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1. Introduction

In the nature world, diffusion often occurs in an ecological environment; that is, species can
diffuse between patches. The works about autonomous systems in this field were pioneered
by Levin, after Levin [1], Kishimoto [2], and Takeuchi [3] studied this kind of model. But all
the coefficients in the system they studied are constants. Since biological and environmental
parameters are naturally subject to fluctuation in time, the effects of a varying environment
are considered as important selective forces on systems in a fluctuating environment. More
realistic and interesting models should take into account both the seasonality of the changing
environment and the effects of time delays [4–7]. This motivated Chen et al. [8–11], and
others to consider nonautonomous predator-prey models with almost periodic coefficients
and diffusion. In this paper, we study the almost periodic solution of the delayed predator-
prey model with diffusion and competition so as to obtain some conditions under which three
species are uniformly persistent. In addition, we obtain that for the almost periodic system
there exists a unique almost positive periodic solution which is globally asymptotically stable.
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The organization of this paper is as follows. In the next section, we develop our model,
establish its important properties, and give several lemmas, which will be a key for our proofs
and discussions. In Section 3, sufficient conditions are given for uniform persistence of three
species. In Section 4, by applying Liapunov-Razumikhin technique, we prove the existence and
uniqueness of the positive almost periodic solution which is globally asymptotically stable.
Finally, we give a discussion of our results.

2. Model and preliminaries

It is assumed that the ecosystem is composed of two isolated patches, and the prey population
can disperse among the patches instantaneously. The state variables of the models, xi =
xi(t) (i = 1, 2), describe the densities of the prey population in Patch 1 and Patch 2, respectively.
We suppose that the net exchange of the prey population from Patch j to Patch i is proportional
to the difference of the concentration between xj − xi with Di(t), i, j = 1, 2. The state variables
of the models, xi = xi(t) (i = 3, 4), describe the densities of the predator population in Patch 1
with competition.

Let us consider the following delayed diffusive predator-prey system with competition
and functional response:

x′
1 = x1

(
a10(t) − a11(t)x1

) − α1(t)x2
1x3

1 + β1(t)x2
1

− α2(t)x2
1x4

1 + β2(t)x2
1

+D1(t)
(
x2 − x1

)
,

x′
2 = x2

(
a20(t) − a21(t)x2

)
+D2(t)

(
x1 − x2

)
,

x′
3 = x3

(
− a30(t) + a31(t)

α1(t)x2
1

(
t − τ1

)

1 + β1(t)x2
1

(
t − τ1

) − a32(t)x3 − a34(t)x4
)
,

x′
4 = x4

(
− a40(t) + a41(t)

α2(t)x2
1

(
t − τ2

)

1 + β2(t)x2
1

(
t − τ2

) − a42(t)x4 − a43(t)x3
)
,

(2.1)

with the initial condition

x1(s) = φ1(s) ∈ C
(
[−τ, 0],R+

)
, s ∈ [−τ, 0], φ1(0) ≥ 0, xi(0) = φi ≥ 0 (constants), i = 2, 3, 4.

(2.2)

Here, ai0(t) and ai1(t) (i = 1, 2) represent the intrinsic growth rate and the intraspecific
interference coefficient of the prey population xi (i = 1, 2), respectively. We then assume
that the death rate of the predator population xi (i = 3, 4) in Patch 1 is proportional to
both the existing predator population with the proportional functions a30(t) and, respectively,
a40(t) and to its square with the proportional functions a32(t) and, respectively, a42(t). The
predator consumes the prey according to Holling type III functional response [12, 13], that is,
α1(t)x2

1x3/(1 + β1(t)x
2
1) and α2(t)x

2
1x4/(1 + β2(t)x

2
1). τi (i = 1, 2) is the time to digest food in the

predator organism. τ = max{τ1, τ2}. R+
.= {z : z ≥ 0}.

We introduce some notations and definitions, and state some preliminary lemmas which
will be useful for establishing our main results.

Let R4
+ = {X ∈ R4 : X = (x1, x2, x3, x4), xi > 0, i = 1, 2, 3, 4}. C = C([−τ,∞) × R+ × R+ ×

R+,R4
+). AssumeΩ is a subset ofR+×C([−τ, 0],R+)×R+×R+×R+. Denote by f = (f1, f2, f3, f4)

T :
Ω → R4

+ the map defined by the right-hand side of system (2.1). If V : R+ × C → R+ is a
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continuous function, then the upper right derivative of V (t, x) with respect to system (2.1) is
defined as

D+V (t, X) = lim
h→ 0+

sup
1
h

[
V
(
t + h,X + hf(t, X)

) − V (t, X)
]
. (2.3)

Obviously, the global existence and uniqueness of solutions of system (2.1) are guaranteed by
the smoothness properties of f (see [14, 15] for details on fundamental properties of retarded
functional differential equations).

For convenience, we introduce the following notations:

ψ = sup
t≥0

{
ψ(t)

}
, ψ = inf

t≥0
{
ψ(t)

}
. (2.4)

In this paper, we need all the coefficients to satisfy

min
i=1,2,3,4,
j=0,1,2,3,

{
aij , αi, βi, Di

}
> 0,

max
i=1,2,3,4,
j=0,1,2,3.

{
aij , αi, βi, Di

}
<∞.

(2.5)

Definition 2.1. System (2.1) is said to be uniformly persistent if there exists a compact region
D ⊂ R4

+ such that every solution (x1, x2, x3, x4) of system (2.1) with initial conditions (2.2)
eventually enters and remains in the region D.

For convenience, the set CIP = {u : [0,∞) → [0,∞) | u(s) is positive and nondecreasing
for s > 0, u(0) = 0}.

Lemma 2.2 (see [16, 17]). Consider the following almost periodic equation:

x′(t) = g
(
t, xt

)
. (2.6)

Let CH∗ = {xt ∈ C : ‖xt‖ = supθ∈[−τ,0]|xt(θ)| < H∗}, SH∗ = {x ∈ Rn : |x| < H∗}, H∗ ∈ R+

or H∗ = +∞, g : R × CH∗ → Rn, and g is uniformly almost periodic with respect to t. Let V :
R+ × SH∗ × SH∗ → R+. Assume that the following conditions hold:

(i) a(‖x − y‖) ≤ V (t, x, y) ≤ b(‖x − y‖), a(·), b(·) ∈ CIP, b(0) > 0;

(ii) |V (t, x1, y1) − V (t, x2, y2)| ≤ L(‖x1 − x2‖ + ‖y1 − y2‖), where L is a positive constant;

(iii) there exists a continuous nondecreasing function P(S) such that

P(S) > S if S > 0,

D+(V
(
t, x1(t), x2(t)

)) ≤ −CV (
t, x1(t), x2(t

))
, C ∈ R+,

if P
(
V
(
t, x1(t), x2(t)

)) ≥ V (
t + θ, x1(t + θ), x2(t + θ)

)
, θ ∈ [−τ, 0].

(2.7)

If system (2.6) has a solution ξ(t) : ‖ξt‖ ≤ H < H∗, t ≥ t0, then system (2.6) has a unique
positive almost periodic solution η(t)which is uniformly asymptotically stable, andmod(η) ⊂ mod(g).
Furthermore, if g is ω-periodic with respect to t, then system (2.6) has a positive ω-periodic solution
which is globally asymptotically stable.
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Here, mod(φ) denotes the module of φ(t) which is the set consisting of all real numbers
which are finite linear combinations of elements of the set

Λ =
{
α ∈ R | lim

T→∞
1
T

∫T

0
φ(t) exp(−iαt)dt /= 0

}
(2.8)

with integer coefficients.

Lemma 2.3. R4
+ = {(x1, x2, x3, x4) | xi > 0, i = 1, 2, 3, 4} is a positive invariant set of system (2.1).

Proof. Let (x1, x2, x3, x4) be a solution of system (2.1) with initial conditions (2.2). Hence, for
t ∈ R and (x1, x2, x3, x4) ∈ R4

+, we can derive

x′
1|x1=0 = D1(t)x2 > 0 for x2 > 0,

x′
2|x2=0 = D2(t)x1 > 0 for x1 > 0,

x3 > x3(0) exp
(∫ t

0

( − a30(s) − a32(s)x3(s) − a34(s)x4(s)
)
ds

)
> 0,

x4 > x4(0) exp
(∫ t

0

( − a40(s) − a42(s)x4(s) − a43(s)x3(s)
)
ds

)
> 0.

(2.9)

Therefore, we obtain the positive invariance of R4
+. This completes the proof.

We will focus our discussion on R4
+ with respect to a biological meaning. This also

ensures the solution with positive initial value to be positive all the time.

3. Uniform persistence

In what follows, we want to construct an ultimately bounded region of system (2.1).

Theorem 3.1. There exist three constants Mi > M∗
i (i = 1, 2, 3) such that xj(t) ≤ M1 (j = 1, 2),

x3(t) ≤ M2, and x4(t) ≤ M3 for each positive solution (x1(t), x2(t), x3(t), x4(t)) of system (2.1) with
t large enough, where

M∗
1 = max

{
a10
a11

,
a20
a21

}
, M∗

2 =
A

a32
, M∗

3 =
B

a42
, (3.1)

A
.= a31

(
α1
β1

)
− a30 > 0, B

.= a41
(
α2
β2

)
− a40 > 0. (3.2)

Proof. Suppose that (x1(t), x2(t), x3(t), x4(t)) is a solution of system (2.1)with initial conditions
(2.2). According to the first two equations of (2.1), we have

x′
1 ≤ a10x1 − a11x2

1 +D1(t)
[
x2 − x1

]
,

x′
2 ≤ a20x2 − a21x2

2 +D2(t)
[
x1 − x2

]
.

(3.3)
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We define the following lines in x1-x2 plane:

Line L1: x1 =M1, 0 ≤ x2 ≤M1,

Line L2: x2 =M1, 0 ≤ x1 ≤M1.
(3.4)

Then, we have

x′
1|L1 < 0, x′

2|L2 < 0. (3.5)

Hence, it follows from

max
{
x1(0), x2(0)

} ≤M1 (3.6)

that

max
{
x1(t), x2(t)

} ≤M1 for t ≥ 0. (3.7)

If

max
{
x1(0), x2(0)

}
> M1, (3.8)

we only consider what follows. If xi > M1, i = 1, 2, from the given condition we get

ai0xi − ai1x2
i < M1

(
ai0 − ai1M1

)
< 0, i = 1, 2. (3.9)

Let

−α .= max
i=1,2

{
M1

(
ai0 − ai1M1

)}
,

g(t) = max
{
x1(t), x2(t)

}
.

(3.10)

Next, we consider the following three cases.

Case 1. x1(0) > x2(0), g(0) = x1(0) > M1. Then, there exists ε > 0 such that g(t) = x1(t) > M1

for t ∈ [0, ε). We also derive that

x′
1 ≤ a10x1 − a11x2

1 < −α < 0. (3.11)

Hence, if t2 > t1 and t1, t2 ∈ [0, ε), we get

g
(
t2
) − g(t1

)
< −α(t2 − t1

)
. (3.12)

Case 2. x2(0) > x1(0), g(0) = x2(0) > M1. Similarly, we could obtain that there exists [0, ε). If
t2 > t1 and t1, t2 ∈ [0, ε), we get

g
(
t2
) − g(t1

)
< −α(t2 − t1

)
. (3.13)
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Case 3. x2(0) = x1(0) = g(0) > M1. We can also find an interval [0, ε) such that g(t) = x1(t) >
M1 or g(t) = x2(t) > M1. In the same way, if t2 > t1 and t1, t2 ∈ [0, ε), we can obtain

g
(
t2
) − g(t1

)
< −α(t2 − t1

)
. (3.14)

Now, we can know that if g(0) > M1, g(t) will monotonously decrease by speed α. So, there
exists T1 > 0. If t ≥ T1, we have

g(t) < M1. (3.15)

According to the third equation of (2.1), we have

x′
3 ≤ x3

(
− a30 + a31

α1(t)x2
1

(
t − τ1

)

1 + β1(t)x2
1

(
t − τ1

) − a32x3
)

< x3

(
− a30 + a31

(
α1
β1

)
− a32x3

)
,

x′
3

∣∣
x3=M2

< x3

(
− a30 + a31

(
α1
β1

)
− a32x3

)
.

(3.16)

Hence, it follows from x3(0) ≤M2 that x3(t) ≤M2 for t ≥ 0.
If

x3(0) > M2, (3.17)

we only consider what follows. If x3 > M2, from the given condition we obtain

x3

(
− a30 + a31

(
α1
β1

)
− a32x3

)
< M2

[
− a30 + a31

(
α1
β1

)
− a32M2

]
< 0. (3.18)

Let

−β =M2

[
− a30 + a31

(
α1
β1

)
− a32M2

]
. (3.19)

We also derive that

x′
3 < M2

[
− a30 + a31

(
α1
β1

)
− a32M2

]
= −β < 0. (3.20)

Hence, if t2 > t1 and t1, t2 ∈ [0, ε), we get

x3
(
t2
) − x3

(
t1
)
< −β(t2 − t1

)
. (3.21)

Now, we can know that if x3(0) > M2, x3(t) will monotonously decrease by speed β. So, there
exists T2 such that x3(t) < M2 for t ≥ T2. Similarly, we also get

x′
4 ≤ x4

(
− a40 + a41

α2(t)x2
1

(
t − τ2

)

1 + β2(t)x2
1

(
t − τ2

) − a42x4
)

< x4

(
− a40 + a41

(
α2
β2

)
− a42x4

)
.

(3.22)

We can also choose the same M3. There exists T3 > 0 such that x4(t) < M3 for t > T3. This
completes the proof.
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Theorem 3.2. Suppose that system (2.1) satisfies the following conditions:

a10 −D1 > 0, a20 −D2 > 0,

E =
(
a10 −D1

)2 − 4a11
(
α1
β1

+
α2
β2

)
Mx > 0,

a31
α1m

2
1

1 + β1m2
1

− a30 − a34Mx > 0,

a41
α2m

2
1

1 + β2m2
1

− a40 − a43Mx > 0

(3.23)

in which

m1 =
a10 −D1 +

√
E

2a11
. (3.24)

Then, system (2.1) is uniformly persistent.

Proof. Suppose (x1, x2, x3, x4) is a solution of system (2.1) with the initial condition (2.2).
According to the first equation of (2.1), we get

x′
1(t) ≥ x1(t)

(
(
a10(t) −D1(t)

) − α1(t)x2
1(t)x3(t)

1 + β1(t)x2
1(t)

− α2(t)x2
1(t)x4(t)

1 + β2(t)x2
1(t)

)

≥ −a11(t)x2
1(t) +

(
a10(t) −D1(t)

)
x1(t) − α1(t)Mx

β1(t)
− α2(t)Mx

β2(t)
.

(3.25)

So,

lim inf
t→∞

x1(t) ≥ m1 > 0. (3.26)

Then, there exists a T5 > 0 such that

x1(t) ≥ m1 for t ≥ T5. (3.27)

Similarly,

lim inf
t→∞

x2(t) ≥ m2
.=
a20 −D2

a21
> 0. (3.28)

Then, there exists a T6 > 0 such that

x2(t) ≥ m2 for t ≥ T6. (3.29)

From the third equation of (2.1), we obtain

x′
3(t) ≥ x3(t)

(
− a30(t) + a31(t)

α1(t)m2
1

1 + β1(t)m2
1

− a32(t)x3(t) − a34(t)Mx

)
. (3.30)
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So,

lim inf
t→∞

x3(t) ≥ m3
.=
a31

(
α1m

2
1/

(
1 + β1m2

1

)) − a30 − a34Mx

a32
> 0. (3.31)

Then, there exists a T7 > 0 such that

x3(t) ≥ m3 for t ≥ T7. (3.32)

Similarly, we also get

lim inf
t→∞

x4(t) ≥ m4
.=
a41

(
α2m

2
1/

(
1 + β2m2

1

)) − a40 − a43Mx

a42
> 0. (3.33)

Then, there exists a T8 > 0 such that

x4(t) ≥ m4 for t ≥ T8. (3.34)

Finally, let

D =
{(
x1, x2, x3, x4

) | mx < xi < Mx, i = 1, 2, 3, 4
}
, (3.35)

where mx = mini=1,2,3,4{mi} and Mx = max{M∗
1,M

∗
2,M

∗
3}; M∗

i (i = 1, 2, 3) is given in
Theorem 3.1. From Theorem 3.1 and the above analysis, we see that D is a bounded compact
region in R4

+ which has positive distance from coordinate hyperplanes. Let T̂ = max{Ti, i =
1, . . . , 8}, then we obtain that if t > T̂ , then every positive solution of system (2.1) with initial
conditions (2.2) eventually enters and remains in the region D. This completes the proof.

4. Almost periodic solution

In this section, we derive sufficient conditions which guarantee that the periodic solution of
periodic system (2.2) is globally attractive.

Theorem 4.1. In addition to (2.5), (3.2), and (3.23), assume further that all the coefficients of system
(2.1) are continuous and positive almost periodic functions and

(

a11 +
D1m2

M2
1

+
α1m3

1 + β1M2
1

+
α2m4

1 + β2M2
1

)

m1

>

(2α1β1M2
1M3

(
1 + β1m2

1

)2 +
2α2β2M2

1M4
(
1 + β2m2

1

)2 +
D2

m2

)
M1 +

M2
x

mx

(
2α1a31M1
(
1 + β1m2

1

)2 +
2α2a41M1
(
1 + β2m2

1

)2

)
,

(
a21 +

D2m1

M2
2

)
m2 >

D1

m1
M2 +

M2
x

mx

(
2α1a31M1
(
1 + β1m2

1

)2 +
2α2a41M1
(
1 + β2m2

1

)2

)
,

a32m3 >

(
α1M1

1 + β1m2
1

+ a43
)
M3 +

M2
x

mx

(
2α1a31M1
(
1 + β1m2

1

)2 +
2α2a41M1
(
1 + β2m2

1

)2

)
,

a42m4 >

(
α2M1

1 + β2m2
1

+ a34
)
M3 +

M2
x

mx

(
2α1a31M1
(
1 + β1m2

1

)2 +
2α2a41M1
(
1 + β2m2

1

)2

)
.

(4.1)
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Then, system (2.1) has a unique positive almost periodic solution which is globally asymptotically
stable. Furthermore, if system (2.1) is anω-periodic system, then system (2.1) has a positiveω-periodic
solution which is globally asymptotically stable.

Proof. Consider the product system of (2.1):

x′
1 = x1

(
a10(t) − a11(t)x1

) − α1(t)x2
1x3

1 + β1(t)x2
1

− α2(t)x2
1x4

1 + β2(t)x2
1

+D1(t)
(
x2 − x1

)
,

x′
2 = x2

(
a20(t) − a21(t)x2

)
+D2(t)

(
x1 − x2

)
,

x′
3 = x3

(
− a30(t) + a31(t)

α1(t)x2
1

(
t − τ1

)

1 + β1(t)x2
1

(
t − τ1

) − a32(t)x3 − a34(t)x4
)
,

x′
4 = x4

(
− a40(t) + a41(t)

α2(t)x2
1

(
t − τ2

)

1 + β2(t)x2
1

(
t − τ2

) − a42(t)x4 − a43(t)x3
)
,

y′
1 = y1

(
a10(t) − a11(t)y1

) − α1(t)y2
1y3

1 + β1(t)y2
1

− α2(t)y2
1y4

1 + β2(t)y2
1

+D1(t)
(
y2 − y1

)
,

y′
2 = y2

(
a20(t) − a21(t)y2

)
+D2(t)

(
y1 − y2

)
,

y′
3 = y3

(
− a30(t) + a31(t)

α1(t)y2
1

(
t − τ1

)

1 + β1(t)y2
1

(
t − τ1

) − a32(t)y3 − a34(t)y4
)
,

y′
4 = y4

(
− a40(t) + a41(t)

α2(t)y2
1

(
t − τ2

)

1 + β2(t)y2
1

(
t − τ2

) − a42(t)y4 − a43(t)y3
)
.

(4.2)

It is easily noted that the existence and uniqueness of the positive almost periodic solution
of system (2.1) are equivalent to the existence and uniqueness of the positive almost periodic
solution of system (4.2). Then, choose the following function:

V (t) = V
(
t, xi, yi

)
=

4∑

i=1

∣∣ lnxi(t) − lnyi(t)
∣∣. (4.3)

Obviously, V (t) satisfies conditions (i) and (ii) of Lemma 2.2. Next, we will prove that V (t)
satisfies condition (iii) of Lemma 2.2. It follows that

x′
1

x1
− y′

1

y1
= −a11

(
x1 − y1

) −D1

(
x2
x1

− y2
y1

)
−
(
α1x1x3

1 + β1x2
1

− α1y1y3

1 + β1y2
1

)
−
(
α2x1x4

1 + β2x2
1

− α2y1y4

1 + β2y2
1

)

(4.4)

in which

α1x1x3

1 + β1x2
1

− α1y1y3

1 + β1y2
1

=
(

α1x3

1 + β1x2
1

− α1β1y1y3
(
x1 + y1

)

(
1 + β1x2

1

)(
1 + β1y2

1

)
)
(
x1 − y1

)
+

α1y1

1 + β1x2
1

(
x3 − y3

)
;

(4.5)
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also,

x′
2

x2
− y′

2

y2
=
(
− a21 −

D2y1
x2y2

)
(
x2 − y2

)
+
D2

x1

(
x1 − y1

)
,

x′
3

x3
− y′

3

y3
= a31

α1
[
x1
(
t − τ1

)
+ y1

(
t − τ1

)]

[
1 + β1x2

1

(
t − τ1)

][
1 + β1y2

1

(
t − τ1

)]
[
x1
(
t − τ1

) − y1
(
t − τ1

)]

− a32
(
x3 − y3

) − a34
(
x4 − y4

)
,

x′
4

x4
− y′

4

y4
= a41

α2
[
x1
(
t − τ2

)
+ y1

(
t − τ2

)]

[
1 + β1x2

1

(
t − τ2

)][
1 + β1y2

1

(
t − τ2

)]
[
x1
(
t − τ2

) − y1
(
t − τ2

)]

− a42
(
x4 − y4

) − a43
(
x3 − y3

)
.

(4.6)

In this regard, after few computations, it is noted that

D+V
(
t, xi, yi

)
=

4∑

i=1

sgn
(
xi(t) − yi(t)

)
(
x′
i(t)
xi(t)

− y′
i(t)
yi(t)

)

=
[
− a11 −

D1y2
x1y1

− α1x3(
1 + β1x2

1

) − α2x4(
1 + β2x2

1

) +
α1β1y1y3

(
x1 + y1

)

(
1 + β1x2

1

)(
1 + β1y2

1

)

+
α2β1y1y4

(
x1 + y1

)

(
1 + β2x2

1

)(
1 + β2y2

1

)
]∣∣x1 − y1

∣∣ +
[
− a21 −

D2y1
x2y2

]∣∣x2 − y2
∣∣

− a32
∣∣x3 − y3

∣∣ − a42
∣∣x4 − y4

∣∣ + sgn
(
x1 − y1

)D1
(
x2 − y2

)

x1

− sgn
(
x1 − y1

) α1y1
(
1 + β1x2

1

)
(
x3 − y3

) − sgn
(
x1 − y1

) α2y1
(
1 + β2x2

1

)
(
x4 − y4

)

+ sgn
(
x2 − y2

)D2
(
x1 − y1

)

x2

+ sgn
(
x3 − y3

) a31α1
[
x1
(
t − τ1

)
+ y1

(
t − τ1

)]

[
1 + β1x2

1

(
t − τ1

)][
1 + β1y2

1

(
t − τ1

)]
[
x1
(
t − τ1

) − y1
(
t − τ1

)]

− a34sgn
(
x3 − y3

)(
x4 − y4

)

+ sgn
(
x4 − y4

) a41α2
[
x1
(
t − τ2

)
+ y1

(
t − τ2

)]

[
1 + β1x2

1

(
t − τ2

)][
1 + β1y2

1

(
t − τ2

)]
[
x1
(
t − τ2

) − y1
(
t − τ2

)]

− a43sgn
(
x4 − y4

)(
x3 − y3

)

≤ −
(
a11 +

D1m2

M2
1

+
α1m3

1 + β1M2
1

+
α2m4

1 + β2M2
1

− 2α1β1M2
1M3

(
1 + β1m2

1

)2

− 2α2β2M2
1M4

(
1 + β2m2

1

)2 − D2

m2

)∣∣x1 − y1
∣∣ +

(
− a21 −

D2m1

M2
2

+
D1

m1

)∣∣x2 − y2
∣∣
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+
(
− a32 + α1M1

1 + β1m2
1

+ a43
)∣∣x3 − y3

∣∣ +
(
− a42 + α2M1

1 + β2m2
1

+ a34
)∣∣x4 − y4

∣∣

+
2α1a31M1
(
1 + β1m2

1

)2
∣∣x1

(
t − τ1

) − y1
(
t − τ1

)∣∣ +
2α2a41M1
(
1 + β2m2

1

)2
∣∣x1

(
t − τ2

) − y1
(
t − τ2

)∣∣.

(4.7)

It follows from (4.1) that

1
Mx

4∑

i=1

∥
∥xi − yi

∥
∥ ≤ V (

t, xi, yi
) ≤ 1

mx

4∑

i=1

∥
∥xi − yi

∥
∥. (4.8)

Choose P(s) = (Mx/mx)s > s > 0, a(s) = (1/Mx)s > 0, b(s) = (1/mx)s > 0. When

P
(
V
(
t, xi(t), yi(t)

)) ≥ V (
t + θ, xi(t + θ), yi(t + θ)

)
, θ ∈ [−τ, 0], i = 1, 2, 3, 4,

∣∣x1(t − τ) − y1(t − τ)
∣∣ ≤Mx

∣∣ lnx1(t − τ) − lny1(t − τ)
∣∣

≤MxV
(
t − τ, xi(t − τ), yi(t − τ)

)

≤Mx
Mx

mx
V
(
t, xi(t), yi(t)

)
;

(4.9)

then

2α1a31M1
(
1 + β1m2

1

)2
∣∣x1

(
t − τ1

) − y1
(
t − τ1

)∣∣ ≤ M2
x

mx

2α1a31M1
(
1 + β1m2

1

)2V
(
t, xi(t), yi(t)

)
,

2α2a41M1
(
1 + β2m2

1

)2
∣∣x1

(
t − τ2

) − y1
(
t − τ2

)∣∣ ≤ M2
x

mx

2α2a41M1
(
1 + β2m2

1

)2V
(
t, xi(t), yi(t)

)
.

(4.10)

Hence,

D+V
(
t, xi, yi

) ≤
[
−
(
a11 +

D1m2

M2
1

+
α1m3

1 + β1M2
1

+
α2m4

1 + β2M2
1

)
m1

+
(2α1β1M2

1M3
(
1 + β1m2

1

)2 +
2α2β2M2

1M4
(
1 + β2m2

1

)2 +
D2

m2

)
Mx

]∣∣ lnx1 − lny1
∣∣

+
[
−
(
a21 +

D2m1

M2
2

)
m2 +

D1

m1
M2

]∣∣ lnx2 − lny2
∣∣

+
[
− a32m3 +

(
α1M1

1 + β1m2
1

+ a43
)
M3

]∣
∣ lnx3 − lny3

∣
∣

+
[
− a42m4 +

(
α2M1

1 + β2m2
1

+ a34
)
M4

]∣∣ lnx4 − lny4
∣∣

+
M2

x

mx

(
2α1a31M1
(
1 + β1m2

1

)2 +
2α2a41M1
(
1 + β2m2

1

)2

)
V
(
t, xi(t), yi(t)

) ≤ −CV (
t, xi(t), yi(t)

)
,

(4.11)
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where

−C = max
{
−
(
a11 +

D1m2

M2
1

+
α1m3

1 + β1M2
1

+
α2m4

1 + β2M2
1

)
m1

+
(2α1β1M2

1M3
(
1 + β1m2

1

)2
2α2β2M2

1M4
(
1 + β2m2

1

)2 +
D2

m2

)
Mx +

M2
x

mx

(
2α1a31M1
(
1 + β1m2

1

)2 +
2α2a41M1
(
1 + β2m2

1

)2

)

−
(
a21 +

D2m1

M2
2

)
m2 +

D1

m1
M2 +

M2
x

mx

(
2α1a31M1
(
1 + β1m2

1

)2 +
2α2a41M1
(
1 + β2m2

1

)2

)

− a32m3 +
(

α1M1

1 + β1m2
1

+ a43
)
M3 +

M2
x

mx

(
2α1a31M1
(
1 + β1m2

1

)2 +
2α2a41M1
(
1 + β2m2

1

)2

)

− a42m4 +
(

α2M1

1 + β2m2
1

+ a34
)
M4 +

M2
x

mx

(
2α1a31M1
(
1 + β1m2

1

)2 +
2α2a41M1
(
1 + β2m2

1

)2

)}
.

(4.12)

This completes the proof.

5. Discussion

In this work, we consider a nonautonomous delayed predator-prey model with competition
and diffusion. Some sufficient conditions on uniform persistence of the model have been given.
By means of the Liapunov-Razumikhin technique, it is also seen that, under almost periodic
circumstances, the existence and uniqueness of the positive almost periodic solution which is
globally asymptotically stable are governed by several inequalities.
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