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Abstract. The kinetic theory of low-frequency AlBn modes in tokamaks is presented. The
inclusion of both diamagnetic effects and finite core-plasma ion compressibility generalizes
previous theoretical analyses (T T and Chen L 1993hys. FluidsB 5 3284) of kinetic
ballooning modes and clarifies their strong connection to beta-induceér#igenmodes. The
derivation of an analytic mode dispersion relation allows us to study the linear stability of both
types of modes as a function of the parameters characterizing the local plasma equilibrium and
to demonstrate that the most unstable regime corresponds to a strong coupling between the two
branches due to the finite thermal ion temperature gradient. In addition, we also show that,
under certain circumstances, non-collective modes may be present in the plasma, formed as a
superposition of local oscillations which are quasi-exponentially growing in time.

1. Introduction

The experimental observation [1] of large energetic ion losses due t@mivaves with
frequencies lower than that of the toroidal Adfv eigenmode (TAE) [2] has recently
demonstrated that low-frequency Aéfm waves can be as deleterious as TAE modes
to energetic particle confinement. Experimentally, these modes have the predominant
polarization of shear Alfgn waves [1] and they have been given the name of beta-induced
Alfvén eigenmodes (BAE) [3] since their frequency is located in the low-frequency beta-
induced gap in the shear AlBn continuous spectrum [4], which is caused by finite plasma
compressibility.

Ideal magneto-hydrodynamic (MHD) theories predict the beta-induced frequency gap
at [3] 0 < (w/wp)? < ¥Bg?, wherew is the mode frequencyy is the ratio of specific
heats, the ratio of kinetic and magnetic pressurgsthe safety factorwa = va/qRo
the Alfvén frequency Ry the major radius of the toroidal plasma column, = B/+/4m7o
the Alfvén speed ang the plasma mass density. This fact, along with the experimental
observation that BAEs are shear Adfv waves with frequency within or near the beta-
induced gap, indicates that these modes have long parallel (to the equilibrium magnetic
field B) wavelengths, i.ew >~ kjva = /yBva/Ro — k; = /yB/Ro (k; being the parallel
wavevector), and that the relevant BAE frequency range is ordered as the thermal ion transit
frequency,w ~ wy = /2T,/mi/qRo (T; is the ion temperature in energy units angdthe
ion mass). Furthermore, there is clear experimental evidence [1] that diamagnetic effects
are important for the BAE dynamics, since typically~ w.pi = (cTi/eiB?)(kx B)-VIn P,
the core-plasma ion diamagnetic frequency. Herés the ion electric chargeP; the ion
pressure and the wavevector.
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From the previous discussion, it is evident that ideal MHD is inadequate to construct
a realistic theory of BAE modes, for which ~ wi ~ w,ypi, since finite core-plasma ion
compressibility is expected to strongly affect the mode dynamics via resonant interactions
with the ion transit motion along magnetic field lines. Moreover, it is important to
clarify any relationship of BAEs with kinetic ballooning modes [5, 6] (KBM), which are
expected to occur in the same frequency range. Previous theories of resonant excitations
of KBM by energetic particles [5, 6] have shown that these modes, like BAEs, belong
to the shear Alfén branch and haves ~ w.,. However, these theories assumed
incompressible oscillations, thereby neglecting: w; wave—particle resonances with core-
plasma ions.

In the present paper we develop a unified theory for @&ffwaves belonging to the
BAE/KBM branches by accounting for finite core-plasma compressibility and diamagnetic
effects on the same footing. In this respect, we present the kinetic theory of high toroidal
mode number [5, 6] low-frequency Alén modes in a higig-plasma § = O(¢); € = a/Ro,

a being the plasma minor radius), which we may refer to as drift &ifkinetic ballooning
modes. As a relevant and novel result we show that the most unstable scenario corresponds
to the situation in which BAE and KBM are strongly coupled due to the presence of a finite
temperature gradient of the thermal ions. The validity of the ideal MHD assumption of
negligible parallel electric field perturbation$H; ~ 0) is also discussed, since, in general,
the coupling between shear Alia and acoustic branches is not negligible &t wi ~ w.yp;.

More specifically, we show that, for long wavelength modes~ /?/Ry), the SE| ~ 0
assumption holds for waves propagating in the ion diamagnetic direction, whereas it may
break down for modes propagating in the electron diamagnetic direction and/or modes with
wypi/w = O(1/B), which are strongly coupled to the slab-like ion temperature gradient
(ITG) driven wave [7-9].

Since our goal is to study the BAE/KBM modes which may be resonantly excited
by energetic ions, only the branches propagating in the ion diamagnetic direction are
considered here. Nevertheless, in the present analysis we neglect the resonant excitation
of the BAE/KBM branch by energetic particles. The primary reason for this choice is
that of simplicity, which allows us to focus on the relevant features of the kineticéAlfv
spectrum due to the wave resonances with thermal ions. A second reason is that wave—
particle resonances with core-plasma ions are important only in a narrow boundary layer
(the inertial layer) centred at the mode rational surface, where the dynamics of energetic
particles may be neglected [6] because of their large orbits (compared to the layer width).
In this sense, the issue of the resonant excitation of BAE/KBM by energetic particles can
be addressed by simply ‘adding’ the energetic particle dynamics to the present theory [6].
This problem will be analysed in a separate work.

The plan of the paper is as follows. In section 2 the theoretical model is presented
and the relevant eigenmode equations are derived. Section 3 is devoted to a discussion
of the characteristic two-scalelength mode structures of theéAlfwaves we wish to
analyse. The knowledge of mode structures is used in section 4 to derive an analytic
dispersion relation for BAE/KBM modes. The general features of BAE/KBM spectra
are discussed in section 5, whereas detailed numerical studies of the analytic dispersion
relation are presented in section 6. Section 7 gives final discussions and conclusions.
An analysis of theSE; ~ 0 ideal MHD assumption is presented in appendix A. Finally,
appendix B provides an elementary derivation of the sheatalfsontinuous spectrum, with
its modifications due to diamagnetic effects and core-plasma ion compressibility. There, a
brief discussion of the relationship between singular mode structures and continuous spectra
is also given.
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2. Theoretical model and eigenmode equations

We consider a large aspect-ratio axisymmetric toroidal plasma equilibrium with shifted
circular magnetic flux surfaces and with major and minor radii givenRgyand a. For
the sake of simplicity, we assume a highi8 = 87 P/B? ~ ¢ = a/Ro, P being the total
core-plasma pressure amdthe equilibrium magnetic field)s( «) model equilibrium [10],
which is entirely determined by the local equilibrium parametethe magnetic shear, and
a = —Rog?p’. We also concentrate on waves with high toroidal mode numbers, such that
kspLi ~ € (ky being the poloidal component of the waveveckoand p.; the ion Larmor
radius). This assumption does not cause any loss of generality, since this is the range of
most unstable mode numbers [6].

As usual [11, 12], we will describe the plasma oscillations in terms of three fluctuating
scalar fields: the scalar potential perturbatigyy the parallel (tob = B/B) magnetic
field perturbations B); and the perturbed fieldy, related to the parallel vector potential
fluctuations A by

SA = —i (g)b.vaw.

With this representation, the parallel electric field fluctuatiofig = —b - V(§¢ — ), and

the ideal magneto-hydrodynamic (MHD) lim&E; = 0, is obtained fob = é¢. Isolating
adiabatic and convective particle responses to the wave, the perturbed particle distribution
function can be expressed as [11, 12]

5f, = (e) [an,5¢ — otk o) 2%y é“} + 5K, dbe M
m/J | 0E ® s
where s is the species indexg, the species electric chargey, the mass, Fy, the
equilibrium distribution function,& = v?/2 the energy per unit mass), the Bessel
function of zero index,k; the perpendicular (tob) wavevector, pi; = mgcv,/e;B
the Larmor radius,QFo; = (wdg + @) Fos, wysFos = (mgc/esB)(k x b) - VFy, and
Lys = (mgc/egB)(k x b) - v.
Adopting the ballooning mode representation [10] in the space of the extended poloidal

angle variableg, the particle distribution functiodK; is derived from the gyrokinetic
equation [12]

[onds — i@ — w0l 0K, = i () QFg

X |:JO(kL/0Ls)(8¢ —5y) + (wd> JolkLpL)dP + vlJl(kL,OLs)(SB] 2
w kJ_C

wherewy = vy/gR is the transit frequencyk? = k3[1 + (s — a sind)?] and wg, is the
magnetic drift frequencyoq,(9) = g(0)kymyc(vi/2 + vi)/e;BR, g(6) = cosf + [s6 —

a sing]sind. In the following, we will assume the electron response to be adiabatic, i.e.
8Ke = 0. Furthermore, it may be shown that, for the Afvmodes we are interested in
[12],

4 c
8B) = (kX b)- VP (;) sU. @)
If we multiply both sides of equation (2) bydr we, Jo(k1 pLy)/ k2c?) and then sum over
the species index and integrate over the velocity space, it is well known that the following
vorticity equation is obtained [5, 6]
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where (...) = [ dv(...), Wy = Wun, + Ou1,, W, = (Tyc/esB)(k x b) - (Vny)/ny,
Wy, = (T c/esB)(k x b) - (VTy)/ Ty, n, is the species particle density, the temperature
in energy units, and use has been made of the paralleléfesplaw

K3
gb VY = W Ia)< Ze;v8f§>

Equations (2)—(4), along with thgquasi-neutrality condition, )" (e;8f;) = 0, form
a closed set of integro-differential equations for the modes we are interested in, i.e. drift
Alfv én kinetic ballooning modes. The quasi-neutrality equation can be put into the following
form

1 Wiepi Ti
(14 1) 00— o0+ (1= 22 ) ow = . ot oK) ©®)
T ne

wheret = T/ T, bi = k?(mic®T;/€#B?), n = nj = ne and core-plasma ions with unit
electric charge have been assumed.

3. Two-scale mode structures

Equations (2)-(5) describe a variety of drift Afu ballooning modes. They are in a
complicated integro-differential form and little can be gleaned directly from these equations
concerning the general properties of those waves. However, some analytic progress can
be made and further insight can be gained when we recall the characteristic frequency and
wavelength orderings assumed here; &ev w,pi = wii ~ O(BY?)wa andky p; = O(B).

3.1. Inertial layer physics: the larg®| solution

It can be recognized that, at larg@l = O(8~/?), equations (2)—(5) always have a two-
scale structure: in fact, the fluctuating fields vary on the short sgake 1 and on the

long scalef; ~ B~Y2. We consider this statement as an ansatz, to be self-consistently
verified a-posteriori Furthermore, for convenience, we work with new field quantities
defined as follows:8® = (k,/ky)d¢p, SV = (ki /ky)8Y and (Sf?” = (k. /ky)8B). Each

field is thought to be expressed in terms of an asymptotic series in powgts%fe.qg.,

8D =8PO@ 4+ 50D 4+ 50@ 4 ... wheresd® = O(8Y?), 6@ = O(B), etc.

Itis readily recognized that Iargé| values correspond, in real space, to a narrow toroidal
layer centred around the mode rational surface, in ideal MHD usually referred to as the
‘inertial layer’. At large|0] = O(B~Y2), we havek? p2 ~ b ~ (wgi/w)? ~ (w/wp)? ~ B.
Equation (2), thus, gives

sk© = — (£ ) 2ok o0 _sy0)
: m| w kJ_

which, substituted into the quasi-neutrality condition, equation (5), yields

1 xni
<1+ ) (600 —sw) = (1- 2 ) (0@ — swO)
T
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i.e. 5w © = 5O to the lowest order. Thus, to the lowest order, equation (4) predicts that
500 =500 g).
To the next @BY/?) order, equation (4) gives

9 8w D = —20,95,60 =0

i.e.sw® =0, since the9; dependence of ¥V can be incorporated in®¥©. Therefore,
equation (2) reads

: k |
(0 dg, — 10)SKY = —andg, 5K + |k”(e> O Fo [5<1><1> + “""acb@}
w

L\
which yields
. k . Foi
KD = iP5k @ 4 X2 (/ML o
@ L 0 —of

_ i(0 .
x { [( iw+ selwtr)wLU5¢<°> + iws®® + wtr8d>§1)} coso
w

i(0
+ [(iwsel - wtr)wLU5¢<0> + iwsd® — wtr8®£l):| sin@o} (6)
w
where we have assumed
8™ = 50D (6,) coshy 4 50 (01) sindp. (7)
When substituted into the quasi-neutrality condition, equation (5), equation (6) yields
1 Ti T i
<1+ - +< " QFy 2>) 500 = —<' QFo " 2>3<1><°> ®)
T nm; w — wf nmi w* — wf
which gives
MD(D _ _ZCTi kfl? N(w/wti) (0
¢ eBg wRy D(w/wy)
§0P = 50,60P. )
Here,wi = «/2T;/mi/q Ry and the functions
N(x) = (1 - “)w ) [x + (1/2 4+ x)Z ()] — ‘”:)Ti [x(1/2 + x%) + (/4 + xHZ ()]
1 1 *Nj *1j
D(x) = <) <1+ ) + (1 - ‘”—) Z(x) — 0 x + (2 - 12 Z ()] (10)
X T w w

have been introduced, whe@®(x) = 7~ [ e*/(y — x)dy is the plasma dispersion
function. From equation (9), it is evident that our asymptotic expansion is consistent as
long as|D(w/wg)| > O(BY?). We assume that this is the case.

Proceeding further to the next(®) order, the vorticity equation, equation (4), becomes
82

2 2 .
O sw@ 4 9 5o L @O0 (1 _ @) sp©@ — Ko [drwe
362 362 i w ki

2R2wqid Ki(l)> . (11)

In order to avoid secularities 6f® on the short, scale, equation (11) becomes

2 2 . .
iz(gqj@ + ‘Lz (1_ %) swO +q2“)‘gt'
0071 wy [0 wp

% «T; N? i
x [(1 _ “’7) Flw/w) — wa G(w/wy) — D((j//a(:))] SwO =0 (12)
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Here, the functions

Fx)=x(®+ )+ +x2+ DZx)

Gx) =x(x* +x%+2) + (P +x/2+x*+ D Z(x) (13)
have been defined and use has been made of the faci®fit= s¥© to lowest order.
The determination oaKi(Z) and of (0@ — sw©®) at O(B) is not necessary for our present

purposes. However, it is given in appendix A for completeness. Here, we just recall the
result for the @B) quasi-neutrality equation, which is

2

2
2 (1— @i\ ke O Ky 550 _ 5y 120 500 _ 5y©
202 w)kﬁaef kJ_( | F ‘L’+ 1) ( )

+{<1 _ w*pi>bi +q2biwti[<l— w*"‘)F(w/wti)
w w w

. N2@/o) || g0 _ b @ oiks [, @i
" D= 180 @ = T T (1 ) 5w O,
” G(w/wy) D(w/wn) 27 w k, ( " )

(14)

Equation (14) allows us to considéE; = 0 for long wavelength modes propagating in

the ion diamagnetic direction, such as those we are analysing in the present paper (cf
introduction and appendix A). Therefore, equation (12) is the relevant eigenmode equation
in the large|6| = O(B~Y?) region. Incidentally, we note that a similar analysis of the
inertial layer is presented in [13], where it was applied to the theory of resistive interchange
ballooning modes.

3.2. Ideal region: the moderat@| solution

For moderatgd| < O(8~/?) values, equation (4) does not exhibit a two-scale structure
any longer. The contribution of core-plasma inertia and core-plasma compressibility (i.e.
the core-ion contribution to the angular brackets on the right-hand side) can be neglected,
which is why this is usually referred to as the ‘ideal region’. The vorticity equation, thus,
becomes

2
(s — a cosd) SwO o Cosf | Sy _
[1+ (s6 — asing)?]’ [1+ (6 — asing)?]

Equation (15) continuously matches onto equation (12) at lggeand, hence, these
two equations define a well posed eigenvalue problem for the modes we wish to analyse.
However, before proceeding further, it is worthwhile noting that it was possible to drop
the core-ion inertia term in equation (15) sinee?/w3) = O(B) and §&© = sw©@ was
assumed. As explained in appendix A, the latter assumption (which is the critical one) for
modes with long parallel wavelength(= O(8Y/?/q Ro)) andw,pi/@ = O(1) holds as long
as (1/t + w.,/w) = O(1), e.g. for waves propagating in the ion diamagnetic direction.
In the following, we assume that this is the case, so that considédiy = sw© is
reasonable.

325w©@ — (15)

4. Dispersion relation

In the previous section, we have shown that, in the ideal region~ 6y ~ O(1), the
vorticity equation is given by equation (15). Multiplying both its membersﬁﬁv@* (here,
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the subscript ID stands for ‘ideal’ solution), we may construct the following quadratic form
(6]
SW D 00w DT — 26W; =0 (16)

wheresW; is the ideal MHD contribution to the potential energy perturbation

1 o0
SWy = é/ do
—00

_ COS@)z o COSsH
5 swO2 (s —«a ; _ . sw912|
x [' Vo "\ L (56 —asing2? [+ (0 —asing)?] ) 1° V]

17)

In the large|d| ‘inertial’ region, equation (12) is readily solved and gives
sW = exp(iA]61)) (18)

where the subscript IN stands for ‘inertial’ region solution axds given by

2 +pi i K1 «T} N2 i 12
A= {“)2 (1-22)+g72 25 [(1—‘2) F (/) — 20 G(w/wﬁ)—(‘”/‘”t)” .

GAL @ @ © D(w/wx)

(19)

Here, the square root in the expression foris taken such that theausality constraint
Im A > 0, is satisfied. The asymptotic matching condition betweef{ andswY reads

SW D% 5,5w D[+ = 2iA. (20)

Thus, equation (16) is equivalent to the following dispersion relation for drift &fv
ballooning modes:

iA=sw,. (1)

In equation (21)§W; is the same used in the MHD theory of ideal ballooning modes
[10] and it may be evaluated by one of the well known numerical methods. Incidentally,
we note that the inclusion of energetic particle dynamics in the present theory would lead
to the dispersion relation of equation (21), with a contributidW,, of energetic ions to
the potential energy perturbation added on the right-hand side [6].

5. Relevant limits of the dispersion relation

A variety of Alfvén spectra are described by the dispersion relation equation (21), derived in
the previous section. Specifically, the causality constraint 0 reduces t6 W, < 0, i.e.

to the condition for ideal MHD instability. Sinc&W; is purely real A is purely imaginary

and the corresponding discrete spectrum can be identified with thajagd mod€6], i.e. of

a mode whose frequency falls within the gaps in the shea®hlfsontinuous spectrum. This
fact can be clearly seen by taking the/«w) — oo limit, for which A = ,/w (0 — w.pi) /wa.

Then, the gap mode would be inside e w.pi) diamagnetic gap [6]. In the present case,
the frequency gap structure is complicated by the inclusion of core ion compressibility
effects. However, it is conceptually the same.

The continuous spectrum is obtained for purely raa[6]. In fact, in this case the
mode eigenfunction i space has a purely oscillatory asymptotic behaviour and cannot
be normalized: the corresponding eigenfunction in real space has logarithmic singularities
for g Rok; = £A, as it may be readily verified (cf appendix B). The modes of the &ifv
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continuum result in incoherent plasma oscillations, obtained as superposition of local (in
real space) perturbations of the type [14]

1
- exp(—iw (r)t) (22)
wherer is a radial-like flux variable ana(r) is obtained from the ‘local dispersion relation’

q(r)Rok(r) = £A(w(r)). (23)

Note thatw(r), as obtained from equation (23), is generally complex sincds a
transcendental function. This fact is remarkable since it predicts the existenrestable
continuafor Imw(r) > 0, which is impossible in ideal MHD. In fact, this is also impossible
in kinetic MHD when only diamagnetic effects are included. The novel feature is entirely
due to the inclusion of core-plasma ion compressibility in the theoretical analysis.

In order to study the various modes described by the dispersion relation, equation (21),
it is useful to classify them according to the accumulation points of the continuous spectrum,
which they merge into whedW; — 0. The accumulation points are obtained for= 0
and sinceA is a transcendental function there are infinitely many of them. Thus, we will
limit ourselves to consider the most unstable (least stable) ones. For simplicity, let us
assumédw|/wg > 1. In this case, it may be shown that

2
A (Qz 7q2> (1_ Q*pi> 7q29*Ti _ 2 (1— Qupi/ Q)

_i_, B N A—
B 4 Q 47 Q (1/7 4 Qun, / Q)
. 1—Qui/Q \?
VT2 (Q — Qun — 020 ) [ Q2+~ 0P ) 24
+ivrg ( = ) LRV T (24)
Here, ni = (0InTi/0Inn;), @ = w/wi, Qupi = w.«i/wi and the other symbols are

analogously defined.
An explicit expression for the accumulation points of the continuous spectrum can be
found forn; = 0, yielding

Q= Q*ni and Q= Qo — |£q 4 _QZ (25)

where

7 2
S+ T for Q,,, < |
Q2 = { (I +1)q |2 (26)

3° for Q,, > |Q0l.

Thus, we see that, in thiw|/wg > 1 limit, three accumulation points of the continuous
Alfvén spectrum may be found close to the real frequency axis. Two directly related to
the beta-induced gap and one associated with the ion diamagnetic gap. Hence, in the
following, we will call KBM those modes merging into the ~ €., accumulation point
whensW; — 0. Similarly, the modes merging into the? ~ (} + 1)¢? (or Q% ~ 34?)
accumulation points a&; — 0 will be referred to as BAE. More precisely, only the branch
with Re2 > 0 will be called BAE, since we are interested only in modes propagating in
the ion diamagnetic direction (cf sections 1, 3 and appendix A).

Approximate expressions for the continuum accumulation points can also be found in
the generak; # 0 case. ForQ*pl > (% + 1)¢?, the KBM accumulation point turns out to
be

.
Q=Qup|1- q2 i ip, e %o @27)
4 Q>|<p| 1+
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whereas the BAE accumulation points are given by

2 2 2
q 1+ q 1+77i/4+77i ﬁ 2 M 6. 02
Q=9 1 - _ivr Qe %
ot Q*m( + 2t > 29*pi( 1+n| 2 4 1+ ni 0
3 ¢? 4
Q=" 1425 — =n?|. 28

Note that the approximations leading to equation (28) rec@fe> 1 (i.e. large and real).

Analogously, foerpi < (271 + 1)¢?, we find

2 Q2
Q= Qo+ i-v/T =2 (0 + TQun) (R0 — Qun, — MLRun)

7 Q*n.
1+7\? 4 —1/2
X[(m +2) + o+ +r)] (29)
2 1/2
Q= e T (e 2T a0
= 53157 i it i+ — TN i+t
0 1+40/7)7 Ui Ui 2 i 2 7 Ui i
for the KBM accumulation point, while those related to the beta-induced gap are given by
Qs 7 .
Q=Q0— g’ m+TtA+nm)+17) - |ﬁq293e*93 (1 — 7iQ0S2u,) (30)
2Q8 4 2

7

Equations (27) and (28) refer to the situation in which the core-plasma dynamics is
dominated by ion diamagnetic effects and core-plasma ion compressibility may be ignored.
Hence, it is not surprising that the highest frequency accumulation point is close to that of the
well known ion diamagnetic frequency gaf), w.pi). Equations (29) and (30), meanwhile,
correspond to the case where diamagnetic effects are small with respect to core-plasma
compressibility [3, 4]. The highest frequency accumulation points of theéalsontinuum,

Q% ~ (;71 +1)q?, are now those related to the beta-induced &fhgap. This is the limiting

case we must refer to in order to establish a bridge between the present kinetic theory and
previous theoretical analyses [3, 4], based on ideal MHD, which predict the accumulation
points of the beta-induced Alén gap at2? = y¢2, wherey is the ratio of specific heats.

The next section is devoted to numerical studies of the dispersion relation, equation (21),
to point out the peculiarities of both BAE and KBM modes and to clarify the strong relation
existing between these two branches. However, before proceeding further, it is worthwhile
analysing the conditions under which the accumulation points of the continuous spectrum,
mentioned so far, may be located in the upper half comgteglane, i.e. may become
unstable. From a direct check of equations (29) and (30) it is readily verified that the KBM
accumulation point is always stable f@fpi <« (7/4+ 1)¢?. This is not the case for the
BAE accumulation point (that with R > 0). In fact, it may become unstable fgrlarger
than a critical valueyic, given by

2 Wi

N1+ AT Gy '
Equation (31) can be interpreted as the threshold condition for the onset of an unstable
continuous spectrum. Note that the threshold is only an estimate, although it should give
the correct scaling with equilibrium parameters. Kb‘jrpi > (% + 1)¢?, equation (27)
predicts the KBM accumulation point to be unstable, althoughi$dmis expected to

N2y, = 1 = Nic = (31)
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be exponentially small compared with that obtained from equation (30)fos njc.
Meanwhile, equation (28) shows that the BAE accumulation point is always stable for
Q%> (4 + 14>

From the previous analysis we get a qualitative picture of theélfspectra described by
the dispersion relation equation (21). Wf@fbi < (% +1)g2, only the BAE accumulation
point may be unstable fof; > ni, with Im(2) increasing linearly withy; and ,,,. If
Q.pi is further increased, the unstable BAE accumulation point is expected to smoothly
connect to an unstable KBM accumulation point, with exponentially smaj2imwhen
szipi > (271 + 1)g?. This fact allows us to anticipate a result of the next section; i.e. that the
most unstable BAE/KBM accumulation point occurs,; ~ (; + t)¢%, when BAE and
KBM branches are strongly coupled.

6. Numerical studies of the dispersion relation

In the numerical studies of the dispersion relation, equation (21), we focus our attention on
the ‘gap mode’ for both BAE and KBM branches, and on the ‘local frequencies’ associated
with the continuous spectrum. We believe that these analyses are sufficient to exhaustively
illustrate the relevant aspects of the low-frequency @ffvspectrum. Theoretical studies
of the ‘energetic particle continuum modes’ [6] for the BAE and KBM branches will be
presented in a future work. Detailed numerical simulations of energetic particle excitations
of KBMs in tokamak plasmas are presented in [15].

The numerical results, presented in the following, assne 0.01,t = To/T, = 1
andg = 15. These parameters are kept fixed and are considered to be representative
of a typical tokamak local plasma equilibrium. In figure 1, the BAE spectrum is shown
for Q.,, = 1. The three curves which are shown are characterized by different values
of ni. The branches marked with open squares correspoidijoranging in the interval
(—0.2,0), i.e. to the BAE gap mode. Open circles refer to the solution of equation (23), with
q(r)Rok (r) varying between0, 0.2), i.e. to the continuous spectrum. The accumulation
points of the Alf\en continuum are visible as the positions where the gap mode merges
into the continuous spectrum, i.e. where open squares and open circles overlap. Figure 2
shows the same parametric studies reported in figure 1, but focused on the KBM branch.
For completeness, in figure 3 we also report the analysis of the branch propagating in the
electron diamagnetic direction, which confirms that it does not exhibit interesting features.
For this reason and for those discussed in appendix A, we shall neglect it in the following.

A direct comparison of figure 1 and figure 2 shows how the frequency spectra
qualitatively change withy;. More specifically, the); = 0.5 case differs from the others,
since it is characterized by unstable BAE and stable KBM gap modes. Furthermore, the
Alfvén continuum associated with the BAE accumulation point is clearly unstable. This
fact confirms the existence of unstable continua above a crijigalnd indicates that this
phenomenon is deeply connected with a strong coupling between BAE and KBM modes.
Figure 4 shows this point more clearly. The four curves are all obtaine#granging in
the interval(—0.14, —0.06). Open squares refer to the KBM branch, whereas open circles
indicate BAE gap modes. The coupling between the two branches is evident and it indicates
a value ofyic in the interval(0.25, 0.28); consistent with the prediction of equation (31).

Figures 5 and 6 show the same parametric studies and use the same conventions of
figures 1 and 2, except that hefe,, = 0.5. The same considerations which were made
in the previous case hold here. In contrast, figures 7 and 8, wgre= 3, exhibit new
qualitative features of the BAE/KBM spectra. First of all, the BAE branch never becomes
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Figure 1. The BAE branch is shown fof; = 0.01,7 = 1, ¢ = 1.5 andQ,,; = 1. The BAE
spectrum is reported for three valuespf= 0, 0.25, 0.5. Open squares refer to the gap mode
8W; € (-0.2,0); open circles indicate the continuupir) Rok (r) € (0, 0.2).
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Figure 2. The KBM branch is shown for the same parametric studies reported in figure 1.

unstable; second, even if a value fgrcan still be identified (between®and 1), above
which BAE and KBM strongly couple, this value can no longer be considered as a threshold
for the continuous spectrum to be unstable. In facRlat the most unstable (that of KBM)
accumulation point is exponentially small, as predicted by equation (27). The difference with

respect to the previous cases is entirely due to the valye.pf For Q. <, /271 + 14, the
features of the BAE/KBM spectrum are those of figures 1, 2 and 5, 6. The dominant modes
for i > nic are those of the BAE branch, and in this case part of the continuougrmilfv
spectrum is unstable. In the,, > ,/% + 1 g case, however, the features of the BAE/KBM

spectrum are those of figures 7 and 8. The dominant modes are of the KBM branch and
the Alfvén continuum is always stable (it coincides with that predicted in ideal MHD with
diamagnetic effects included). The present discussion is consistent with the statement, made
in the previous section, that the KBM accumulation point has an exponentially snfll Im

for Q.pi > %—}—rq.
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Figure 3. The branch propagating in the electron diamagnetic drift direction is shown for the
same parametric studies reported in figure 1.
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Figure 4. Two spectra withp; = 0.25 andn; = 0.28 illustrate the coupling of BAE (open
circles) and KBM (open squares) branchédV; € (—0.14, —0.06) in all cases. Equilibrium
parameters are those of figure 1.

For Q. =~ ,/27‘ + 7 ¢, BAE and KBM branches are strongly coupled. In the previous
section, it was anticipated that in this parameter rang® lof the unstable BAE/KBM
accumulation point is expected to be peaked. This aspect is examined in figures 9 and
10, where imaginary and real parts of the BAE/KBM accumulation point are respectively
shown againsk2,, and for different values of. Open circles refer to thg; = 0.5
case, open squares ¥ = 1.0 and open triangles tg; = 1.5. For Q,p < ,/;71 + tgq, the
numerical results are well described by the analytical estimate, equation (30), indicating that
the unstable accumulation point is of BAE type (note that ni.). In fact, InQ2 increases
linearly with both<,,, andn;, whereas R& linearly decreases. Whef,,; ~ 1/271 + 14,
the strong coupling of BAE with KBM results in the break down of equation (30)Q2Re
begins to increase and the behaviour ofdns no longer linear. Finally, the dependence of
the unstable accumulation point én,, andn; becomes of KBM type fof2,pi > ‘/;71 + 14,
as predicted by equation (27). Thus, figures 9 and 10 illustrate the smooth transition from
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Figure 5. The BAE branch is shown fo; = 0.01, 7 = 1, ¢ = 1.5 andQ,,, = 0.5. The BAE
spectrum is reported for three valuespf= 0, 0.5, 1. Open squares refer to the gap mode
8W; € (=0.2,0); open circles indicate the continuupir) Rok (r) € (0, 0.2).
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Figure 6. The KBM branch is shown for the same parametric studies reported in figure 5.

an unstable BAE to an unstable KBM branch, passing through a situation characterized
by a spectrum of modes with a mixed BAE/KBM nature. This situation, occurring for

Qupi 2 ‘/;71 + 7 ¢, corresponds to the most unstable regime, as anticipated in the previous
section.

7. Conclusions and discussions

In the present work, we have discussed a comprehensive kinetic theory of high toroidal mode
number low-frequencyd ~ w.pi = wy) Alfvén waves in a highg- tokamak equilibrium.

By including diamagnetic effects and finite core-plasma ion compressibility on the same
footing, we have generalized the KBM theory of Tsai and Chen [6], and have discussed
the important relationship which generally exists between BAE and KBM spectra. BAE
and KBM areseparatebranches of the low-frequency shear Alfv spectrum, which are
independent only af; = 0. In fact, they are coupled in the genenakt O case.
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Figure 7. The BAE branch is shown fof; = 0.01, 7 = 1, ¢ = 1.5 andQ,,; = 3. The BAE
spectrum is reported for three valuespf= 0, 0.5, 1. Open squares refer to the gap mode
8W; € (=0.2,0); open circles indicate the continuupir) Rok (r) € (0, 0.2).
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Figure 8. The KBM branch is shown for the same parametric studies reported in figure 7.

It has been shown that the theory of [6] applies dgp; > ‘/271 + tqwy, as expected, a
condition under which KBM are the most unstable modes of those considered here. More
importantly, we have demonstrated that, f@p; < ‘/;71 + tqwy, a critical valuenj; exists,
above which the BAE mode is the most unstable branch, thereby showing that BAEs are
not always Landau damped as simple considerations based on its frequency would suggest
[16]. It has also been shown that, fgr> i, part of the continuous Alén spectrum may
be unstable. This implies that non-collective modes may be present in the plasma, formed
as a superposition of local oscillations which are quasi-exponentially growing in time. This
new feature is entirely due to the inclusion of finite core-plasma ion compressibility in the
theoretical analysis. Finally, it has been shown that the most unstable low-frequenén Alfv

modes occur ab,pi 2 \/ﬁqwti, corresponding to a parameter range in which BAE and

KBM are strongly coupled.
The present theory of BAE/KBM linear stability yields an analytic expression of the
mode dispersion relation, which may be generalized to include resonant wave excitations



Kinetic theory of Alfen modes 2025

Im(Q)

|
T
2
Q,
ni

Figure 9. Im(Q2) of the most unstable BAE/KBM accumulation point is shown agafg}
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Figure 10. Re(2) of the most unstable BAE/KBM accumulation point is shown agaiiist
for the same parameters of figure 9.

by energetic particles with finite orbit widths [6]. It has been shown that, in general, two
types of spectra may exist: a discrete spectrum of gap modes, which is present only when
the tokamak plasma is ideal MHD unstable; and the @&ficontinuous spectrum, which
may be characterized, under certain conditions, by unstable accumulation points.

The issue of energetic particle continuum modes [6], which may also exigWer> 0,
but require that the energetic particle drive be strong enough to overcome continuum
damping, is not analysed here. The numerical studies of the analytic dispersion relation deal
only with BAE/KBM gap modes and with the Alén continuous spectrum. Finally, it is
clear that the present theoretical results may have important implications for the stability and
transport properties of tokamak experiments with and without energetic particles. Further
theoretical delineations and comparisons with experimental results are, however, beyond the
scope intended for this work and will be discussed in future publications.
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Appendix A. Validity of the ideal MHD limit 6E; =0

At order Q(B), the quasi-neutrality equation, equation (5), becomes

1 W «pi Tik k2 p?
g w i ((S(I)(O) _ S\IJ(O)) + 1 _ . pi bl(sll-’(o) — icL _ J_IOLI SK(O) + SK(Z) .
T w w 4 [ i

neky
(A1)
Here,sK? is obtained from
. ek
(w49, — |w)6Ki(2) = —(wydp, + de|)8K( 4 < 4 )
m|kJ_
k2
x O Foi [(m(z) —sw@) lpL' 0@ — 5wy 1 m'viaB“’)} . (A2)

In order to get from equation (A1) an expression & © — sw©) valid up to QB), we

need to solve equation (A2) just fWi(z), where[...] = (1/27) §(...) ddo. It is possible to
show that

5K = eky \ QFai [ k30 50 — 5w @) _
mik | w 4

2 -
mivy ¢ 50 ) @
ﬁaBH i|—|8918K el 8K

(A3)

When substituted into equation (Al), equation (A3) yields th&3)Oquasi-neutrality
condition, reported in section 3:

2 2
wf (1 @spi\ ki 9 560 _ 5p© 1., ®m) 00 _ 540
202 ) ky 801 kJ_( | F T + 1) ( )

(1= o+ g [(1- ) F/on

AT, N?
—HG(w/wﬂ) _ (a)/a)u] } 5@
D(w/wy)
b Ol a)tl ky Wipi 0
1- swO, A4
23/2q w ki ( a) ) (A4)

Equation (A4) demonstrates th@d© —sw©) = O(g), i.e. §E; ~ 0, for long wavelength
modes §y, = O(BY?)) with w.pi/w = O(1) and which propagate in the ion diamagnetic
direction (1/t + w., /w) = O(1)). In the present paper, we refer to this type of mode.

For waves which propagate in the electron diamagnetic direction, equation (A4) predicts
that an appreciable parallel electric field can be originated(Igt + w.,,/w) = O(b).
Another possibility for theSE; ~ 0 assumption to break down isi/w = O(1/8). These
modes would interact strongly with the long wavelength slab-like ion temperature gradient
(ITG) driven mode [7-9] and are out of the scope of the present analysis.
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Equation (A4) serves also to the scope of discussing the validity ofsfi)le= 0
assumption at moderaté| values. In fact, forld| < O(B~Y?) finite b; and wgi/w effects
may be neglected, indicating that the scale of variatiorsdf® — sw©) is a constant.
This can be also seen from a direct examination of equations (2) and (5). Moreover, since
the large|6| structure of the modes we are analysing is characterized by a long scale of
variation, we must also havéy = constant = O(8%?) when acting on(§®© — 5w ©)
for |0] < O(B~Y?). Recalling that(1/t + ., /o) and w.pi/w are Q1) in our analysis,
the present argument and equation (A4) indicate 8t = 0 to lowest order also for
moderateld| values, i.e.(§®@ — sw©) = 0. The fact thaBy = O(8Y/?) when acting on
(60©@ — 5w ) does not indicate that the functiod®©® andsw @ vary on the long scale
6, only, but simply that any short-scale variationsa® is balanced by the same variation
of sw©.

The previous discussion demonstrates thatddg? —sWw (@) = 0 assumption also holds
in the moderated | region, wheresWw (@ does not have a two-scale structure, as pointed out
in section 3.2, and, in generay = O(1) due to finite(s, «) effects, as it emerges from
equation (15).

Appendix B. Logarithmic singularities and continuous spectrum

A simple derivation of equation (23) can be obtained transforming the ballooning
eigenfunctionsY(6) = [ky/ k. (0)]6W(6) back to real space [17]
ﬁmw_nﬂz/ﬁwymmemkmm—mw]
oo 1+ (s — asing)?]y/2
From equation (B1), it is easily shown that
isdsP(ng —m) +0 565W (0) expl—i(ng — m)6]
‘3@ZfET*:[m [1+ (50 — asing)2]2/2
Define, now, a valu® such that® > 1 andfY/?0 « 1. In this way, the integration interval
in equation (B2) can be subdivided inte-®, ®], where the ‘ideal’ solutior¥ |, can be

used, and—oo, —®] U [®, +00), where the ‘inertial layer’ solutiod ¥y is appropriate.
With the explicit use of equation (18), it is possible to show

ds. (B1)

ds. (B2)

iﬁSEMQ—nn_:/®S%Wm@)mmpﬂﬁq_mw]w
S g —m) Jo  [1+(s0 —asing)Zi2
+ °°[exp im — ng)8 — exping — m)o] elhd g
®
1 o 1
+o<s2®2>+o(s®)+o<®), -

Since the contribution from the{®, ®] integral is typically Q®), whereas that from the
[©, oo) interval is QB~1/?) for [ng —m| = O(BY?), equation (B3) implies

sﬂ@@mﬂm:[wmwm—m)_MMMm—mqém+o(].>

d(ng —m) A — (ng —m) A+ (ng —m) 52072
1
+0 (%) +0 (o) +O(BY20). (B4)

Equation (B4) is readily integrated and yields

T(ng —m) = C— ~I[A — (ng — m)] (85)
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for [ng —m| ~ |A| = O(BY?), where C is an integration constant angs®?®) terms have
been consistently neglected. Equation (B5) indicates that the wave field in real space has a
logarithmic singularity whering — m) = £A, i.e. when

q(r)Rok (r) = £A(w(r))

which is equation (23). In an initial-value analysis, the just derived logarithmic singularity
becomes a logarithmic branch point in the complex omega plane. When the time asymptotic
behaviour is computed, the finite jump of the wave field across the branch cut, originating
from the logarithmic branch point, gives the contribution

1 .
R exp(—lw(r)t)

of equation (22). A detailed analysis, yielding to this result, can be found in [14]. Here,
we just wish to note that the concepts of continuous spectrum, satisfying equation (23), and
of singular local plasma oscillations are closely related.
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