
www.ietdl.org
Published in IET Circuits, Devices & Systems
Received on 9th July 2010
Revised on 23rd January 2011
doi: 10.1049/iet-cds.2010.0259

ISSN 1751-858X

Discrete wavelet transform realisation using run-time
reconfiguration of field programmable gate array
(FPGA)s
C. Desmouliers E. Oruklu J. Saniie
Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
E-mail: erdal@ece.iit.edu

Abstract: Designing a universal embedded hardware architecture for discrete wavelet transform is a challenging problem because
of the diversity among wavelet kernel filters. In this work, the authors present three different hardware architectures for
implementing multiple wavelet kernels. The first scheme utilises fixed, parallel hardware for all the required wavelet kernels,
whereas the second scheme employs a processing element (PE)-based datapath that can be configured for multiple wavelet
filters during run-time. The third scheme makes use of partial run-time configuration of FPGA units for dynamically
programming any desired wavelet filter. As a case study, the authors present FPGA synthesis results for simultaneous
implementation of six different wavelets for the proposed methods. Performance analysis and comparison of area, timing and
power results are presented for the Virtex-II Pro FPGA implementations.
1 Introduction

Discrete wavelet transform (DWT) has been widely used in
many multimedia applications including video coding and
various signal-processing applications. Multimedia standards
such as JPEG2000 and MPEG-4 have adopted DWT as its
transform coder. Consequently, efficient hardware realisation
of DWT for embedded devices has been an important
research topic. Although numerous architectures have been
proposed for DWT, these have been for the most part
influenced by popular wavelet kernels used in multimedia
standards such as CDF 9/7, limiting their applicability to
other kernel implementations.

DWT does not have a pre-fixed kernel as in other transforms,
such as fast Fourier transform (FFT) or discrete cosine transform
(DCT). Therefore the wavelet kernel can be chosen based on the
performance of the wavelet filters with respect to the application
type. The clear benefit of using DWT then is the capability of
fine-tuning the wavelet filters for more adaptive solutions.
For example, in ultrasonic imaging applications [1, 2],
different wavelet kernels have shown varying results for
target detection, necessitating the inclusion of multiple
wavelet hardware units in the embedded system for robust
operation. These wavelet kernels included Daubechies (D4,
D10), Symmlet (8,10), Coiflet (1,5), Battle-Lemarie (1,5) and
they require significantly diverse implementations [2].
Similarly, JPEG2000 standard [3] requires inclusion of at least
two wavelet kernels (9/7) and (5/3) in order to provide two
levels of algorithm complexity.

Consequently, it is imperative for adaptive applications to
support numerous wavelet kernel implementations. Recently,
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 4, pp. 321–328
doi: 10.1049/iet-cds.2010.0259
several reconfigurable wavelet architectures have been
proposed to address this issue. However, an efficient unified
hardware realisation proves to be very difficult to achieve
because of disparity in wavelet filter kernels. A multiplierless
wavelet design, based on canonical signed digits is proposed
in [4] for FPGA implementations but the design is fixed and
cannot be changed for other wavelet kernels. In [5], a lifting-
scheme-based architecture with a fixed type processing
element (PE) is used for the set of seven filters proposed in
JPEG2000. However, these kernels are very similar to each
other and the paper does not provide any method for
simultaneous implementation of kernels. A memory efficient,
pipelined architecture for DWT is presented in [6] but only
5/3 and 9/7 kernels are discussed. A systematic design method
is proposed in [7] to construct lifting-based DWT. This
method uses the non-uniqueness property of the wavelet
lifting factorisation to force four specific types of lifting steps,
resulting in a systolic array implementation but reconfiguration
and support for more than one type of wavelet kernel is not
discussed. A reconfigurable architecture based on the same
systematic method is described in [8] using folding of the
systolic PE array. However, the specific lifting factorisation
required in these methods is not optimal for all wavelet
families. The final lifting step may require decomposition into
smaller lifting steps, which can rapidly increase the number of
PEs required. A wavelet processing core based on RISC
architecture with an instruction set specifically designed to
facilitate the implementation of wavelet-based applications is
shown in [9] but the wavelet kernel implementation is not
universal. In [10], authors describe generic and modular
architectures that allow the rapid silicon design of a broad
321

& The Institution of Engineering and Technology 2011

www.ietdl.org
range of wavelet systems. This method targets reusable IP cores
with fast development cycle but it is not capable of on-chip
reconfiguration, limiting its application areas.

In this work, a universal wavelet transform platform based on
partial configuration of the FPGA fabric is presented. Dynamic
reconfiguration of FPGAs is a flexible technique to achieve
spatial mapping of complex algorithms [11, 12]. Recently, it
has been successfully applied to image and video-processing
applications [13]. Furthermore, a wavelet transform
implementation has been proposed in [14], however it only
supports two very similar wavelet kernels. In the following
sections, we briefly discuss the lifting-based wavelet
transform. We the present three adaptive wavelet architectures
that support implementation of kernels from different wavelet
families. Finally, the FPGA synthesis results are discussed and
analysed.

2 Lifting-based wavelet transform

DWT can be implemented directly by convolution.
Nevertheless, such an implementation can be computationally
very heavy (depending on the wavelet) which is not desirable
for high-speed and low-power applications. A lifting-based
scheme [15], which can reduce the computational load up to
50%, has been proposed for the DWT [16]. The main feature
of the lifting-based DWT scheme is to decompose the
highpass and lowpass filters into a sequence of upper and
lower triangular matrices.

The DWT implementation using polyphase matrices is shown
in Fig. 1. Let h̃(z) and g̃(z) be the lowpass and highpass analysis
filters, and let h(z) and g(z) be the lowpass and highpass
synthesis filters, respectively. The corresponding analysis and
synthesis polyphase matrices are then defined as

P̃(z) = h̃e(z) g̃e(z)
h̃o(z) g̃o(z)

[]
(1)

and

P(z) = he(z) ge(z)
ho(z) go(z)

[]
(2)

where h̃e(z), g̃e(z) are even indexed filter coefficients and h̃o(z),
g̃o(z) are odd indexed filter coefficients. If (h̃, g̃) is a
complementary pair then P̃(z) can always be decomposed into

Fig. 1 One-stage filterbank for signal analysis and reconstruction
using polyphase matrices
322

& The Institution of Engineering and Technology 2011
lifting steps as [15]

P̃(z−1)t = K 0
0 1/K

[]∏m

i=1

1 s̃i(z)
0 1

[]
1 0

t̃i(z) 1

[]
(3)

where s̃i(z) and t̃i(z) are Laurent polynomials, K is the
scaling factor and m is determined by the wavelet kernel
factorisation. It is important to note that, for a given
wavelet kernel, s̃i(z) and t̃i(z) filters can have any number
of taps making it difficult for a regular very large scale
integration (VLSI) structure implementation.

3 Lifting decomposition for hardware
realisation

In order to demonstrate the hardware realisation challenges,
six wavelet kernels with different complexities have been
implemented in this work as a case study. They
correspond to the wavelet transformations given in
MATLAB as Daubechies-2 (Db2), Daubechies-3 (Db3),
CDF 5/3, CDF 9/7, Spline1.5 and Symlet-4. In
this work, only the synthesis filter decomposition will be
examined; it can be easily extended to the analysis filters.

The lifting decomposition for each wavelet kernel has
been obtained from a C program we developed for lifting
factorisation. This program is based on Liftpack software
package [17], which is capable of extracting all possible
lifting decompositions given for a wavelet kernel. Lifting
decomposition is not unique [18] and a very large number
of factorisations are possible for a single kernel. It is
important to note that our lifting factorisation program is
designed to find and generate only the decompositions
that are useful for hardware implementation: First, it
ensures that the decomposition finishes by a scaling
matrix, so it has the form given in (3). Second, only the
decompositions which have few numbers of taps and
small coefficient values for those taps are selected. More
taps means more hardware is required which is not
desirable. A small coefficient value is desired because of
finite precision operations. (16-bit datapath is used with
12 bits for integer part and four bits for fractional part.)
In order to prevent overflow at the output of the
multipliers, one of the input operands (in this case the
coefficient) is kept small but not close to 0 for precision.
To illustrate the lifting-selection criteria, an example is
given below.

Using the algorithm given in [18], Coiflet-2 wavelet kernel
has more than 5000 different decompositions when kernel
polyphase matrix is factorised into lifting steps. However, if
only the decompositions that are valid (having the form
given in (3)) are selected, there are only 28 possibilities
remaining. An example of an invalid decomposition is
given in (4). There is no scaling matrix with a constant K
for this case (see (4)).

Examples of valid decompositions are given in (5) and (6).
Although the lifting structures are identical, the coefficient
P̃(z−1)t = a10z−2 + a11z−3 + a12z−4 a13z−1 + a14z−2 + a15z−3 + a16z−4

a17z4 a18z5 + a19z4

[]
1 0

a8z + a9 1

[]
1 a6z−1 + a7z−2

0 1

[]

×
1 0

a4z + a5 1

[]
1 a2z−1 + a3z−2

0 1

[]
1 0

a1z 1

[]
(4)
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 4, pp. 321–328
doi: 10.1049/iet-cds.2010.0259

www.ietdl.org
values differ greatly.

P̃(z−1)t =
a15 0

0 1/a15

[]
1 a12z−4 + a13z−5 + a14z−6

0 1

[]

×
1 0

a10z4 + a11z3 1

[]
1 a8z−2 + a9z−3

0 1

[]

×
1 0

a6z2 + a7z 1

[]
1 a4 + a5z−1

0 1

[]

×
1 0

a2z2 + a3z 1

[]
1 a1z−1

0 1

[]
(5)

where a1 =−2.530, a2 = 0.075, a3 =−1.184, a4 =−0.057,
a5 = 0.665, a6 =−1176.195, a7 =−122.462, a8 = 0.001,
a9 =−0.0001, a10 = 76 377.547, a11 = 15 797.077,
a12 =−0.00001, a13 = 0.000003, a14 =−0.0000007,
a15 = 244.326.

P̃(z−1)t =
a15 0

0 1/a15

[]
1 a12z−4 + a13z−5 + a14z−6

0 1

[]

×
1 0

a10z4 + a11z3 1

[]
1 a8z−2 + a9z−3

0 1

[]

×
1 0

a6z3 + a7z2 1

[]
1 a4z−1 + a5z−2

0 1

[]

×
1 0

a2z2 + a3z 1

[]
1 a1z−1

0 1

[]
(6)

where a1 =−2.530, a2 = 0.075, a3 = 0.3418, a4 =−0.655,
a5 =−7.489, a6 = 0.937, a7 = 0.2311, a8 =−0.005,
a9 =−1.044, a10 = 6.338, a11 = 1.311, a12 =−0.157,
a13 = 0.032, a14 =−0.0088, a15 = 2.225.

Among the remaining 28, the desired decomposition
shouldhave small number of taps and small finite precision
range for coefficients. There are only three such solutions
and (6) is one of them. Lifting scheme in (5) has coefficients
which are too large (such as a10 and a11) for finite precision
operations. After running this algorithm for each wavelet
kernel, we obtain the lifting decompositions given in Fig. 2.
Those decompositions exactly match the ones given by
MATLAB.

4 Parallel wavelet kernels implementation

A straightforward approach for applications that require multiple
wavelet kernels is to implement all kernels in parallel. This
requires a priori knowledge about all the wavelet kernels to be
used in the application and also results in a highly redundant
system. For performance comparison, six different wavelet
kernels are synthesised on a Virtex-II pro FPGA. Each
wavelet kernel is implemented using MATLAB Simulink with
Xilinx system generator library to generate the vhdl files and
the required netlist files. The lifting factorisation and the
implementation of these wavelet kernels without the
pipelining stages are shown Fig. 2. Here, d1 and s1 are the
highpass and lowpass filter outputs, respectively. In this work,
we have implemented only one level decomposition but it can
be easily extended to multi-level decomposition by adding
others stages or by reusing the same hardware unit.
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 4, pp. 321–328
doi: 10.1049/iet-cds.2010.0259
For hardware realisation, a hardware/software codesign
method has been used on a Virtex-II pro FPGA device using
Embedded Development Kit (EDK) 9.1 software from Xilinx.
The system overview is given in Fig. 3. The microprocessor is
Microblaze (32-bit embedded microprocessor) and it is used
for controlling and selecting the necessary wavelet datapath
units (see Fig. 2). Microblaze CPU also handles the input and
output transfers. For testing purposes, an input signal of 512
samples (each sample is 8-bits) is stored on a compact flash
disk and loaded into two dual-port memories separately for
even and odd samples using fast simplex link (FSL) [19].
Using a software accessible register (a general purpose input
output, GPIO register), the desired DWT kernel can be
selected. When the DWT operation has been completed, the
results are sent back to the processor via FSL, stored in the
external memory and displayed on the screen using a terminal
screen connected to the FPGA via a serial link.

The purpose of the control unit is to enable access to the
memory units and generate the necessary addresses when
DWT is performed. It also generates control signals when
the output data are ready to be written into the first in first
out (FIFO) of the FSL socket and when the DWT is
completed. The FSL socket is used as an interface between
the Microblaze processor and the hardware. It uses four
FSL (two slaves and two masters) links. The slave links are
used to download the input signal into the two memory
modules. When a Load signal is asserted, if there is any
data in the FIFO of the link, they are written into the
memory. When a Start signal is asserted, the output data of
the DWT are written into the FIFO. Finally, using drivers
created by EDK software, these data are stored in the
external memory and displayed on the screen to verify that
results are correct.

5 PE based systolic array implementation

In order to remove the significant hardware redundancy
observed in the parallel implementation, a second scheme is
proposed. In this approach, a wavelet transform architecture
can be reconfigured depending on the type of DWT
required. This is accomplished using PEs in a systolic array
structure. It can be observed from Fig. 2 that a possible PE
could be composed of one adder, one multiplier and several
registers. The proposed PE is in given Fig. 4. Whereas one
multiplexer decides which input will be delayed by the
delay chain two other multiplexers select the input that will
go to the multiplier or the adder. The delay chain is shown
in Fig. 5. It is composed of two registers and a multiplexer.

For this case study, the wavelet hardware architecture is
required to implement the six DWTs selected. The maximum
number of PEs required corresponds to the number of taps in
the lifting factorisation (except for the scaling factors). For
example, Db2 requires four PEs. Since Symlet-4 DWT has
eight taps, the maximum number of PEs required will be
eight. Eight PEs are connected in series as shown in Fig. 6.
The length of PE chain (which corresponds to the number of
filter taps) is determined by MUX1. The output samples are
multiplied by the scaling factor. The delay chains at the end
are configured in order to have d1 ready at one clock cycle
after s1 (this is required so that the same control unit can be
used for each wavelet kernel). This new module replaces the
six DWTs shown in Figs. 2 and 3. GPIO registers have been
added to configure the architecture (control signals and
coefficient values must be initialised).

In order to illustrate the reconfiguration of the PE datapath,
we examine Db2 (see Fig. 2a) wavelet filter implementation.
323

& The Institution of Engineering and Technology 2011

www.ietdl.org
Fig. 2 Lifting factorisation and implementation of wavelet kernels Db2, Db3, CDF 5/3, CDF 9/7, Spline 1.5 and Symlet-4

a Db2 factorisation
b Db3 factorisation
c CDF 5/3 factorisation
d CDF 9/7 factorisation
e Spline 1.5 factorisation
f Symlet-4 factorisation
324 IET Circuits Devices Syst., 2011, Vol. 5, Iss. 4, pp. 321–328

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-cds.2010.0259

www.ietdl.org
Suppose that d0 is connected to input1 and s0 to input2 of the
first PE:

† The wavelet kernel requires four PEs that are selected by
MUX1.

† 1st PE: coefficient is a, input1 goes to the adder and input2
goes to the multiplier, no registers are needed.
† 2nd PE: coefficient is b, input1 goes to the multiplier and
input2 goes to the adder, 1 register is needed on adder path.
† 3rd PE: coefficient is g, input1 goes to the multiplier and
input2 goes to the adder, 1 register is needed on multiplier
path.
† 4th PE: coefficient is 1, input1 goes to the adder and input2
goes to the multiplier, 1 register is needed on multiplier path.
† Scaling D will be 1/d and Scaling S will be d.

Fig. 3 System implemented on Virtex-II Pro

Fig. 4 PE architecture

Fig. 5 Delay chain architecture
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 4, pp. 321–328
doi: 10.1049/iet-cds.2010.0259
This approach requires fewer resources than the first
method; nevertheless, eight PEs will be utilised whereas
only four are required for the case of Db2 kernel. In
order to reduce the hardware resources and vastly improve
the kernel support, dynamic partial self-configuration of
FPGA devices can be used which is presented in the next
section.

6 Dynamic partial self-reconfiguration

In this approach, dynamic partial self-reconfiguration is
needed in order to reduce the hardware required for the
implementation of multiple DWTs. Depending on the
desired wavelet kernel, the FPGA will reconfigure itself
using the internal configuration access port (ICAP) [20].
For this case study, the six DWTs will be replaced by
a reconfigurable module which will correspond to only
one DWT at a time. The steps required to achieve
dynamic partial self-reconfiguration is described below
(see Fig. 7):

† Step 1. Create the processor system: EDK 9.1 has been
used to create the processor system that will correspond to
the static module. This module is basically the same as the
two previous methods except that the DWT modules are
removed but the ports d0, s0, d1 and s1 (see Fig. 2) are
made external. In order to perform dynamic partial self-
reconfiguration, the IP core HWICAP [21] provided by
Xilinx is added to the system and connected to the on-chip
peripheral bus (OPB) bus. Furthermore, a software
component that will be executed by the microprocessor is

Fig. 7 Steps required for dynamic partial self-reconfiguration
Fig. 6 PE array for six DWT kernels
325

& The Institution of Engineering and Technology 2011

www.ietdl.org
needed. With this software, the user can select which DWT to
implement in real time. The partial reconfiguration is initiated
by the software using a function provided by Xilinx. Finally,
the static module is completed and can be synthesised in order
to obtain the required file for the synthesise of the top module.

† Step 2. Create and synthesise peripheral IPs: The vhdl and
netlist files for each wavelet kernel were already created in the
first approach (i.e. parallel implementation of kernels), hence
they can be used with minor modifications. First, it is
important that the top module of each wavelet kernel has the
same name (in our case it is wavelet) because they will be
instantiated as a black box in the top module. Each wavelet
kernel is synthesised using Integrated Software Environment
(ISE) 9.1 software from Xilinx with the option Add I/O
Buffers unchecked. This is important because this module will
be instantiated within the top module and no buffers are
required since its input and output ports will be internal. After
synthesis, the Xilinx NGC (netlist with constraint) netlist files
are obtained for each wavelet kernel.

† Step 3. Create top-level design: The top module (which
establishes the interface between static and dynamic parts)
must be manually created. The communication between the
static module and the dynamic module is done by using Bus
Macros. Moreover, the dynamic module requires a clock and
clock signals cannot be transferred using Bus Macro.
Therefore the digital clock management (DCM) module must
be removed from the static part and instantiated on the top-
level. The reconfigurable module will operate at the frequency
of the static module sys_clk, which is 100 MHz.
Bus Macros are unidirectional and the bus going from the
dynamic module to the static module must be disabled during
reconfiguration. This is done by using a GPIO register. The
reconfigurable module is instantiated as a black box with the
name wavelet. Fig. 8 shows the top module of the entire
system. Finally, the top-level design is synthesised in ISE9.1
using the vhdl file of the top module that was created and the
system.xmp file of the static module. After synthesis, the NGC
file of the top-level design is obtained.

† Step 4. Create a PlanAhead project: PlanAhead 9.2.7
software from Xilinx has been used to create the
implementation files used to reconfigure the FPGA. Within
the project file, the NGC file of the top-level design, the
NGC file of the wavelet kernel and the NGC file of the Bus
Macros given by Xilinx are selected. Finally, the constraint
file that has been created in EDK is added and set as partial
reconfiguration (PR) project.

Fig. 8 Top module of the dynamic partial self-reconfiguration
implementation
326

& The Institution of Engineering and Technology 2011
† Step 5. Create area groups/place components: First, a
reconfigurable area is specified as to where the wavelet
kernel will be implemented. This area must be large enough
so that the wavelet kernel that uses the most resources, fits.
In this case, the symlet-4 wavelet kernel would be the
largest. Each Bus Macro must then be placed on the edge
of the reconfigurable area for data transfers. Finally the
DCM module must be placed.

† Step 6. Run PR flow: Before PR Implementation flow is
run, the user has to set the path to the system_stub.bmm file
in order to generate the system_stub_bd.bmm file after the
implementation. The system_stub.bmm file describes the
block RAM (BRAM) composition (logical) where the
program will be stored when the FPGA is configured. The
system_stub_bd.bmm file describes actual BRAMs used in
the implementation. Routing of the top module after
placement and routing (PAR) is shown Fig. 9. Finally, the
full bitstream that will be used to initially configure the
FPGA is generated. A default wavelet kernel is selected for
the full bitstream. Moreover, partial bitstream files for each
wavelet kernel are created.

† Step 7. Create image and test: For testing purposes, we
have created a system.ace file using the full bitstream file
and the ELF file (obtained from EDK) containing the
information of the C program. This file and all the partial
bit files are stored on the compact flash disk. Hence, the
board is automatically configured using the system.ace file
when it is powered up. A menu is then displayed in the
HyperTerminal using the serial link. From this menu,
the user can load the input data in the BRAMs, select the
wavelet kernel to implement in real time and finally display
the results. Of course, a control unit can be designed
depending on the application that will specify the DWT
kernel to implement in real time. In order to send the partial
bitstreams to the ICAP interface for reconfiguration, a C
function provided by Xilinx is used. It opens the bitstream
of our choice located on the compact flash disk, and sends
it to the storage buffer (512 words depth) of the HWICAP
module. When the buffer is full, the data are sent to the
ICAP interface. This continues until the whole bitstream
has been loaded.

Fig. 9 Routing of the top module after PAR in PlanAhead
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 4, pp. 321–328
doi: 10.1049/iet-cds.2010.0259

www.ietdl.org
7 Implementation results

Three different wavelet architectures are synthesised on the same
FPGA device and compared in terms of area, power and
frequency. Area and timing results are obtained using ISE 9.1
and EDK 9.1 software, respectively. Power results are obtained
using XPower [22]. Furthermore, the reconfiguration time for
the partial configuration case is measured. Tables 1–3 display
the FPGA resources such as slices, flip-flops (FF), look-up
tables (LUT) and multiplier units (Mult.) used in the wavelet
transform implementations. In the three cases, the base system
includes all the hardware required except the wavelet kernels.
For Table 3, the total represents the base system plus the
biggest kernel which is Symlet-4. It can be seen that the
dynamic partial self-reconfiguration scheme requires least
hardware logic. Although systolic array implementation results
are acceptable, the hardware resources would be significantly
higher given a more exhaustive set of wavelets.

The maximum achievable frequency for Schemes 1 and 3
(both methods use same implementations for six DWTs) is
300 MHz that corresponds to the maximum speed of the
dedicated multiplier. On the other hand, the systolic array
implementation can achieve only 150 MHz because of the
extra control logic used for reconfiguration.

Table 4 lists the power consumption results. The parallel
implementation scheme requires more than double the power
compared with Schemes 2 and 3. Partial configuration scheme
uses more power than systolic implementation because of
extra hardware added for on the fly reconfiguration.

The reconfiguration time of the board depends on the size
of the DWT bitstream. A timer connected to the OPB Bus has

Table 1 Parallel implementation scheme

Slices FF 4 input LUT Mult.

Db2 327 577 85 5

Db3 556 1041 136 8

CFD 5/3 294 529 68 4

CDF 9/7 551 1025 102 6

Spline 1.5 528 993 85 5

Symlet-4 689 1297 170 10

base system 4512 3248 3392 3

total 7457 8710 4038 41

Table 2 Systolic implementation scheme

Slices FF 4 input LUT Mult.

PE array 1609 2817 1408 10

base system 5363 4523 3519 3

total 6972 7340 4927 13

Table 3 Partial configuration scheme

Slices FF 4 input LUT Mult.

Db2 327 577 85 5

Db3 556 1041 136 8

CFD 5/3 294 529 68 4

CDF 9/7 551 1025 102 6

Spline 1.5 528 993 85 5

Symlet-4 689 1297 170 10

base system 4623 3262 3574 3

total 5312 4559 3744 13
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 4, pp. 321–328
doi: 10.1049/iet-cds.2010.0259
been used to measure the reconfiguration time. Since all
the partial bitstreams have similar size (about 288 KB), the
reconfiguration time is almost the same for each configuration.
The first option is to load the bitstream directly from the
compact flash disk during run-time reconfiguration. This is
the worst case because of the access time of the compact flash
disk. A better option is to load all the bitstream in the external
memory just after the board has been configured with the
full bitstream. Hence, during run-time reconfiguration,
the bitstream can be loaded from the memory reducing the
reconfiguration time. Table 5 lists the reconfiguration time for
different cases:

Case 1. Load bitstream from compact flash disk and C
program executed from external memory.
Case 2. Load bitstream from compact flash disk and C
program executed from BRAMs.
Case 3. Load bitstream from external memory and C program
executed from external memory.
Case 4. Load bitstream from external memory and C program
executed from BRAMs.

A key benefit of the partial reconfiguration scheme for
wavelets is its adaptability where the specific kernel
implementation is not implied. Although direct-mapped
implementation of the lifting scheme (similar to [23]) was used
in the case study; other techniques can be used for improved
performance (see [24] for state-of-the-art VLSI lifting-wavelet
architectures). Recent techniques such as folding [25], flipping
[26], recursive [27] and dual-scan [28] architectures can be
easily adopted. It is important to note that the proposed partial
reconfiguration scheme is a template-based approach where
multiple kernel templates are stored in memory. When a
specific kernel use is requested, FPGA hardware is partially
reconfigured ‘on-demand’. Each kernel template can be
optimised for area [25], speed [26] or even multi-resolution
analysis [27] depending on the application needs.

Furthermore, the main objective of template-based, on-
demand wavelet architectures is optimising simultaneous
implementation of multiple wavelets. Hence, the performance
(in terms of hardware and throughput) advantage will scale up
as the number of different wavelets employed within the
application increases.

8 Conclusion

In summary, for systems that require multiple wavelet kernels
and with limited power and area, both systolic PE array
scheme and dynamic partial self-reconfiguration scheme

Table 4 Power consumption

Power (mW)

parallel implementation 2437

systolic implementation 1128

partial configuration scheme 1393

Table 5 Reconfiguration time

Reconfiguration time (ms)

Case 1 1458.8

Case 2 674.9

Case 3 346.9

Case 4 146
327

& The Institution of Engineering and Technology 2011

www.ietdl.org
provide feasible solutions. Only the necessary hardware
is implemented on the chip and new modules can be
programmed or configured depending on the needs of the
application.

Currently, all the partial bitstreams must be created offline.
A further study could combine partial self-reconfiguration and
PE-based wavelet kernels. In this method, the FPGA device
can instantiate the number of PEs required for a particular
wavelet kernel and reconfigure itself accordingly; removing
the necessity of offline storing of wavelet kernel bitstreams.

9 References

1 Oruklu, E., Saniie, J.: ‘Dynamically reconfigurable architecture design
for ultrasonic imaging’, IEEE Trans. Instrum. Meas., 2009, 58, (8),
pp. 2856–2866

2 Oruklu, E., Saniie, J.: ‘Ultrasonic flaw detection using discrete wavelet
transform for NDE applications’. IEEE Ultrasonics Symp., 2004, vol. 2,
pp. 1054–1057

3 JPEG2000 Committee Drafts. Available at http://www.jpeg.org/public/
fcd15444-1.pdf

4 Kotteri, K.A., Bell, A.E., Carletta, J.E.: ‘Design of multiplierless, high-
performance, wavelet filter banks with image compression applications’,
IEEE Trans. Circuits Syst. – I: Regular Papers, 2004, 51, (3),
pp. 483–494

5 Andra, K., Chakrabarti, C., Acharya, T.: ‘VLSI architecture for lifting-
based forward and inverse wavelet transform’, IEEE Trans. Signal
Process., 2002, 50, (4), pp. 966–977

6 Wu, B., Lin, C.: ‘A high-performance and memory-efficient pipeline
architecture for the 5/3 and 9/7 discrete wavelet transform of
JPEG2000 codec’, IEEE Trans. Circuits Syst. Video Technol., 2005,
15, (12), pp. 1615–1628

7 Huang, C., Tseng, P., Chen, L.: ‘Efficient VLSI architectures of lifting-
based discrete wavelet transform by systematic design method’. Proc.
IEEE Int. Symp. on Circuits Systems (ISCAS), 2002, Vol. 5,
pp. 565–568

8 Tseng, P., Huang, C., Chen, L.: ‘Reconfigurable discrete wavelet
transform architecture for advanced multimedia systems’. Proc. IEEE
Workshop on Signal Process Systems (SIPS), 2003, pp. 137–141

9 Lee, S., Lim, S.: ‘VLSI design of a wavelet processing core’, IEEE
Trans. Circuits Syst. Video Technol., 2006, 16, (11), pp. 1350–1361

10 Masud, S., McCanny, J.V.: ‘Reusable silicon IP cores for discrete
wavelet transform applications’, IEEE Trans. Circuits Syst. – I:
Regular Papers, 2004, 51, (6), pp. 1114–1124

11 Blodget, B., Bobda, C., Huebner, M., Niyonkuru, A.: ‘Partial and
dynamically reconfiguration of Xilinx Virtex-II FPGAs’, in ‘Field
programmable logic and applications’ (Springer, Berlin/Heidelberg, 2004)
328

& The Institution of Engineering and Technology 2011
12 Raaijmakers, S., Wong, S.: ‘Run-time partial re-configuration for
removal, placement and routing on the Virtex-II Pro’. Proc. Int. Conf.
on Field Programmable Logic and Applications, (FPL 2007), 2007,
pp. 679–683

13 Craven, S., Athanas, P.: ‘Dynamic hardware development’,
Int. J. Reconfigurable Comput., 2008, article id 901328

14 Zhang, X., Rabah, H., Weber, S.: ‘Cluster-based hybrid reconfigurable
architecture for auto-adaptive SoC’. Proc. 14th IEEE Int. Conf. on
Electronics, Circuits and Systems, ICECS, 2007, pp. 979–982

15 Sweldens, W.: ‘The lifting scheme: A new philosophy in biorthogonal
wavelet constructions’. Proc. SPIE, Wavelet Applications in Signal
and Image Processing III, 1995, vol. 2569, pp. 68–79

16 Reichel, J.: ‘On the arithmetic and bandwidth complexity of the lifting
scheme’. Proc. Int. Conf. on Image Processing, 2001, vol. 3,
pp. 198–201

17 Fernandez, G., Periaswamy, P., Sweldens, W.: ‘LIFTPACK: a software
package for wavelet transforms using lifting’. Proc. SPIE, Wavelet
Applications Signal Image Processing IV, 1996, vol. 2825,
pp. 396–408

18 Daubechies, I., Swelden, W.: ‘Factoring wavelet transforms into lifting
steps’. Technical report, Bell Laboratories, 1996

19 FSL, (Fast Simplex Link) bus: Xilinx application note, available
at http://www.xilinx.com/support/documentation/ip_documentation/
fs_v20.pdf

20 French, M., Anderson, E., Kang, D.: ‘Autonomous system on chip
adaptation through partial runtime reconfiguration’. Proc. IEEE Symp.
on Field-Programmable Custom Computing Machines, 2008, pp. 77–86

21 HWICAP: Xilinx product specification, available at: http://www.xilinx.
com/support/documentation/ip_documentation/opb_hwicp.pdf

22 Xpower: Xilinx product, available at: http://www.xilinx.com/products/
design_tools/logic_design/verification/xpower.htm

23 Liu, C.C., Shiau, Y.H., Jou, J.M.: ‘Design and implementation of a
progressive image coding chip based on the lifted wavelet transform’.
Proc. 11th VLSI Design/CAD Symp., 2000, pp. 49–52

24 Acharya, T., Chakrabarti, C.: ‘A survey on lifting-based discrete wavelet
transform architectures’, J. VLSI Signal Process., 2006, 42,
pp. 321–339

25 Lian, C.J., Chen, K.F., Chen, H.H., Chen, L.G.: ‘Lifting based discrete
wavelet transform architecture for JPEG2000’. IEEE Int. Symp. on
Circuits and Systems, 2001, pp. 445–448

26 Huang, C.T., Tseng, P.C., Chen, L.G.: ‘Flipping structure: an efficient
VLSI architecture for lifting-based discrete wavelet transform’, IEEE
Trans. Signal Process., 2004, 52, (4), pp. 1080–1089

27 Liao, H., Mandal, M.K., Cockburn, B.F.: ‘Novel architectures for lifting-
based discrete wavelet transform’, Electron. Lett., 2002, 38, (18),
pp. 1010–1012

28 Liao, H., Mandal, M.K., Cockburn, B.F.: ‘Efficient architectures for 1-D
and 2-Dlifting-based wavelet transform’, IEEE Trans. Signal Process.,
2004, 52, (5), pp. 1315–1326
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 4, pp. 321–328
doi: 10.1049/iet-cds.2010.0259

