Robust Control for Uncertain resolution to bridge the gap between the fruitful linear control
theories and the fuzzy logic control targeting plants that are math-

Takagl—Sugeno Fuzzy Systems with ematically ill-defined, uncertain, and nonlinear. Plentiful works

H ; related can be found if8—14] and references therein.
Tlme-Varylng InpUt Delay Despite the extensive studies in the fuzzy-model-based control
literature to date, there are relatively few research results tackling
the T--S fuzzy systems with time delaj13,14. Moreover, al-
though the input delay is a technically important issue of frequent
occurrence, few related control strategies seem to be available. It

Ho Jae Lee
e-mail: mylchi@control.yonsei.ac.kr

. remains yet to be a theoretically challenging issue, and thereby
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the robust control problem for a continuous-time uncerf&ifs
Department of Electrical and Electronic Engineering, ~ fuzzy system with a time-varying input delay. The main contribu-

Yonsei University, Seodaemun-gu, Seoul, 120-749 Koretpilon is to propose a constructive design tool in terms of matrix
’ ' ' ' inequalities forT--S fuzzy system of interest. The stabilizing con-

troller is designed so that the Lyapunov—Razumikhin stability is
Young Hoon Joo established. It should be noted that, under the stability condition
;- ; obtained, any additional restriction on the time-derivative of the
e-mail: yhjoo@kunsan.ac.kr time delay is not necessary. Furthermore, the longer the time delay

School of Electronic and Information Engineering, guaranteeing the stability of the closed-loop system is, the more

Kunsan National University, Kunsan, Chonbuk, 573-701 desirable it is. Hence, an iterative convex optimization algorithm

Korea is presented to search the maximal bound of the admissible time
delay.

The organization of this paper is as follows: Section 2 briefly

reviews a continuous-time uncertali-S fuzzy system with the

A co_ntr(_)I problem of Takagi-Sugeno fuzzy systems with a tim put delay. The main results are presented in Sec. 3. In Sec. 4, an
varying input delay and norm-bounded uncertainties is address ample is included to visualize the feasibility of the proposed

The input delay is well-known in making the closed-loop stabil: ethod—control of a nonlinear mass-spri
; - - o — -spring-damper system.
zation difficult. A sufficient condition for the robust fuzzy-modeEastly’ Sec. 5 concludes this paper.

based stabilization is derived based on the Lyapunov—Razumikhin

stability theorem, without the assumption of the variation rate on

the Qelay. A constructive d_eS|gn scheme is presentec_i in the formyof paliminaries and Problem Statement

the iterative convex optimization problem. The effectiveness of the ] ) o ) )
proposed method is demonstrated by a numerical simulation of aConsider the time-varying input-delayed continuous-time un-

nonlinear mass-spring-damper system. certainT--S fuzzy system described by the following fuzzy rules:
"I THEN x(t) = (A + AA)X(t) + (B; + AB)u(t — d(t))

1 Introduction where R, ieZg={1,2,... g}, denotes theth fuzzy inference
rule; z,(t), he Zy={1,2, ... n}, the premise variablef;'h the fuzzy

In the control engineering area, it is common to encounter sorgg, 0fz,(t) in theith rule; x(t) e R" the stateu(t-d(t)) e R™ the
practical applications containing time delays in their model con; '

' - ! ; . . delayed control input, in whichi(t) is the time-varying delay
figurations. Examples include chemical procedsgs biological o . e
systemg2], and virtual laboratorieg]. It is widely believed that €Presented by any admissibly bounded function satisfying 0

the time delay is one of the major sources of the instability of V=7 (A;,B)) the model of théith rule; and(AA;, AB;) real
control system$4—6]. matrix functions representing uncertainties.

To resolve the control problems associated with the time delay,USing the center-average defuzzification, product inference, and
two generalized approaches have attracted great attention: Ongigleton fuzzifier, the global dynamics @) of the retarded type
the Lyapunov—Krasovskii stability theorem and the other is tH& 9iven by

Lyapunov—Razumikhin _approa_cﬁ]. Although the former has q

been widely adopted, it requires a supplementary property in X(t)=2 6,(z() (A + AA)X(H) + (B, + AB)u(t — d(t)))
terms of the time-derivative of the time delay: The upper bound of i1

the time-derivative must be less than one. This requirement may 2)

not be satisfied in some specific applications. On the contrary, the  y(t) = 4(t), Ot e [~ 7,0]

latter can be successfully applied because any properties of the . . . .

time-derivative of the given time delay are not necessary, althoujffere ¢(t) is a smooth vector-valued function defined in Banach

the obtained results may be conservafi¢g space C[-7,0], and o(z(t)=I}_,T}\(z(1),  6(z1)

Turning our attention to another important technical issue, mosty; (z(t)) /=L w;(z(1)).

plants in the industry have severe nonlinearities and uncertaintiesin this study, the following fuzzy rule for the fuzzy-model-

They thus post additional difficulties to the stability analysis angased controller is employed:

controller design. Until now, various control techniques have been o o
IF zy(t) is T, and -+~ andz,(t) is T},
THEN u(t) = Kix(t)

whereK; is control gain matrix to be determined. Its defuzzified
routput is described by

developed. Among them, the Takagi-SugémneS) fuzzy-model- i

based control is popular today since it is regarded as a powerful
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The closed-loop system witt2) and(3) is described by 3 Main Results
Before proceeding, recall the following lemmas which will be

9 q

Con used for the proofs of our results.

X = 2_: 2_‘1 6(2() 6zt~ dV)) (A + AA)X(L) + (B, Lemma 1 For given vectors, b, and any symmetric positive
== definite matrixP of appropriate dimensions, and any positive sca-
+AB)Kx(t - d(1))). (4) lar a, the following inequality holds:

Since (4) has time-varying uncertain matrices, it is not easy to +2a'b < aa'Pa+ leP‘lb_

determineK;. Hence, the uncertain matrix functions should be a

manageable under some reasonable assumptions. Lemma 2 Given constant matrice® and E, and a symmetric
Assumption 1The uncertainties considered here are normsynstant matrixS of appropriate dimensions, the following in-

bounded of the form: equality holds:

S+DFE+E'F'D"<0

[AA; AB]=DiF(D[E, Ep] o _ _
whereF satisfiesF"F < if and only if for somee>0

where Fi(t) is an unknown matrix function with Lebesgue- DT

measurable elements and satisflgét) "F;(t)<I, in which Dj, S+[eD e‘lET][ ‘1E] <0.

Ea, and E, are known real constant matrices of compatible E. . )

dimensions. Remark 1 In case of —a'"h<0 in Lemma 1, its estimated
Our goal is summarized as follows: upper bound may be not good and introduce conservatism.

Problem 1 Find K; for (3) such that(4) is robustly globally However,.optimizing overa can rather reduce the introduced
asymptotically stable in the sense of Lyapunov against the adm@gnservatism. ) ) )
sibly norm-bounded and structured uncertainties and any time-The main result is now presented in the following theorem:

Varying de|ayd(t) less than or equa| to the prescribed:urther_ TheO!’em 11f there eX|St a Symmetl’iC pOSitive definite matrix
more, if possible, find the maximal upper boundrofithin which Q. matricesM;, and positive scalarsy, az, €, €;,, ande,, such
the stability of the whole system is still preserved. that the following inequalities are satisfied:

%_Yij*'(al*'az)Q*'EijDiDiT OO

B! -2Q ()T |<0, (i) eTgx T ®)

1
;(EaiQ+ Ey M) ExM; - gl
—aQ+e, DD ()T ()T
QA' -Q (O |<0, QeI ©
0 EaiQ —eal‘l

- a,Q+ esﬂzuDiDiT O O

MTB] -Q (" |<0, (i,j) eZoXIg (7)
0 EbiMi _EaZI

ij

then(2) is robustly globally asymptotically stabilizable 1) in  Note thatx(t—d(t)):x(t)—ﬁ_d(t)k()\)d)\. Then, plugging it intg8)
the presence of the norm-bounded uncertainties and fal(8ll oqits in
<7, where Y;j=QA'+AQ+MB+BM;, Q=P%, M;=KP%,

and ()7 denotes the transposed elements in the symmetric posi- 9 4 a d
tions. V(x(D) = 2 X > > 6(z(1) 6(z(t - d(1)) (X(t)T((Ai +AA)P
Proof. Choose a Lyapunov functional candidate ¥&«(t)) i=1 j=1 k=1 I=1
=x(t)"Px(t) where P is a symmetric positive definite. Clearly, . N kTR \T . e
V(x(1)) is positive definite and radially unbounded. The time de- +P(A+AA) K (Bi + AB) P+ P(B; + AB)K)X(0)
rivative of V(x(t)) along any trajectory of4) is given by !
0 q -2 X(t)TP(B; + AB)K; f(z(\)) 6(z(\ = d(N)))
. t=d(t)
VOx(t) = 2 2 6(2(0) (2t - dO) (XA + AA)TP+ P(A
I X (At AAYX(N) + B+ ABYKX(N —d(x)))dx). 9
+AA))X(1) +x(t = d(t) K[ (B; + AB) TPX(t) + x(t) "P(B;
+AB)Kx(t - d(1))). (8) Applying Lemma 1 to(9) implies
Journal of Dynamic Systems, Measurement, and Control JUNE 2005, Vol. 127 / 303

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



] a 4 4d q —aPt ()T
Vi) = 2 X > ) 6(20)6(2(t - d(t)))(x(tf((m HANP | paaT p
i=1 j=1 k=1 I=1
+P(A +AA) + KjT(Bi +AB)"P + P(B; + AB)K))x(t) " |:Di 0 :| eal‘l 0 |:D'T 0 } <0
o PEL|| o &1 || 0 EP? '
3 al‘ 8

+

t
1
f —X(1)TP(B; + AB)K;(A + AAYPHA, _ _ )
t-dt) X Using the Schur complement twice and denoffig=Q results in
(6). We can again establish a similar argument to that above with

+ AAYTKT(B, + AB)TPX(t) + ix(t)Tp(Bi + AB)K;(By (12) to obtain(7). Next, (14) can be rewritten as follows:
@

1

+ AB)K P (B, + AB) K] (B, + AB) TPx(t) ~(A+ AA)TP +P(A + AA) +K[(B; + AB) TP + P(B; + AB))K;)
+ aX(V)TPX(V) + apX(h = d(V) TPX(\ — d(x))dx) . +(ay+ ay)P +[P(B; + AB)K P 2P][PK{(B; + AB) TP]
<0. (17

(10) By applying the Schur complement, Assumption 1, and Lemma 2,
From the Razumikhin stability theorefi@], and assuming that (17) is equivalent to
for any real numbes>1, we haveV(x(\)) < sV(x(t)), O\ e[t

_ 1
27,t]. Suppose that v ;(Eai +E,K)T PD, |:Eﬁll 0 ]
; _ i
(A + AAYPH A AA)T< ayPY, ke T, (11 P-lKergi 0 0 gl
(B + ABYK P K (B, + ABY)T < apP ™%, (k1) e T X T }(E% YE,K) EyKiP
D/P 0
then, it is not difficult to understand the right-hand sidg10) is :
less than where
L LATP+PA+KIETP+PBK) + (g + )P (T
22 6,(20)6,(z(t - d0) (XOT(A + AA) TP+ P(A + AA) M i et
i=1 j=1 iz
1
-1, TRT __p1
+ K[ (B, + AB) TP+ P(B; + AB)K))x(t) + 2d(t)x(t) P(B, PPKBP 2"

+AB)K;PIK[(B; + AB) TPX(t) + d(t) (e + ap)X(t) PX(1).  if and only if there exists a constagf-/?>0. Sequential applying
(13) the Schur complement twice and a congruence transformation
with diag{P™1,1,1,1} to (18), denotingQ=P~! and M;=K;P!

From the obse_rvation tha(q3) is monotonically increasing with yields (5), which completes the proof of the theorem. m
respect tad(t), if the following holds, Remark 2 In order to diminish the conservatism introduced by
the overestimated upper bound(8) and(7), proper values ofy;
T T T
(A +AA)'P+P(A +AA) + K (B + AB) P+ P(B; + AB)K; and &, should be chosen such thats maximized. However, the
+27P(B; + AB)K; P'lKJ-T(Bi +AB) TP+ 78(ay + o)) P termse;Q and,Q make(5)—7) be nonlinear, which are difficult
B to solve. Thus, an iterative convex optimization algorithm based
<0, i,jelIq (14)  on the linear matrix inequality_MI) technique is utilized.

then(4) is robustly globally asymptotically stable against all time- l? order t.?hf'nd th5e néax'mah W'tthO.Ut Ilcnssloft?enerallty, wle
varying input delays not larger thanand the structured uncer- ;ep atcﬁfiif Vl‘f T ml_(lv?ll ~—arrying Ioutf"gl? € algebraic manipula-
tainties. Moreover, from the continuity of the eigenvalueg1e on, ? oflowing is equivalent td5):
with respect tod, there existss>1 sufficiently small such that 1
(14) with 8=1 still holds. (Y +D/D) +(ay+a)Q ()T ()T

With some efforts, we can show th&b)—(7) guarantee the T

negative definiteness ¢14) wheneverx(t) is not zero. First, we 1 _} T
show that(6) and (7) are directly derived from(11) and (12). T(EaiQ+EbiMi) TI ()" |<0. (19
Inequality (11) can be represented as follows: 1
MTB] MIE; ->Q
[(A +AA)PHIPIPHA +AA)T- Pt <0.  (15) : b2

Now,-the following convex optimization algorit-hm is proposed.
Step 1: FindQ, M;, and ¢; such that the following LMI con-
[_ aPt ()T ] straints are satisfied:

pPial -pP?

Applying the Schur complement and Assumption 1(18) gives

QA'+AQ+MBl +BM; +¢D/D; ()7

D. 0 E,Q+E,M; — el

+[o']Fi<t>[o EaiP‘1]+[P_1ET}Fi(t>T[DF 0] <o. B K
3,

(1) Step 2: ForQ given in the previous step, find;, a, €ayr €a s

According to Lemma 2(16) holds if and only if there exists a and M; such that the following generalized eigenvalue problem
constantsi/12>0 such that (GEVP) has solutions

<0, (i,j) e ZgX Iq.
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Fig. 1 Nonlinear mass-spring-damper system with an input !

delay 0.15
25 30 35 40 45 50

number of iteration

Maximize r subject to(19), (6), and (7). Fig. 2 Behavior of the maximal bound of the time delay via the
Mi,ay,02,64, €0, proposed algorithm: = computed from Step 1 (solid ); 7 ob-
b tained from Step 2 (solid-diamond )
Step 3: Foray, ap, and M; given in the previous step, finelal,

€a, » andQ such that the following GEVP has solutions
ij

Maximizer subject to(19), (6), and (7). JIF x4(t) is aboutl’;

Q€ay €a | THEN X(t) = (A, + AAX() + (B, + AByu(t — d(t))
Step 4: Return to Step 2 until the convergence isfattained with \yhere the associated matrices are given by
a desired accuracy.

[—0.5 0.1] [—1 0.1]
A= , A= ,
4 An Example 1 0 1 0

An example is presented to visualize the proposed design tech- 0 0.1£(t) 1
nigue. Consider the following nonlinear mass-spring-damper me- AA = AA, = [ ' } B,=B,= [ ]
chanical system illustrated in Fig. 1: 0 0 0

- SN and AB;=AB,=[0],«;. By applying Theorem 1 and the iterative
Mé() + D(O(D) 6D + ke = F(t -~ d(V) optimization technique, we geK;=[-0.7623-0.521R K,
where d(t) is the relative position of the masB(t—d(t)) the de- =[-0.3690-0.536R and 7=0.4223. Figure 2 shows the behavior
layed external forceM=1 the mass of this systenk=0.1 the of r obtained by the proposed algorithm. It means that the de-
stiffness of the spring¢=1 the input coefficient. The damping signed T--S fuzzy-model-based controller can robustly stabilize

coefficient of the nonlinear damper is assumed toOf@(t)) (20) in the presence of any time-varying input delay satisfying

:0.5+0.7592(t). Furthermore, we assume thais unknown but d(t)$720'4223. and t_he parametric uncertainties. .
During the simulation process, the system paramletisrran-

el .
bounded.W|th|n 10% of its nominal values. ) ] domly varied within 10% of its nominal value. Figure 3 shows
Choosing the state agt)=[6(t),6(t)]" and the input variable q(t) applied to the simulation. Indeed, the assumed time delay

u(t) asF(t) yields the following state-space representation.  does not exceed and its maximal time-derivative is much larger

[)-( (t) ] than one. Notice that, accordingly, the Lyapunov—Krasovskii func-
1 tional approach cannot be applied. Compared to that, the proposed
X(t) approach seems to be suitable, since it allows for the delay to be

time-varying with an arbitrary fast rate of change.
The initial value isx(0)=x,=[0, 1]". For comparison purpose, a
%1(t) conventional fuzzy-model-based controller design technique with-
(20) out consideration of the input-delég] is simulated. The simula-
. tion result is shown in Fig. 4. The control input is activated at
where3|§(t)|2sl. The system(20) hf"s pne npnllnear term, =3 (). After t=3 (s), the gonventional methoFC)i produces oscilla-
—0.75¢(t). Assumex,(t) e [-(2, Q] and if this nonlinear term can tory trajectories, as is expected. On the other hand, the trajectories

be represented as a convex sum, Th&fuzzy system of20) can  onrolied by the proposed method are quickly guided to the ori-
be constructed. Consider the following equations: gin without oscillation.

= 0.75¢/(t) = T1(x(1)) - 0 +Ta(x(1)) - (- 0.75H)x()

B [— 0.753(t) - 0.5¢(t) + 0.1(1 + 0.1(1))X,(t) + u(t — d(t))

L=T4(x(1) + T(X(1). 21) 0as
Solving (21) yields 04— 1 4 L T_lI —
2 035 |—| — 4+ ]

xi(t) A
L) =1-—5 03— — ~ - - — ]
1 a? st g B
Pt = 20 ] = e o o B e

2 =52 .
. o =1~ =+ + + 1=
Now, by adopting these as fuzzy sets, theS fuzzy system of 0.05 [~ l_l — T -l- I_ l_l —
(28)8222 be constructed as follows under the assumptiof) of 00 T 2 5 6 7 5 5 10
=0. : :

Fig. 3 The applied input delay: d(t)=0, te[0,3) (s); 0.1689, t
THEN X(t) = (A + AA)X(t) + (B, + AB;)u(t — d(t)) €[3,3.5) (s); 0.4223, te[3.5,5) (s); 0.3379 otherwise

1.{ IF x4(t) is aboutl’;
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Fig. 4 Time responses of x(f) by: Ref. [9] without consideration of the input delay (dotted ); the

proposed method with consideration of the input delay (solid )
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In this paper, we have discussed the robust control-66 901-908.
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Lyapunov—Razumikhin stability theorem has been utilized as a Uncertain Input-Delayed Systems Using Reduction Method,” Automa8@a,
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stabilizing controller has been given in terms of matrix inequali-  Verlag, New York.
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iterative manner. The effectiveness of the proposed design meth- Observers: Relaxed Stability Conditions and LMI-Based Designs,” IEEE

e . ! . Trans. Fuzzy Syst.6(2), pp. 250-265.
Od0|09y has been thorothly verified in the simulation example.[g] Lee, H. J., Park, J. B., and Chen, G., 2001, “Robust Fuzzy Control of Nonlin-

This means a great potential for industrial applications. ear Systems With Parametric Uncertainties,” IEEE Trans. Fuzzy S9&),
pp. 369-379.
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