
re

1,

tim
se
bil
de
ik
o

rm
of t

of

om
con

t
y o

ela
n
th

s
ty
d o
m

y, t
of
ou

mo
nti
an
bee

er

trol
ath-
rks

ntrol
kling

-
uent
ble. It
reby

lving

ibu-
atrix
n-

ty is
ition
the

delay
more
ithm

time

iefly
e
. 4, an
sed
tem.

un-
les:

e

y
g 0

, and
e

ach

el-

fied

f T

2,
kar

Downloaded From
Robust Control for Uncertain
Takagi–Sugeno Fuzzy Systems with
Time-Varying Input Delay

Ho Jae Lee
e-mail: mylchi@control.yonsei.ac.kr

Jin Bae Park
e-mail: jbpark@control.yonsei.ac.kr

Department of Electrical and Electronic Engineering,
Yonsei University, Seodaemun-gu, Seoul, 120-749, Ko

Young Hoon Joo
e-mail: yhjoo@kunsan.ac.kr
School of Electronic and Information Engineering,
Kunsan National University, Kunsan, Chonbuk, 573-70
Korea

A control problem of Takagi–Sugeno fuzzy systems with a
varying input delay and norm-bounded uncertainties is addres
The input delay is well-known in making the closed-loop sta
zation difficult. A sufficient condition for the robust fuzzy-mo
based stabilization is derived based on the Lyapunov–Razum
stability theorem, without the assumption of the variation rate
the delay. A constructive design scheme is presented in the fo
the iterative convex optimization problem. The effectiveness
proposed method is demonstrated by a numerical simulation
nonlinear mass-spring-damper system.
fDOI: 10.1115/1.1898238g

1 Introduction
In the control engineering area, it is common to encounter s

practical applications containing time delays in their model
figurations. Examples include chemical processesf1g, biological
systemsf2g, and virtual laboratoriesf3g. It is widely believed tha
the time delay is one of the major sources of the instabilit
control systemsf4–6g.

To resolve the control problems associated with the time d
two generalized approaches have attracted great attention: O
the Lyapunov–Krasovskii stability theorem and the other is
Lyapunov–Razumikhin approachf7g. Although the former ha
been widely adopted, it requires a supplementary proper
terms of the time-derivative of the time delay: The upper boun
the time-derivative must be less than one. This requirement
not be satisfied in some specific applications. On the contrar
latter can be successfully applied because any properties
time-derivative of the given time delay are not necessary, alth
the obtained results may be conservativef4g.

Turning our attention to another important technical issue,
plants in the industry have severe nonlinearities and uncertai
They thus post additional difficulties to the stability analysis
controller design. Until now, various control techniques have
developed. Among them, the Takagi–SugenosT--Sd fuzzy-model-
based control is popular today since it is regarded as a pow
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resolution to bridge the gap between the fruitful linear con
theories and the fuzzy logic control targeting plants that are m
ematically ill-defined, uncertain, and nonlinear. Plentiful wo
related can be found inf8–14g and references therein.

Despite the extensive studies in the fuzzy-model-based co
literature to date, there are relatively few research results tac
the T--S fuzzy systems with time delayf13,14g. Moreover, al
though the input delay is a technically important issue of freq
occurrence, few related control strategies seem to be availa
remains yet to be a theoretically challenging issue, and the
must be carefully handled.

Motivated by the above observations, this paper aims at so
the robust control problem for a continuous-time uncertainT--S
fuzzy system with a time-varying input delay. The main contr
tion is to propose a constructive design tool in terms of m
inequalities forT--S fuzzy system of interest. The stabilizing co
troller is designed so that the Lyapunov–Razumikhin stabili
established. It should be noted that, under the stability cond
obtained, any additional restriction on the time-derivative of
time delay is not necessary. Furthermore, the longer the time
guaranteeing the stability of the closed-loop system is, the
desirable it is. Hence, an iterative convex optimization algor
is presented to search the maximal bound of the admissible
delay.

The organization of this paper is as follows: Section 2 br
reviews a continuous-time uncertainT--S fuzzy system with th
input delay. The main results are presented in Sec. 3. In Sec
example is included to visualize the feasibility of the propo
method—control of a nonlinear mass-spring-damper sys
Lastly, Sec. 5 concludes this paper.

2 Preliminaries and Problem Statement
Consider the time-varying input-delayed continuous-time

certainT--S fuzzy system described by the following fuzzy ru

Ri:HIF z1std is G1
i and ¯ andznstd is Gn

i

THEN ẋstd = sAi + DAidxstd + sBi + DBidust − dstdd J s1d

where Ri, i PIQ=h1,2, . . . ,qj, denotes theith fuzzy inferenc
rule; zhstd, hPIN=h1,2, . . . ,nj, the premise variable;Gh

i the fuzzy
set ofzhstd in the ith rule; xstdPRn the state;ust−dstddPRm the
delayed control input, in whichdstd is the time-varying dela
represented by any admissibly bounded function satisfyin
ødstdøt ; sAi ,Bid the model of theith rule; andsDAi ,DBid real
matrix functions representing uncertainties.

Using the center-average defuzzification, product inference
singleton fuzzifier, the global dynamics ofs1d of the retarded typ
is given by

ẋstd = o
i=1

q

uiszstddssAi + DAidxstd + sBi + DBidust − dstddd

s2d
xstd = fstd, ∀ t P f− t,0g

wherefstd is a smooth vector-valued function defined in Ban
space Cf−t ,0g, and viszstdd=Ph=1

n Gh
i szhstdd, uiszstdd

=viszstdd /oi=1
q viszstdd.

In this study, the following fuzzy rule for the fuzzy-mod
based controller is employed:

Ri:HIF z1std is G1
i and ¯ andznstd is Gn

i

THEN ustd = Kixstd J
whereKi is control gain matrix to be determined. Its defuzzi
output is described by

ustd = o
q

uiszstddKixstd. s3dR.

i=1
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The closed-loop system withs2d and s3d is described by

ẋstd = o
i=1

q

o
j=1

q

uiszstddu jszst − dstdddssAi + DAidxstd + sBi

+ DBidKjxst − dstddd. s4d

Since s4d has time-varying uncertain matrices, it is not eas
determineKi. Hence, the uncertain matrix functions should
manageable under some reasonable assumptions.

Assumption 1. The uncertainties considered here are no
bounded of the form:

fDAi DBig = DiFistdfEai
Ebi

g

where Fistd is an unknown matrix function with Lebesgu
measurable elements and satisfiesFistdTFistdd I, in which Di,
Eai

, and Ebi
are known real constant matrices of compat

dimensions.
Our goal is summarized as follows:
Problem 1. Find Ki for s3d such thats4d is robustly globally

asymptotically stable in the sense of Lyapunov against the a
sibly norm-bounded and structured uncertainties and any
varying delaydstd less than or equal to the prescribedt. Further-
more, if possible, find the maximal upper bound oft within which

the stability of the whole system is still preserved.

l

po

ly,
de

+ DBidKjxst − dstddd. s8d
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3 Main Results
Before proceeding, recall the following lemmas which will

used for the proofs of our results.
Lemma 1. For given vectorsa, b, and any symmetric positiv

definite matrixP of appropriate dimensions, and any positive
lar a, the following inequality holds:

±2aTb ø aaTPa+
1

a
bTP−1b.

Lemma 2. Given constant matricesD and E, and a symmetri
constant matrixS of appropriate dimensions, the following
equality holds:

S+ DFE + ETFTDT a 0

whereF satisfiesFTFd I if and only if for somee.0

S+ feD e−1ETgF eDT

e−1E
G a 0.

Remark 1. In case of −2aTb,0 in Lemma 1, its estimate
upper bound may be not good and introduce conserva
However, optimizing overa can rather reduce the introduc
conservatism.

The main result is now presented in the following theorem
Theorem 1. If there exist a symmetric positive definite ma

Q, matricesMi, and positive scalarsa1, a2, ei j , ea1i
, andea2i j

such
that the following inequalities are satisfied:
3
1

t
Yi j + sa1 + a2dQ + ei jDiDi

T s·dT s·dT

Mi
TBi

T −
1

2
Q s·dT

1

t
sEai

Q + Ebi
Mjd Ebi

Mj − ei j I
4 a 0, si, jd P IQ 3 IQ s5d

3
− a1Q + ea1i

DiDi
T s·dT s·dT

QAi
T − Q s·dT

0 Eai
Q − ea1i

I 4 a 0, i P IQ s6d

3
− a2Q + ea2i j

DiDi
T s·dT s·dT

Mj
TBi

T − Q s·dT

0 Ebi
Mj − ea2i j

I 4 a 0, si, jd P IQ 3 IQ s7d
then s2d is robustly globally asymptotically stabilizable bys3d in
the presence of the norm-bounded uncertainties and for aldstd
øt, where Yi j =QAi

T+AiQ+Mj
TBi

T+BiMj, Q=P−1, Mi =KiP
−1,

and s·dT denotes the transposed elements in the symmetric
tions.

Proof. Choose a Lyapunov functional candidate asVsxstdd
=xstdTPxstd where P is a symmetric positive definite. Clear
Vsxstdd is positive definite and radially unbounded. The time
rivative of Vsxstdd along any trajectory ofs4d is given by

V̇sxstdd = o
i=1

q

o
j=1

q

uiszstddu jszst − dstdddsxstdTssAi + DAidTP + PsAi

+ DAiddxstd + xst − dstddTKj
TsBi + DBidTPxstd + xstdTPsBi
si-

-

Note thatxst−dstdd=xstd−et−dstd
t ẋslddl. Then, plugging it intos8d

results in

V̇sxstdd = o
i=1

q

o
j=1

q

o
k=1

q

o
l=1

q

uiszstddu jszst − dstdddSxstdTssAi + DAidTP

+ PsAi + DAid + Kj
TsBi + DBidTP + PsBi + DBidKjdxstd

− 2E
t−dstd

t

xstdTPsBi + DBidKjukszslddulszsl − dslddd

3 ssAk + DAkdxsld + sBk + DBkdKlxsl − dslddddlD . s9d
Applying Lemma 1 tos9d implies

JUNE 2005, Vol. 127 / 303
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V̇sxstdd ø o
i=1

q

o
j=1

q

o
k=1

q

o
l=1

q

uiszstddu jszst − dstdddSxstdTssAi + DAidTP

+ PsAi + DAid + Kj
TsBi + DBidTP + PsBi + DBidKjdxstd

+E
t−dstd

t
1

a1
xstdTPsBi + DBidKjsAk + DAkdP−1sAk

+ DAkdTKj
TsBi + DBidTPxstd +

1

a2
xstdTPsBi + DBidKjsBk

+ DBkdKlP
−1Kl

TsBk + DBkdTKj
TsBi + DBidTPxstd

+ a1xsldTPxsld + a2xsl − dslddTPxsl − dsldddlD .

s10d
From the Razumikhin stability theoremf7g, and assuming th

for any real numberd.1, we haveVsxsldd,dVsxstdd, ∀lP ft
−2t ,tg. Suppose that

sAk + DAkdP−1sAk + DAkdT d a1P
−1, k P IQ s11d

sBk + DBkdKlP
−1Kl

TsBk + DBkdT d a2P
−1, sk,ld P IQ 3 IQ

s12d

then, it is not difficult to understand the right-hand side ofs10d is
less than

o
i=1

q

o
j=1

q

uiszstddu jszst − dstdddsxstdTssAi + DAidTP + PsAi + DAid

+ Kj
TsBi + DBidTP + PsBi + DBidKjdxstd + 2dstdxstdTPsBi

+ DBidKjP
−1Kj

TsBi + DBidTPxstd + dstddsa1 + a2dxstdTPxstdd.

s13d

From the observation thats13d is monotonically increasing wit
respect todstd, if the following holds,

sAi + DAidTP + PsAi + DAid + Kj
TsBi + DBidTP + PsBi + DBidKj

+ 2tPsBi + DBidKjP
−1Kj

TsBi + DBidTP + tdsa1 + a2dP

a 0, i, j P IQ s14d

thens4d is robustly globally asymptotically stable against all tim
varying input delays not larger thant and the structured unce
tainties. Moreover, from the continuity of the eigenvalues ofs14d
with respect tod, there existsd.1 sufficiently small such tha
s14d with d=1 still holds.

With some efforts, we can show thats5d–s7d guarantee th
negative definiteness ofs14d wheneverxstd is not zero. First, w
show thats6d and s7d are directly derived froms11d and s12d.
Inequality s11d can be represented as follows:

fsAi + DAidP−1gfPgfP−1sAi + DAidTg − a1P
−1 a 0. s15d

Applying the Schur complement and Assumption 1 tos15d gives

F− a1P
−1 s·dT

P−1Ai
T − P−1G

+ FDi

0
GFistdf0 Eai

P−1g + F 0

P−1Eai

T GFistdTfDi
T 0g a 0.

s16d

According to Lemma 2,s16d holds if and only if there exists
1/2
constantea1i

.0 such that
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F− a1P
−1 s·dT

P−1Ai
T − P−1G

+ FDi 0

0 P−1Eai

T GFea1i
I 0

0 ea1i

−1 I GFDi
T 0

0 Eai
P−1G a 0.

Using the Schur complement twice and denotingP−1=Q results in
s6d. We can again establish a similar argument to that above
s12d to obtains7d. Next, s14d can be rewritten as follows:

1

t
ssAi + DAidTP + PsAi + DAid + Kj

TsBi + DBidTP + PsBi + DBidKjd

+ sa1 + a2dP + fPsBi + DBidKjP
−1gf2PgfP−1Kj

TsBi + DBidTPg

a 0. s17d

By applying the Schur complement, Assumption 1, and Lemm
s17d is equivalent to

Ci j + 31

t
sEai

+ Ebi
KjdT PDi

P−1Kj
TEbi

T 0
4Fei j

−1I 0

0 ei j I
G

331

t
sEai

+ Ebi
Kjd Ebi

KjP
−1

Di
TP 0

4 a 0 s18d

where

Ci j = 3
1

t
sAi

TP + PAi + Kj
TBi

TP + PBiKjd + sa1 + a2dP s·dT

P−1Kj
TBi

TP −
1

2
P−14

if and only if there exists a constantei j
−1/2.0. Sequential applyin

the Schur complement twice and a congruence transform
with diaghP−1,I ,I ,Ij to s18d, denoting Q=P−1 and Mi =KiP

−1

yields s5d, which completes the proof of the theorem. j
Remark 2. In order to diminish the conservatism introduced

the overestimated upper bound ins6d ands7d, proper values ofa1
anda2 should be chosen such thatt is maximized. However, th
termsa1Q anda2Q makes5d–s7d be nonlinear, which are difficu
to solve. Thus, an iterative convex optimization algorithm b
on the linear matrix inequalitysLMI d technique is utilized.

In order to find the maximalt, without loss of generality, w
replaceei j with t in s5d. Carrying out simple algebraic manipu
tion, the following LMI is equivalent tos5d:

3
1

t
sYi j + Di

TDid + sa1 + a2dQ s·dT s·dT

1

t
sEai

Q + Ebi
Mjd −

1

t
I s·dT

Mj
TBi

T Mj
TEbi

T −
1

2
Q
4 a 0. s19d

Now, the following convex optimization algorithm is propos
Step 1: FindQ, Mi, andei j such that the following LMI con

straints are satisfied:

FQAi
T + AiQ + Mj

TBi
T + BiMj + ei jDi

TDi s·dT

Eai
Q + Ebi

Mj − ei j I
G

a 0, si, jd P IQ 3 IQ.

Step 2: ForQ given in the previous step, finda1, a2, ea1i
, ea2i j

,

and Mi such that the following generalized eigenvalue prob

sGEVPd has solutions
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Maximize
Mi,a1,a2,ea1i

,ea2i j

t subject tos19d, s6d, and s7d.

Step 3: Fora1, a2, and Mi given in the previous step, findea1i
,

ea2i j
, andQ such that the following GEVP has solutions

Maximize
Q,ea1i

,ea2i j

t subject tos19d, s6d, and s7d.

Step 4: Return to Step 2 until the convergence oft is attained with
a desired accuracy.

4 An Example
An example is presented to visualize the proposed design

nique. Consider the following nonlinear mass-spring-damper
chanical system illustrated in Fig. 1:

Müstd + Dsu̇stddu̇std + kustd = fFst − dstdd

whereustd is the relative position of the mass;Fst−dstdd the de-
layed external force;M =1 the mass of this system;k=0.1 the
stiffness of the spring.f=1 the input coefficient. The dampi

coefficient of the nonlinear damper is assumed to beDsu̇stdd
=0.5+0.75u̇2std. Furthermore, we assume thatk is unknown bu
bounded within 10% of its nominal values.

Choosing the state asxstd=fu̇std ,ustdgT and the input variabl
ustd asFstd yields the following state-space representation.

Fẋ1std
ẋ2std

G
= F− 0.75x1

3std − 0.5x1std + 0.1s1 + 0.1zstddx2std + ust − dstdd
x1std

G
s20d

where uzstdu2ø1. The systems20d has one nonlinear term
−0.75x1

3std. Assumex1stdP f−V ,Vg and if this nonlinear term ca
be represented as a convex sum, theT--S fuzzy system ofs20d can
be constructed. Consider the following equations:

− 0.75x1
3std = G1sxstdd · 0 +G2sxstdd · s− 0.75V2dx1std

1 = G1sxstdd + G2sxstdd. s21d
Solving s21d yields

G1sxstdd = 1 −
x1

2std
V2

G2sxstdd =
x1

2std
V2 .

Now, by adopting these as fuzzy sets, theT--S fuzzy system o
s20d can be constructed as follows under the assumptionV
=0.8165:

R1:HIF x1std is aboutG1

˙
J

Fig. 1 Nonlinear mass-spring-damper system with an input
delay
THEN xstd = sA1 + DA1dxstd + sB1 + DB1dust − dstdd

Journal of Dynamic Systems, Measurement, and Control
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R2:HIF x1std is aboutG2

THEN ẋstd = sA2 + DA2dxstd + sB2 + DB2dust − dstdd J
where the associated matrices are given by

A1 = F− 0.5 0.1

1 0
G, A2 = F− 1 0.1

1 0
G ,

DA1 = DA2 = F0 0.1zstd
0 0

G, B1 = B2 = F1

0
G

andDB1=DB2=f0g231. By applying Theorem 1 and the iterat
optimization technique, we getK1=f−0.7623−0.5212g, K2
=f−0.3690−0.5362g, andt=0.4223. Figure 2 shows the behav
of t obtained by the proposed algorithm. It means that the
signedT--S fuzzy-model-based controller can robustly stab
s20d in the presence of any time-varying input delay satisf
dstdøt=0.4223 and the parametric uncertainties.

During the simulation process, the system parameterk is ran-
domly varied within 10% of its nominal value. Figure 3 sho
dstd applied to the simulation. Indeed, the assumed time d
does not exceedt and its maximal time-derivative is much larg
than one. Notice that, accordingly, the Lyapunov–Krasovskii f
tional approach cannot be applied. Compared to that, the pro
approach seems to be suitable, since it allows for the delay
time-varying with an arbitrary fast rate of change.

The initial value isxs0d=x0=f0,1gT. For comparison purpose
conventional fuzzy-model-based controller design technique
out consideration of the input-delayf9g is simulated. The simula
tion result is shown in Fig. 4. The control input is activatedt
=3 ssd. After t=3 ssd, the conventional method produces osc
tory trajectories, as is expected. On the other hand, the trajec
controlled by the proposed method are quickly guided to the
gin without oscillation.

Fig. 2 Behavior of the maximal bound of the time delay via the
proposed algorithm: t computed from Step 1 „solid …; t ob-
tained from Step 2 „solid-diamond …

Fig. 3 The applied input delay: d„t…=0, t« †0,3… „s…; 0.1689, t

« †3,3.5… „s…; 0.4223, t« †3.5,5… „s…; 0.3379 otherwise
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5 Conclusions
In this paper, we have discussed the robust control ofT--S

fuzzy systems containing uncertainties and input delays.
Lyapunov–Razumikhin stability theorem has been utilized
synthesis tool. The sufficient condition for the existence of
stabilizing controller has been given in terms of matrix inequ
ties. The maximal bound of the input delay is searched i
iterative manner. The effectiveness of the proposed design
odology has been thoroughly verified in the simulation exam
This means a great potential for industrial applications.
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