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ABSTRACT via linear DOB-based disturbance rejection, using robust control
This paper is concerned with disturbance rejection perfor- theory [6] [7]. This will be accomplishedithout resorting to
mance in single-input single-output (SISO) nonlinear systems any change of coordinates (e.g. local diffeomorphism) to trans-

that are described by uncertain linear dynamics and bounded form the system into the normal form [14] ch. 13. Thus, the ap-
nonlinearities. First, the nonlinear terms are transformed into  proach discussed in this paper applies directly to both matched
an equivalent bounded disturbance at the output of a linear sys- and mismatched disturbance/uncertainty inputs. It overcomes re-
tem. Then, a disturbance observer (DOB) is added to the closed strictive relative degree requirements and the necessary matching
loop to achieve robust disturbance rejection. The DOB design is conditions, revealed by the normal form, which need to be satis-
formulated as an extended Luenberger observer having internal fied for disturbance rejection in a large number nonlinear systems
dynamics with at least an eigenvalue at the origin. The synthesis see [2] [11] and the references therein.

of a (sub)optimal DOB s carried out by solving multi-objective DOBs are successfully used in many applications including
H.. sensitivity optimization. The design approachis appliedto an ropotics, hard disk drives high-precision servo systems and ma-
inverted pendulum with actuator backlash. Closed loop response chine drive tools, see [3] [18] [23]. Moreover, in [20] DOBs are
shows that tracking performance is indeed greatly enhanced with effectively used to suppress the effect of a class of nonlinearities
the DOB. which can be decomposed into a linear part and a bounded non-
linearity. In DOB-based control, an inner loop having a unity-
DC gain low pass filteQ(s), is added into the main feedback

1 Introduction o o system to estimate exogenous disturbances and cancel them sub-
This paper is concerned with disturbance rejection for a gsequently [9].

class of single-input single-output (SISO) nonlinear systems.
The system dynamics is comprised of a linear part subject to
norm-bounded uncertainty , and a vector-valued bounded non-

linearity which is not known exactly. Given an internally sta- with internal model for the disturbance dynamics [13]. Under

bilizing controller which renders the nominal linear dynamics : : L : .
. . Iy mild assumptions it is shown that such equivalence indeed ex-
exponentially stable, the nonlinearities can be represented as a

bounded disturbanai(t) ¢ R at the output of a linear system. A ists if the internal model has at least an eigenvalue at the ori-

disturbance observer (DOB) is then introduced into the feedback gn [18]. Thus, once the Luenberger obse_rver dairs Ob'.
. : . tained, Q(s) is evaluated as a transfer function parameterized
system to eliminate the effect dft) in the presence of the linear

lant uncertaint by the gainL, i.e. Q(s,L). This approach offers many advan-
P any. .~ : tages over conventional methods [23], which include: (i) the de-
The main objective in this paper is to enhance performance

robustness of a given class of SISO nonlinear feedback systemsSlgn of DOBs is systemaucall_y empedded Into the more general
framework of robust state estimation of uncertain [10] and non-

*Address all correspondence to this author. linear systems [11], (ii) the design of the inner DOB and an outer

The DOB design presented in this paper relies on the equiv-
alence of the DOB structure in Fig. 1b and that of a classic Luen-
berger observer state estimation of an augmented linear system
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controller can be carried out completely separately, (iiijictr LetK(s), givenin (5), be an internally stabilizing controller, de-
ture constraints associated Q¢s) filter (e.g. the DC constraint  signeda priori to achieve good tracking performance Ri(s)
Q(0) = 0) are readily satisfied in the new design, (iv) additional

frequency shaping can be transparently introduced into the DOB X = A+ Bye (5)

by incorporating appropriate disturbance modes in the internal u= Cix+ Dge

model dynamics. Thus, the DOB filt€)(s) can be designed
with more flexibility in regards to its order, bandwidth and roll-
off rate. Hence, disturbance rejection performance is greatly en-
hanced and robustness of the overall system is achieved.

The DOB synthesis is then formulated as a constraitgd t
sensitivity optimization which can be efficiently solved for a Yp(t) =Cu {e&'txcl (O)+/O Ca {Bgfk} Yref (t =) ds} +
local (sub)optimal observer gain in a number of ways includ-
ing semi-definite programming [9], nonlinear programming [15] t Yoon(1) (6)
[16] and non-smooti,, synthesis [1] [12]. Finally, the design Cc|/o &%y (x) (t—9)) ds
approach is applied to a nonlinear inverted pendulum with in-
put backlash nonlinearity. Simulation results indicate that DOB- Yper (1)

based control achieves robust tracking and disturbance rejection x D
of the closed loop system. wherexq = [5]. Coi =[G 0], gt (%e1) (t) = [g(xppmgr )0

andAg = [Ap:giggcp B};kck] Hence, (6) is rewritten as

wherex (t) € R™, e(t) = et (t) —yp (t) is the nominal tracking
error, andyef (t) € R is a bounded reference input. From (4) and
(5), the outpuyp, of the nominal closed loop system is given by

2 Problem Statement Yp (t) = Ynom(t) + Ypert (1),

This paper is concerned with the SISO nonlinear system o _
whereyhom denotes the response of the nominal linear dynamics

X = Ax+Bu+g(x,u) 1) andypert is a perturbation term accounting fof., .). Define
y=Cx

t
. d(0) = ypen(t) =Ca [ ¥%a () (t-9)ds ()
wherex(t) e R", u(t), y(t) € R, andg: R" x R — R" is vector- 0
valued nonlinearity collecting nonlinear terms in the plant and by virtue of internal stability (i.eAy is Hurwitz), there exisk >

actuator. It is assumed that the functional formgdf,.) is not 0 anda > 0 such thafje’!t|| < ke~ [5] p. 59. Consequently
exactly knownhowever the map— g(x(t),u(t)) € Lg; thatis N ’

<k L [lgao _ < KlCellomy

o= rax sup suplG (60 U)| S My <0, 2 14011 < KiCulo foe*?llg0s) (- 6) | dO < ===,

= X(ermE 120 Thus,d is a norm-bounded exogenous disturbance at the output
Yp. In the presence dk(s), exponential stability of the under-
lying linear closed loop dynamics (i.e. (1) with(.,.) = 0), is
sufficient ford (t) to be uniformly bounded, which will be es-
tablished in the next section using the small gain theorem. This
motivates the use of a disturbance observer (DOB) to achieve
robust closed loop tracking performance by rejecting potentially
degrading effects of the disturbangé) so that the closed loop
recovers nominal linear behavior for @l(s) satisfying (3). It
is also noted that the construction in this section includes both
matched and mismatchednlinearities.

where x (t) := [x®)T u(t)]T. The assumption (2) is satisfied

by many nonlinearities arising in dynamical systems such as
flexible-joint robots [22], certain chaotic systems [21] as well
as classes hysteresis operators [10]. More generlly) can
represent an unknown norm-bounded perturbation acting on a
linearized system, see [14] ch. 9. Furthermore, the transfer func-
tion P(s) =C (sl — A) ' B satisfies the multiplicative uncertainty

P(s) =Pn(s) (1+A(s)), A(s) stable||Alle < 1, 3)

where || . ||» is the He norm [4] [6] [7], and Py(s) =
Cp(sl—Ap) 1B, is the nominal transfer function. Hence, the

. . : 3 Disturbance Observers
nominal nonlinear system is

3.1 Overview
As shown in Fig. 1, the DOB introduces an inner loop into
4 the feedback system whe@¥(s) is astable unity DC gain low
pass filterwith desired bandwidthand is considered the design
parameter. DOB-based control is studied in more details in [18]
and in EI-Shaer et.al. [9]. In Fig. 1d,captures the effect of the

Yp = CpXp.

The following assumptions are made

(A1) The nominal plank, (s) is minimum phase, nonlinearitieg (., .) in the plant/actuator dynamics. The primary
(A2) The pair(Ap,Cp) is detectable. objective of the DOB is to produce an estimatearid feed it
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Yrer > K{S)

T(s)

Figure 2. Robust stability analysis.

Q(s) tha T (s) is exponentially stable, and I, (s) be a stable
weighting function such thad (jw)| < W, (jw)| VwandA(s).

Yelyo ol K(s) Then, thesmall gaincondition [6] [7]
_ MGl <1 (12
DOB;
- guarantees that the closed loop in Fig. 2 is (internally) expo-
(b) nentially stablevA(s) in (3). Therefored (t) in Fig. 1a isLe-
bounded signal, hence alaocL.. Also, note thaG,_.; (S) =
Figure 1. DOB-based closed loop system: (a) The exogenous distur- Q(s). Thus, given a stable weighting functigw, (s), then
bance d at the output, (b) equivalent DOB structure with exogenous dis-
turbance W at the input Mp(1-Q)|lo <y

N 13
| | . — [Wo (W W) e, < W, (13)
backto the nominal control input to cancel the effect d. It is

important to note thatv fepresents the equivalent estimatedof ~ wherey > 0 is a given performance bound awd- W is the dis-

reflected at the plant’s control input. From Fig. 1la turbance estimation error (Fig. 1b). Hence, (12) and (13) guar-
. » antee robust disturbance rejection. AJft, (1— Q) || < y sets
W= Q(S_) P (2£31’_ Pa(s)v) 9) a lower bound on the cut-off frequency of the high pass filter
= W=Q(9R y-Q(9)v. 1—-Q(s). Thus,W;, (s) can be selected to set desired bandwidth

Thus, the DOB scheme in Fig. 1a is equivalent to that in Fig. for Q(s). The conditions (12) and (13) will be used in the se-
1b, with the latter regarded as rejection of an exogenous distur- queél to formulate a multi-objectivel, optimization for the DOB
bancew at the input ofP(s). It is noted thaQ(s)P; ! is stable synthesis.

by assumption (Al). In the sequel, the DOB structure in Fig. 1b

is shown to be equivalent to a Luenberger observer of an aug- 3.3 Q Filter Design

mented dynamical system. This renders the design of optimal The low pass filteiQ(s) is typically given by [3] [18] [9]
DOB more systematic and overcomes structural constraints as-[23]
sociated the filteQ(s). Hence, the DOB configuration in Fig.

1bis used in the analysis hereafter.

m—p ‘
1+ 5 a(19)
=
3.2 Robust Disturbance Rejection QY =—m —— (14)
From Fig. 1b, assuming th& (s) = P(s), the outpuy =y, 1+ 2, % (1)
is given by a

Pa(S)K(S)Yref +Pa(s) (1—-Q(s))w
1+P(s)K(s)

wherem > 0 is the order oR) (s) andp < mis its relative degree.

The design trade-off o (s) is to choos€ ak}y; > 0 such that

its cut-off frequencyw: = 1/7 is large enough for better distur-

bance rejection. However, a direct synthesis)gt) in (14) is

T(9 = P (9K (S)+Q(s) 1 subject to

1+Pa(s)K(s) (Q1) Relative degreep must be greater than or equal the rela-
tive degree oP, (s) to makeQ(s) Py (s) realizable,

(Q2) Unity DC gain Q(0) = 1 imposes thap and{ay}y., are
not independent of each other [23],

(Q3) Robust stability of the closed loop system (i.e. (12)).

y= (10

The following closed loop sensitivity functions are defined

Ph(s)(1-Q(9)

SO =T R EKE

From Fig. 1b,S(s) = —Gw_e(S) wheree is the tracking er-
ror, andT (s) = —G,.q(s) wherezandq are the interconnection
variables of the nominal closed loop system and the uncertainty
A(s) (see Fig. 1). Eqg. (11) indicates that further reduction in
S(s) is achieved by havin@(s) = 1 over a desired frequency  These constraints complicate the synthesis of an opt@a).
band. Thus, an alternative design method is sought where the structure
Robust stability of the closed loop systems in Figs. 1a and requirements (Q1) and (Q2) are implicitly satisfied to ease the
1b is equivalent to that of Fig. 2. Suppose, for a given stable complexity of the synthesis process.
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3.4 Inte_:rnal I\(Iodel-based' Luenberger Qbsgrvgr whereAy is given in (6),A— LC = Aﬁ[LéCp B/?\:W} andL =
In this section, robust disturbance estimation is formulated _ Z-P

as the design of a Luenberger observer for an augmented systenit1 12| with Ly € R™ andL, € R™. Thus, closed loop expo-

with an internal model of the disturbance. It is shown that the Nential stability is achieved if and only if each &f andA—LC

DOB-based disturbance estimation given in Fig. 1b is equivalent iS Hurwitz. This clearly allows (s) to be designed separately of

to that based on the Luenberger observer. Consequénty, the state estimator.

satisfying (Q1), (Q2) and (Q3) is parameterized by the Luen-

berg_er o_bse_rver gain w_h_ic_h can_bg sy_stematically designedviaaz 5 Equivalence to the DOB

multi-objectiveH., sensitivity optimization. The 2 methods considered for disturbance estimation, de-
The analysis below is concerned with a general exogenous picted in Fig. 3, are summarized as follows

disturbancev(t) which is not necessarily the same as the effect

of the nonlinearityd (t) (7) reflected at the input of the plant as w w
in Fig. 1b, see Remark 2 below. Suppose the disturbariteis v ,J\ Pu(s) Yo, ¥ L P.(s) Yo
generated by the linear exo-system [13]
Xy = AWXW7 Xw (tO) = Xw0 (15) W \_lﬁ)_‘
W= CuXw, Figure 3. Disturbance estimation: DOB (left), observer based (right)

wherexy (t) € R™. The state space representation in (15) is as-

sumed to satisfy 1. Observer-basedrom (18) and Fig. 3, the estimateis given

(A3) The pair(Ay,Cy) is detectable, by
(A4) The eigenvalues &, don't coincide with the zeros of
the plantR, (s), which implies that the disturbance staig

is observable from the outpys. W= —Gy(s)V+G2(s)yp

[Gl (S)} Gy (sl (A-LC)) ! [‘TB} Y

DefinexX'= [x] x\mT the augmented system, comprised of the
nominal plant and the exo-system, is given by (see Fig. 3)

X=Ax+Bv, §=Cx (16a) Cu=1[0 Cu].
2. DOB-basedfrom (9), the estimat i5 given by
~ A, B ~ B = A— -
A= [ 0 M,F [ o"} E=[cy 0] (160) W=-Q(8)V+ QP (9)Yp (21)

The equivalence between tiEOB-basedestimate in (21) and

. . . theob -basedstimate in (20) is stated t.
Given assumptions (A2), (A3) and (A4), it can be shown eobserver-basedstimate in (20) is stated nex

that Theorem 1: Suppose that assumptions (A2), (A3) and

AL—A] _ [A-Ae “BGu] (A4) are satisfied, and that, has at least one of its eigenvalues
rank ({ ¢ } - [ cop AIoAWD = Mot M (17 at the origin. Then the expressions in (20) and (21)vicaré
equivalent; that isQ(s) = Gy (s) andQ(s)P;1(s) = Gz(s). In
particular,Q(0) = G1 (0) = 1.
' Proof: Details in [18] pp. 543-54E.

for all eigenvaluesd e C of A. From the PBH observability rank
condition [7] p. 82, the augmented system in (16) is detectable
see [9] [22]. Hence, there exidtss R ™™ such that

In particular,G; (s) is alow-pass filter with unity DC gain
andQ(s)P;1(s) = Gy (s) is indeed realizable. Hence, the unity
DC gain (Q1) and the the relative degree (Q2) constraints hold.

x=(A-LC)%+[B L] [H (18)
p
is an asymptotically stable extended state observer for the SyS_Once L is obtained,Q(s) is evaluated usingss (s) in (20)
m (16). Moreover, using th rdinate transformafioa : . ! '
te. 0 8 06) oreover, using the coordinate transformatio Hence, from Theorem 1 it follows that a Luenberger observer
{? 69 8} (€ R2W M) the eigenvalues of the overall closed  with sufficiently large bandwidth (i.e. eigenvalue placement for
00

ol . A—LC), allows the DOB-based estimate (21) to asymptoti-
loop system, comprised &% (s), C(s) and the Luenberger ob cally track anyw given by (15): that is

server (18), can be decomposed as follows

Ap—BpDCp BpCk 0 —BpCw Im (w(t)—w(t))=0.
li N 0 22
detAl —T-1| “BC A 0 0 T e
et L1Cp—BpDyCp BpCy Ap—L1Cp 0 ) (19) _ o
LoCp 0 —LCp Aw Together with (13) and (12), robust asymptotic disturbance
=det(Al —Ag) det(Al — (A-LC)), estimation and rejection are indeed achieved.
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Remark 1:Sonme advantages of this approach are: (i) the struc-
ture constraints (Q1) and (Q2) are satisfied, (ii) internal stability
of the nominal closed loop system is guaranteed by virtue of
(19), and (iii) a wide variety of exogenous disturbances can be
transparently accommodated into this design by incorporating
their signal models i (see (23)).

Remark 2: It must be emphasized thak(t) resulting from
the nonlinearityg(.,.) (7), is notgenerated by (15) which serves
as afictitious augmented state to ensure tQds) satisfies (Q1)

by a single Lyapunov SDP variable, see [9] for details. Alterna-
tively, parametric optimization over using nonlinear program-
ming (NLP) gives freedom to optimize individual performance
constraint bounds, at the expense of non-smooth cost and con-
straint functions.

Given an initial observer gaibp, a local (sub)optimal of
(24) can be obtained using subgradient-based non-snidgth
synthesis of fixed-structure controllers presented in [1]. Cur-
rently, this algorithm solves sensitivity minimization with no
eigenvalue-placement constraints, i.e. unconstrained single or

and (Q2). This enables DOB-based controllers to reject signals multiple sensitivity problems [12]. However, for the more gen-

not having well defined spectral content. Accommodating
disturbances other thagh(t) (7) is readily done by expressing
w(t) in (15) as

W(t) = Agwy (1) + A (1)

Wl(s): gr‘l:l\;v_l, _ an(S)

W (s = 239

wherew; (t) ensures tha#, has at least one eigenvalue at the
origin. In particular, different choices @, (s) allows the sig-
nal w, (t) to model a wide variety of exogenous disturbances.
Moreover, the amplitude8; and A, are scaling factors to re-
duce measurement noise amplification, also wies O the so-
called proportional-integral (PI) Luenberger observer is recov-
ered, see [22].

4 Synthesis Optimization
From (12), (13) and (20), an optim@l(s) can be synthe-
sized from the following constrainédl, sensitivity optimization

min Wy (s) (1-Q(s,L)) [l (244)

LeRM+w

subject to: Wu ()T (s,L)]|e <1, (24b)
[Wo (s) (1-Q(s,L))) [|leo < (24c)
max Re(A{A-LC}} < —os (24d)

whereQ(s,L) = G1(s), andT (s,L) is given by (11),y > 0
andos > 0 are fixed performance and stability bounds, respec-
tively. The inequality (24d), ensures that- LC is Hurwitz with

eral setting (e.g. (24)), finite difference approximation of the gra-
dients allows available powerful interior-point NLP algorithms to
handle multi-objectivél.-synthesis constraints, see [16] ch. 19
and [15].

5 Simulation Example

The rotation dynamics of a fixed-based inverted pendulum
about the vertically upright equilibrium position (i.8.=0, 6 =
0)is

mI26 + bB + kB = mglsin(8) + Tin (V) + Tyist;

m= 0.25[kg], | = 0.5[m], b= 0.001[N.m.sed, (25)

k=0.1[N.m], g=9.81]m/sed].

In (25), Tin = N(v) [N.m] is the input torquey is the (total)
control signal (see (32)) and(.) is backlash nonlinearity in
the drive shaft andy;s: [N.m] represents disturbance torques de-
scribed below.

The presence of backlash is known to cause limit cycle os-
cillations in closed loop systems [17]. The graph of a non-
symmetric backlash nonlinearity in displayed in Fig. 4, where
the slopesmn, mp, andKy are finite, and the dead-band width
is given byA; — Ay, see [17] [8] [19]. An exact analytic form of
N (.) might be too complicated and is not needed for robust DOB
design. In fact, the output ™ (v) (t) can be written as [19] [20]

—os guaranteed decay rate. For practical purposes, the objectivewheren (t) is a nonlinearity such that

and/or constraints given above are usually restricted to problem-

specific finite frequency intervals reflecting desired performance.
The expressions (24) involve the non-smokdttrnorm, and are
non-convex irL.

In El-Shaer et. al. [9] and [10], the synthesis (24) is ex-
pressed as the weighted sensitivity optimization:

. . . W,T
mL|n y subjectto: H [Wp(l_@] Hw <y, y<l,
which is then turned into rank-constrained semi-definite program

(SDP) [7] p. 231, for a static output feedback (sub)optimal gain
L. However, the solution obtained is too conservative since both

Tin (V) =N (V) (t) =Knv(t) +n (1), (26)
[Nl =sugn (t)| <max{ sup (m (v) —Knv),
t>0 v(t)eR @7)
sup (Kyv—m_ (v))}.

v(t)eR

In (27),my (.) andm_ (.) are piecewise continuous curves such
that

m_(v(t)) SN (V) (1) <M, (V(t), 7t >0,vELs.  (28)
GivenKy, the choicesn; (v) := Kyv+ny andme (v) :=Kyv—
ny, establish that the smallest valugewhich intercepts thal (. )-
axis is a bound ofin||~, see Fig. 4. Thusy is indeed norm

robust stability (24b) and robust performance (24c) are expressedbounded. The state space representation of (25) is given by

Copyright © 2013 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Backlash

Il

Figure 4. Graph of the backlash N (. )

(29)
which is the same as (1) with the additional teFgg;. _
The slopeKy is assumed to be given by = Kn +
rkdk; Kn =1, rk = 0.75 and|d | < 1. From (25), the uncer-
tain and nominal plant dynamics are given by

B Kn B Kn
P(s) = mi2s? + bs+k’ P(s) = mi2s? + bs+ k' (30)
Hence, from (3)
, IP(jw) —P(jow)|
W, (jw) = , <rk. 31

In (29), the nonlinearity sifx;) is fully known since the mea-
sured outpuy = X1. This motivates the following control law

__migsin(xy)
=

whereu = K (s) [yret — Y], See Fig. 1. The outer controller, de-
signed forR, (s), is chosen as a simple lead compensator

25s+1
K =527 1
The expression (32) is comprised of: (i) feedback linearization to
cancel the nonlinearity sitx;), and (ii) tracking error compen-
sation based oK (s). Thus, the objective of the DOB is to reject
the effects ofTyist and the norm-bounded nonlinear uncertainty
n).
Let Tqist represent structure vibration modeled as lightly
damped sinusoid ab,,. From (29), the total disturbance (23)
is given by

+ U, (32

(33)

w(t) =n(t)+Taist (1), (34)
and the disturbance dynamics
_1 _ Wy
Wl(S)—ga Wz(s)—ma (35)

where{ = 0.002 wy = 5(2m) [rad/sed. Hence, the exo-system
(15) is
81 0 Aq =100, A; = 500
= = |A1 A 0] = = )
Aw [Oaﬁz“w]’Cw [ALA20]; Aq ) Ao
(36)
Itis easily verified that the conditions in Theorem 1 are satisfied.
The weighting functioWV, (s) is chosen as

o eST2(2m) £42(0.80) wws+ 6
Wo(8) = 05— 08 I 250 st g

@7

which has a resonant mode aty, and specifies at
least 8Hz cut-off frequency for Q(s). Eigenvalue
placement for A at {—8—12—18—24,—34} yields
Lo = [154.62,5.99,0.893 —4.648 —245985.

5.1 Optimization Results
Foros= 8 andy = 2, the NLP (24) is specialized to
min max

Wy (jw) (1-Q(jw,L
LeRS we(2n)><[0.l,8]‘ pliw)(1-Qfjw,L))
subject to: (24h)24c), (24d)

)

(38)

which confines the objective (24a) to the frequency range
w € (2m) x [0.1, 8] [rad/sed. The synthesis (38) is solved
using the interior point solver within thé mi ncon com-
mand in the Optimization Toolbox of Matlab Version 7.14
(R2012b), which implements a trust region-based sequential
quadratic programming (SQP), see [15] [16] and the references
thereirt. In particular, theHs.-norm of the transfer functions
involved in (38) is evaluated using the algorithm presented
in [4]2. Convergence takes place after 60 iterationd te:
[15613,15.174,12118,14491, —163 2] with objective function

alue ma Ve (160) (1-- O(ico.L)| — 0.36, soe Fig, 5.
o wE(Zﬂ)X[c))(.l.a]‘ b(jw) (1-Q(jw,L))| ig

Table 1 shows the solution for (24) using NLP, the iterative
SDP algorithm in [9] and the non-smooth synthesis [1] which is
implemented irhi nf st ruct in the Robust Control Toolbox,
Matlab (R2012b) [12]. From Table 1, the robust stability con-
dition |W,T||» < 1 is satisfied only by the NLP-based solution
(i.e. withf m ncon), which will be used below for closed loop
simulation.

From (20) the DOB filter is

Q(s)

_ 1.353x 10°s?—1.136x 10°s+1.914x 108
T 42429544+ 2.6x10%s3+1.596x 10°s2+2.353x 1075+ 1.914x 108;5

which is stable unity-DC gain with cut-off frequency atH2.
Although Q(s) turned out non-minimum phase, the product
Q(s) P, % (s) is stable as required for the stability of the feedback
system depicted in Fig. 1. As shown in Fig.@(s) satisfies the
robust performance bound (248, (1 - Q) ||« =1.48<y=2.
Also, |[W,T|l» = 0.987< 1 as required by the robust stability
condition (24b).

1central difference is chosen to approximate gradients with relative perturba-

tion 1x 108 and BFGS for Hessian matrix updates.
2The functionnor min the Matlab Control Toolbox.
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T T T
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[rad]
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Figure 5. Evolution of the objective function
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Figure 8. Case I: no backlash; Tgig (dash-dot) and W> (solid)

Frequency (Hz)

Tracking error: With Backlash
T

Figure 6. Bode plots of 1/Wj, (S) (dash-dot), 1 — Q(S); initial L (dash), ‘
optimized L (solid) .
5.2 Simulation Results

All simulations are carried out in Simulink Version 7.9
(R2012b) for the closed loop comprised of the nonlinear sys-
tem (25) with the controller (32) and DOB inner loop having
Q(s) (39). In both cases below, the tracking erese yer — Y

[rad]

L L L L
3 35 4 45 5

is obtained for the reference inpykr (t) = Fsin(2mft); f = PR 1 e s
71_HZ ard. in the presencef the disturbance torquiyist (t) = Figure 9. Case II: with backlash; tracking error € = Yret — Y with DOB
sin(awat) ; ww = 5(2m) [rad/seq. (solid), without DOB (dashed)

5.2.1 Casel: Inverted Pendulum without Backlash loop is run withoutTyis to getw — Wy, then with Tyigt to get

!n the first simulation, the backlash nonlinearit_y is taker_l ou_t; that ihe overall estimatev.” Then from (23W5 = W—W;. Clearly,

is, T (u) = uin (25). The closed loop response is shownin Figs. 7 the closed loop tracking performance is improved with the DOB
and 8. The rms values of the tracking error are 0.0482 and 0.0744, hich rejects the effects of the backlash as wellas.

for the closed loop with and without the DOB, respectively.

5.2.2 Case II: Inverted Pendulum with Backlash 6 Conclusions
A symmetric backlash with dead-band width of 0.3 (if, = This paper presented DOB-based control approach to at-
—A, = 0.15) and slop&Ky = 0.75 (i.e. 0.25 perturbation in the  tain robust disturbance rejection and tracking performance in a
nominal value) is used. The closed loop response is given in class of uncertain SISO nonlinear systems. Robustness analysis

Figs. 9 and 10. The rms values of the tracking eerare 0.0483 is studied within theH., framework, and a NLP synthesis ap-
and 0.0754 for the closed loop with and without the DOB, re- proach is subsequently used to obtain a (sub)optimal DOB. Sim-
spectively. ulation results of an inverted pendulum show that closed loop

In both casesv; is obtained in two steps; first the closed robust tracking performance is indeed achieved using the DOB.
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Disturbance estimation: With Backlash
-=.T
T T T

!
——w, hat

N.m]

; ; . : :
25 3 35 4 45 5
time [sec]

L I L L
05 1 15 2

Figure 10. Case II: with backlash; Tgig (dash-dot) and W, (solid)
NLP SDP | Non-Smooth Syn.
(f m ncon) (hi nfstruct)
MGT [0 0.986 1.41 1.32
[Wo (1— Q) [[eo 1.48 1.45 1.14
maxRe{A {A—LC}} -8.4 -7.78 -11.96

Table 1. Optimization Results
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