2%
increment in order to improve the analyses for concentrations
near to the volume contraction range, and from 30% to 100%
with 10% increment. The reflection intensities were measured
for both wavelengths (λ = 1310 nm and 1550 nm), while
the solutions were maintained at different temperatures (T =
10 ◦C, 22 ◦C, 30 ◦C and 40 ◦C). The experiments were carried
out by using a sampling rate of 1 kHz and acquiring 50 000
values for each combination of C, T and λ. Afterwards, the
collected data were fitted in order to obtain the calibration
curves.

The algorithm for the determination of ethanol–water
concentration was implemented based on the fitting results. In
order to verify the measurement error, the algorithm was tested
for some concentrations using another data set, but under the
same experimental conditions as the previous ones. The error
was evaluated by computing the absolute difference between
the nominal and measured concentrations.

4. Results

The measured reflection intensities and the calibration curves
obtained by fitting the experimental data are shown in
figure 3. The intensities were normalized and are expressed in
percentages. Each point corresponds to a mean of 50 000
acquisitions, and the observed deviation was <1.95% for
1310 nm and <1.14% for 1550 nm. Fluctuations in
the intensity values were noticed during the experiments,
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Figure 3. Calibration curves of intensity versus water concentration
for 1310 nm and 1550 nm measured at different temperatures.

and later it was observed that most of these fluctuations
occurred due to the influence of external environment, causing
variations in the signal generated by the laser sources since
the sensor electronics were not shielded. For the λ =
1550 nm and T = 30 ◦C condition, interference was caused
by the operation of other equipment present in the laboratory,
but this problem could be avoided in other experiments. As
expected, the volume contraction behaviour of the mixture
resulted in a nonlinear correlation between intensity and water
concentration. In general, the intensities increase according
to the increment of the liquid temperature. Moreover,
the temperature influence is particularly less significant for
solutions with higher water content because the thermo-optical
coefficient of ethanol is higher than that of the water [17]. The
temperature changes also affect the concentration related to
the minimum reflection, but the values do not coincide for
different wavelengths.

The results for the functional test of the algorithm at
22 ◦C are shown in figure 4. The water concentrations
were calculated after a cumulative mean of 50 000 intensity
values. The final concentration was determined as the
mean values that were the same for both wavelengths.
The methodology of using two wavelengths was effectively
implemented since the sensor was able to retrieve the correct
sample concentration even for the ambiguity range of volume
contraction. An average error of 1.31% was observed, but
for some concentration ranges the methodology can achieve
an absolute error of less than 1%, for example, from 0% to
6% of water content. Specifically, this range corresponds
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Figure 4. Plot of functional test results at 22 ◦C.
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Figure 5. Convergence of the measurement error at 22 ◦C for
ethanol samples with different water content.

Table 1. Temperature effect on the measurement error.

Nominal water
concentration (%)

Absolute
error at
10 ◦C (%)

Absolute
error at
30 ◦C (%)

Absolute
error at
40 ◦C (%)

0 3.00 0.98 0.11
10 1.79 2.09 0.49
20 6.87 1.24 3.06
30 1.91 1.34 7.06
40 1.01 0.99 0.66
50 1.69 0.46 2.43
60 0.50 0.83 1.13
70 0.33 1.49 1.30
80 0.19 3.24 0.18
90 0.10 1.35 2.29

100 0.10 0.23 0.15

to the operational hydro-alcoholic concentration in ethanol
distillation plants in Brazil, during the production of anhydrous
and hydrous ethanol fuels [2].

The comparison of the sensor response at different
temperatures is summarized in table 1. The compensation
of the thermo-optical effect was successfully accomplished.
Particularly, a correlation between the measurement error and
the increment of liquid temperature was not observed.

The correlation between the measurement time and
the sensor response was also studied. Figure 5 shows
the convergence of the sensor response for some mixtures
measured at 22 ◦C. Considering a 1 kHz sampling rate, it

was possible to obtain an absolute error of less than 1%
after 30 s. However, for samples with lower water content,
as occurs in the distillation plants, the measurement error
practically converges to less than 1.5% after 5 s, which leads
to a practically real-time sensor operation, in spite of a small
loss in precision.

5. Conclusion

The presented methodology proportionates the determination
of ethanol–water concentrations with relatively low
measurement errors, even in the range of volume contraction.
The sensor operation is sensitive to the temperature
variations, but the thermal effect can be compensated on the
calibration. The methodology is also capable of retrieving the
concentration with acceptable error after 5 s and presents a
good resolution for lower water content, which is suitable for
the automation of alcohol distillation plants, removing the
monitoring delay of production and eliminating losses in
the industrial process. This technology can be effective for
online quality control and for improving the ethanol
productivity.
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