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Kinetic theory of low-frequency Alfv én modes in tokamaks
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Abstract. The kinetic theory of low-frequency Alfv́en modes in tokamaks is presented. The
inclusion of both diamagnetic effects and finite core-plasma ion compressibility generalizes
previous theoretical analyses (Tsai S T and Chen L 1993Phys. FluidsB 5 3284) of kinetic
ballooning modes and clarifies their strong connection to beta-induced Alfvén eigenmodes. The
derivation of an analytic mode dispersion relation allows us to study the linear stability of both
types of modes as a function of the parameters characterizing the local plasma equilibrium and
to demonstrate that the most unstable regime corresponds to a strong coupling between the two
branches due to the finite thermal ion temperature gradient. In addition, we also show that,
under certain circumstances, non-collective modes may be present in the plasma, formed as a
superposition of local oscillations which are quasi-exponentially growing in time.

1. Introduction

The experimental observation [1] of large energetic ion losses due to Alfvén waves with
frequencies lower than that of the toroidal Alfvén eigenmode (TAE) [2] has recently
demonstrated that low-frequency Alfvén waves can be as deleterious as TAE modes
to energetic particle confinement. Experimentally, these modes have the predominant
polarization of shear Alfv́en waves [1] and they have been given the name of beta-induced
Alfv én eigenmodes (BAE) [3] since their frequency is located in the low-frequency beta-
induced gap in the shear Alfvén continuous spectrum [4], which is caused by finite plasma
compressibility.

Ideal magneto-hydrodynamic (MHD) theories predict the beta-induced frequency gap
at [3] 0 < (ω/ωA)2 . γβq2, whereω is the mode frequency,γ is the ratio of specific
heats,β the ratio of kinetic and magnetic pressures,q the safety factor,ωA = vA/qR0

the Alfvén frequency,R0 the major radius of the toroidal plasma column,vA = B/
√

4π%

the Alfvén speed and% the plasma mass density. This fact, along with the experimental
observation that BAEs are shear Alfvén waves with frequency within or near the beta-
induced gap, indicates that these modes have long parallel (to the equilibrium magnetic
field B) wavelengths, i.e.ω ' k‖vA ≈ √

γβvA/R0 → k‖ ≈ √
γβ/R0 (k‖ being the parallel

wavevector), and that the relevant BAE frequency range is ordered as the thermal ion transit
frequency,ω ≈ ωti = √

2Ti/mi/qR0 (Ti is the ion temperature in energy units andmi the
ion mass). Furthermore, there is clear experimental evidence [1] that diamagnetic effects
are important for the BAE dynamics, since typicallyω ≈ ω∗pi = (cTi/eiB

2)(k×B)·∇ ln Pi ,
the core-plasma ion diamagnetic frequency. Here,ei is the ion electric charge,Pi the ion
pressure andk the wavevector.
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From the previous discussion, it is evident that ideal MHD is inadequate to construct
a realistic theory of BAE modes, for whichω ≈ ωti ≈ ω∗pi, since finite core-plasma ion
compressibility is expected to strongly affect the mode dynamics via resonant interactions
with the ion transit motion along magnetic field lines. Moreover, it is important to
clarify any relationship of BAEs with kinetic ballooning modes [5, 6] (KBM), which are
expected to occur in the same frequency range. Previous theories of resonant excitations
of KBM by energetic particles [5, 6] have shown that these modes, like BAEs, belong
to the shear Alfv́en branch and haveω ≈ ω∗pi. However, these theories assumed
incompressible oscillations, thereby neglectingω ≈ ωti wave–particle resonances with core-
plasma ions.

In the present paper we develop a unified theory for Alfvén waves belonging to the
BAE/KBM branches by accounting for finite core-plasma compressibility and diamagnetic
effects on the same footing. In this respect, we present the kinetic theory of high toroidal
mode number [5, 6] low-frequency Alfvén modes in a high-β plasma (β = O(ε); ε = a/R0,
a being the plasma minor radius), which we may refer to as drift Alfvén kinetic ballooning
modes. As a relevant and novel result we show that the most unstable scenario corresponds
to the situation in which BAE and KBM are strongly coupled due to the presence of a finite
temperature gradient of the thermal ions. The validity of the ideal MHD assumption of
negligible parallel electric field perturbations (δE‖ ' 0) is also discussed, since, in general,
the coupling between shear Alfvén and acoustic branches is not negligible atω ≈ ωti ≈ ω∗pi.
More specifically, we show that, for long wavelength modes (k‖ ≈ β1/2/R0), the δE‖ ' 0
assumption holds for waves propagating in the ion diamagnetic direction, whereas it may
break down for modes propagating in the electron diamagnetic direction and/or modes with
ω∗pi/ω = O(1/β), which are strongly coupled to the slab-like ion temperature gradient
(ITG) driven wave [7–9].

Since our goal is to study the BAE/KBM modes which may be resonantly excited
by energetic ions, only the branches propagating in the ion diamagnetic direction are
considered here. Nevertheless, in the present analysis we neglect the resonant excitation
of the BAE/KBM branch by energetic particles. The primary reason for this choice is
that of simplicity, which allows us to focus on the relevant features of the kinetic Alfvén
spectrum due to the wave resonances with thermal ions. A second reason is that wave–
particle resonances with core-plasma ions are important only in a narrow boundary layer
(the inertial layer) centred at the mode rational surface, where the dynamics of energetic
particles may be neglected [6] because of their large orbits (compared to the layer width).
In this sense, the issue of the resonant excitation of BAE/KBM by energetic particles can
be addressed by simply ‘adding’ the energetic particle dynamics to the present theory [6].
This problem will be analysed in a separate work.

The plan of the paper is as follows. In section 2 the theoretical model is presented
and the relevant eigenmode equations are derived. Section 3 is devoted to a discussion
of the characteristic two-scalelength mode structures of the Alfvén waves we wish to
analyse. The knowledge of mode structures is used in section 4 to derive an analytic
dispersion relation for BAE/KBM modes. The general features of BAE/KBM spectra
are discussed in section 5, whereas detailed numerical studies of the analytic dispersion
relation are presented in section 6. Section 7 gives final discussions and conclusions.
An analysis of theδE‖ ' 0 ideal MHD assumption is presented in appendix A. Finally,
appendix B provides an elementary derivation of the shear Alfvén continuous spectrum, with
its modifications due to diamagnetic effects and core-plasma ion compressibility. There, a
brief discussion of the relationship between singular mode structures and continuous spectra
is also given.
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2. Theoretical model and eigenmode equations

We consider a large aspect-ratio axisymmetric toroidal plasma equilibrium with shifted
circular magnetic flux surfaces and with major and minor radii given byR0 and a. For
the sake of simplicity, we assume a high-β (β = 8πP/B2 ≈ ε = a/R0, P being the total
core-plasma pressure andB the equilibrium magnetic field) (s, α) model equilibrium [10],
which is entirely determined by the local equilibrium parameterss, the magnetic shear, and
α = −R0q

2β ′. We also concentrate on waves with high toroidal mode numbers, such that
kϑρLi ≈ ε (kϑ being the poloidal component of the wavevectork andρLi the ion Larmor
radius). This assumption does not cause any loss of generality, since this is the range of
most unstable mode numbers [6].

As usual [11, 12], we will describe the plasma oscillations in terms of three fluctuating
scalar fields: the scalar potential perturbationδφ; the parallel (tob = B/B) magnetic
field perturbationδB‖; and the perturbed fieldδψ, related to the parallel vector potential
fluctuationδA‖ by

δA‖ ≡ − i
( c

ω

)
b · ∇δψ.

With this representation, the parallel electric field fluctuation isδE‖ = −b · ∇(δφ−δψ), and
the ideal magneto-hydrodynamic (MHD) limit,δE‖ = 0, is obtained forδψ = δφ. Isolating
adiabatic and convective particle responses to the wave, the perturbed particle distribution
function can be expressed as [11, 12]

δfs =
(

e

m

)
s

[
∂F0

∂E δφ − J0(k⊥ρL)
QF0

ω
δψ eiLk

]
s

+ δKs eiLks (1)

where s is the species index,es the species electric charge,ms the mass,F0s the
equilibrium distribution function,E = v2/2 the energy per unit mass,J0 the Bessel
function of zero index,k⊥ the perpendicular (tob) wavevector, ρLs = mscv⊥/esB

the Larmor radius,QF0s = (ω∂E + ω̂∗)sF0s , ω̂∗sF0s = (msc/esB)(k × b) · ∇F0s , and
Lks = (msc/esB)(k × b) · v.

Adopting the ballooning mode representation [10] in the space of the extended poloidal
angle variableθ , the particle distribution functionδKs is derived from the gyrokinetic
equation [12]

[ωtr∂θ − i(ω − ωd)]s δKs = i
( e

m

)
s

QF0s

×
[
J0(k⊥ρLs)(δφ − δψ) +

(
ωd

ω

)
s

J0(k⊥ρLs)δψ + v⊥
k⊥c

J1(k⊥ρLs)δB‖

]
(2)

whereωtr = v‖/qR is the transit frequency,k2
⊥ = k2

ϑ [1 + (sθ − α sinθ)2] and ωds is the
magnetic drift frequencyωds(θ) = g(θ)kϑmsc(v

2
⊥/2 + v2

‖)/esBR, g(θ) = cosθ + [sθ −
α sinθ ] sinθ . In the following, we will assume the electron response to be adiabatic, i.e.
δKe = 0. Furthermore, it may be shown that, for the Alfvén modes we are interested in
[12],

δB‖ = 4π

B2
(k × b) · ∇P

( c

ω

)
δψ. (3)

If we multiply both sides of equation (2) by i(4πωesJ0(k⊥ρLs)/k2
ϑc2) and then sum over

the species index and integrate over the velocity space, it is well known that the following
vorticity equation is obtained [5, 6]
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Bb · ∇
[

1

B

k2
⊥

k2
ϑ

b · ∇δψ
]

+ ω2

v2
A

(
1 − ω∗pi

ω

) k2
⊥

k2
ϑ

δφ

+ α

q2R2
g(θ)δψ =

〈 ∑
s

4πes

k2
ϑc2

J0(k⊥ρLs)ωωdsδKs

〉
(4)

where 〈. . .〉 = ∫
dv(. . .), ω∗ps = ω∗ns

+ ω∗Ts
, ω∗ns

= (Tsc/esB)(k × b) · (∇ns)/ns ,
ω∗Ts

= (Tsc/esB)(k × b) · (∇Ts)/Ts , ns is the species particle density,Ts the temperature
in energy units, and use has been made of the parallel Ampére’s law

k2
⊥

k2
ϑ

b · ∇δψ = 4π

k2
ϑc2

iω

〈 ∑
s

esv‖δfs

〉
.

Equations (2)–(4), along with thequasi-neutralitycondition,
∑

s〈esδfs〉 = 0, form
a closed set of integro-differential equations for the modes we are interested in, i.e. drift
Alfv én kinetic ballooning modes. The quasi-neutrality equation can be put into the following
form (

1 + 1

τ

)
(δφ − δψ) +

(
1 − ω∗pi

ω

)
biδψ = Ti

ne
〈J0(k⊥ρLi )δKi〉 (5)

where τ = Te/Ti , bi = k2
⊥(mic

2Ti/e2B2), n = ni = ne and core-plasma ions with unit
electric charge have been assumed.

3. Two-scale mode structures

Equations (2)–(5) describe a variety of drift Alfvén ballooning modes. They are in a
complicated integro-differential form and little can be gleaned directly from these equations
concerning the general properties of those waves. However, some analytic progress can
be made and further insight can be gained when we recall the characteristic frequency and
wavelength orderings assumed here; i.e.ω ≈ ω∗pi ≈ ωti ≈ O(β1/2)ωA andkϑρLi ≈ O(β).

3.1. Inertial layer physics: the large|θ | solution

It can be recognized that, at large|θ | = O(β−1/2), equations (2)–(5) always have a two-
scale structure: in fact, the fluctuating fields vary on the short scaleθ0 ≈ 1 and on the
long scaleθ1 ≈ β−1/2. We consider this statement as an ansatz, to be self-consistently
verified a-posteriori. Furthermore, for convenience, we work with new field quantities
defined as follows:δ8 = (k⊥/kϑ)δφ, δ9 = (k⊥/kϑ)δψ and δB̂‖ = (k⊥/kϑ)δB‖. Each
field is thought to be expressed in terms of an asymptotic series in powers ofβ1/2; e.g.,
δ8 = δ8(0) + δ8(1) + δ8(2) + · · ·, whereδ8(1) = O(β1/2), δ8(2) = O(β), etc.

It is readily recognized that large|θ | values correspond, in real space, to a narrow toroidal
layer centred around the mode rational surface, in ideal MHD usually referred to as the
‘inertial layer’. At large|θ | = O(β−1/2), we havek2

⊥ρ2
Li ≈ bi ≈ (ωdi/ω)2 ≈ (ω/ωA)2 ≈ β.

Equation (2), thus, gives

δK
(0)

i = −
(

e

mi

)
QF0i

ω

kϑ

k⊥
(δ8(0) − δ9(0))

which, substituted into the quasi-neutrality condition, equation (5), yields(
1 + 1

τ

)
(δ8(0) − δ9(0)) =

(
1 − ω∗ni

ω

)
(δ8(0) − δ9(0))
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i.e. δ9(0) = δ8(0) to the lowest order. Thus, to the lowest order, equation (4) predicts that
δ8(0) = δ8(0)(θ1).

To the next O(β1/2) order, equation (4) gives

∂2
θ0
δ9(1) = −2∂θ0∂θ1δ9

(0) = 0

i.e. δ9(1) = 0, since theθ1 dependence ofδ9(1) can be incorporated intoδ9(0). Therefore,
equation (2) reads

(ωtr∂θ0 − iω)δK
(1)

i = −ωtr∂θ1δK
(0)

i + i
kϑ

k⊥

(
e

mi

)
QF0i

[
δ8(1) + ωdi

ω
δ8(0)

]
which yields

δK
(1)

i = − i
ωtr

ω
∂θ1δK

(0)

i + i
kϑ

k⊥

(e/mi)QF0i

ω2 − ω2
tr

×
{[

( iω + sθ1ωtr)
ωdi(0)

ω
δ8(0) + iωδ8(1)

c + ωtrδ8
(1)
s

]
cosθ0

+
[
(iωsθ1 − ωtr)

ωdi(0)

ω
δ8(0) + iωδ8(1)

s − ωtrδ8
(1)
c

]
sinθ0

}
(6)

where we have assumed

δ8(1) = δ8(1)
c (θ1) cosθ0 + δ8(1)

s (θ1) sinθ0. (7)

When substituted into the quasi-neutrality condition, equation (5), equation (6) yields(
1 + 1

τ
+

〈
Ti

nmi
QF0i

ω

ω2 − ω2
tr

〉)
δ8(1) = −

〈
Ti

nmi
QF0i

ωdi

ω2 − ω2
tr

〉
δ8(0) (8)

which gives

δ8(1)
c = −2cTi

eB0

kϑ

ωR0

N(ω/ωti)

D(ω/ωti)
δ8(0)

δ8(1)
s = sθ1δ8

(1)
c . (9)

Here,ωti = √
2Ti/mi/qR0 and the functions

N(x) =
(

1 − ω∗ni

ω

)
[x + (1/2 + x2)Z(x)] − ω∗Ti

ω
[x(1/2 + x2) + (1/4 + x4)Z(x)]

D(x) =
(

1

x

) (
1 + 1

τ

)
+

(
1 − ω∗ni

ω

)
Z(x) − ω∗Ti

ω
[x + (x2 − 1/2)Z(x)] (10)

have been introduced, whereZ(x) = π−1/2
∫ ∞
−∞ e−y2

/(y − x) dy is the plasma dispersion
function. From equation (9), it is evident that our asymptotic expansion is consistent as
long as|D(ω/ωti)| > O(β1/2). We assume that this is the case.

Proceeding further to the next O(β) order, the vorticity equation, equation (4), becomes

∂2

∂θ2
0

δ9(2) + ∂2

∂θ2
1

δ9(0) + ω2

ω2
A

(
1 − ω∗pi

ω

)
δ8(0) = kϑ

k⊥

〈
4πωe

k2
ϑc2

q2R2
0ωdiδK

(1)

i

〉
. (11)

In order to avoid secularities ofδ9(2) on the shortθ0 scale, equation (11) becomes

∂2

∂θ2
1

δ9(0) + ω2

ω2
A

(
1 − ω∗pi

ω

)
δ9(0) + q2 ωωti

ω2
A

×
[(

1 − ω∗ni

ω

)
F(ω/ωti) − ω∗Ti

ω
G(ω/ωti) − N2(ω/ωti)

D(ω/ωti)

]
δ9(0) = 0. (12)
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Here, the functions

F(x) = x(x2 + 3
2) + (x4 + x2 + 1

2)Z(x)

G(x) = x(x4 + x2 + 2) + (x6 + x4/2 + x2 + 3
4)Z(x) (13)

have been defined and use has been made of the fact thatδ8(0) = δ9(0) to lowest order.
The determination ofδK(2)

i and of(δ8(0) − δ9(0)) at O(β) is not necessary for our present
purposes. However, it is given in appendix A for completeness. Here, we just recall the
result for the O(β) quasi-neutrality equation, which is

ω2
ti

2ω2

(
1 − ω∗pi

ω

) k⊥
kϑ

∂2

∂θ2
1

[
kϑ

k⊥
(δ8(0) − δ9(0))

]
+

(
1

τ
+ ω∗ni

ω

)
(δ8(0) − δ9(0))

+
{(

1 − ω∗pi

ω

)
bi + q2bi

ωti

ω

[(
1 − ω∗ni

ω

)
F(ω/ωti)

−ω∗Ti

ω
G(ω/ωti) − N2(ω/ωti)

D(ω/ωti)

]}
δ8(0) = b

1/2
i α

23/2q

ωti

ω

kϑ

k⊥

(
1 − ω∗pi

ω

)
δ9(0).

(14)

Equation (14) allows us to considerδE‖ = 0 for long wavelength modes propagating in
the ion diamagnetic direction, such as those we are analysing in the present paper (cf
introduction and appendix A). Therefore, equation (12) is the relevant eigenmode equation
in the large|θ | = O(β−1/2) region. Incidentally, we note that a similar analysis of the
inertial layer is presented in [13], where it was applied to the theory of resistive interchange
ballooning modes.

3.2. Ideal region: the moderate|θ | solution

For moderate|θ | < O(β−1/2) values, equation (4) does not exhibit a two-scale structure
any longer. The contribution of core-plasma inertia and core-plasma compressibility (i.e.
the core-ion contribution to the angular brackets on the right-hand side) can be neglected,
which is why this is usually referred to as the ‘ideal region’. The vorticity equation, thus,
becomes

∂2
θ δ9(0) − (s − α cosθ)2[

1 + (sθ − α sinθ)2
]2 δ9(0) + α cosθ[

1 + (sθ − α sinθ)2
]δ9(0) = 0. (15)

Equation (15) continuously matches onto equation (12) at large|θ |, and, hence, these
two equations define a well posed eigenvalue problem for the modes we wish to analyse.
However, before proceeding further, it is worthwhile noting that it was possible to drop
the core-ion inertia term in equation (15) since(ω2/ω2

A) = O(β) and δ8(0) = δ9(0) was
assumed. As explained in appendix A, the latter assumption (which is the critical one) for
modes with long parallel wavelength (k‖ = O(β1/2/qR0)) andω∗pi/ω = O(1) holds as long
as (1/τ + ω∗ni /ω) = O(1), e.g. for waves propagating in the ion diamagnetic direction.
In the following, we assume that this is the case, so that consideringδ8(0) = δ9(0) is
reasonable.

4. Dispersion relation

In the previous section, we have shown that, in the ideal region|θ | ∼ θ0 ∼ O(1), the
vorticity equation is given by equation (15). Multiplying both its members byδ9

(0)∗
ID (here,
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the subscript ID stands for ‘ideal’ solution), we may construct the following quadratic form
[6]

δ9
(0)∗
ID ∂θδ9

(0)
ID |+∞

−∞ − 2δWf = 0 (16)

whereδWf is the ideal MHD contribution to the potential energy perturbation

δWf = 1

2

∫ ∞

−∞
dθ

×
[
|∂θδ9

(0)
ID |2 +

(
(s − α cosθ)2

[1 + (sθ − α sinθ)2]2
− α cosθ

[1 + (sθ − α sinθ)2]

)
|δ9(0)

ID |2
]

.

(17)

In the large|θ | ‘inertial’ region, equation (12) is readily solved and gives

δ9
(0)
IN = exp( i3|θ1|) (18)

where the subscript IN stands for ‘inertial’ region solution and3 is given by

3 =
{

ω2

ω2
A

(
1− ω∗pi

ω

)
+q2 ωωti

ω2
A

[(
1− ω∗ni

ω

)
F(ω/ωti)− ω∗Ti

ω
G(ω/ωti)− N2(ω/ωti)

D(ω/ωti)

]}1/2

.

(19)

Here, the square root in the expression for3 is taken such that thecausality constraint,
Im 3 > 0, is satisfied. The asymptotic matching condition betweenδ9

(0)
IN andδ9

(0)
ID reads

δ9
(0)∗
ID ∂θδ9

(0)
ID |+∞

−∞ = 2 i3. (20)

Thus, equation (16) is equivalent to the following dispersion relation for drift Alfvén
ballooning modes:

i3 = δWf . (21)

In equation (21),δWf is the same used in the MHD theory of ideal ballooning modes
[10] and it may be evaluated by one of the well known numerical methods. Incidentally,
we note that the inclusion of energetic particle dynamics in the present theory would lead
to the dispersion relation of equation (21), with a contribution,δWK , of energetic ions to
the potential energy perturbation added on the right-hand side [6].

5. Relevant limits of the dispersion relation

A variety of Alfvén spectra are described by the dispersion relation equation (21), derived in
the previous section. Specifically, the causality constraint Im3 > 0 reduces toδWf < 0, i.e.
to the condition for ideal MHD instability. SinceδWf is purely real,3 is purely imaginary
and the corresponding discrete spectrum can be identified with that of agap mode[6], i.e. of
a mode whose frequency falls within the gaps in the shear Alfvén continuous spectrum. This
fact can be clearly seen by taking the(ω/ωti) → ∞ limit, for which 3 = √

ω(ω − ω∗pi)/ωA.
Then, the gap mode would be inside the(0, ω∗pi) diamagnetic gap [6]. In the present case,
the frequency gap structure is complicated by the inclusion of core ion compressibility
effects. However, it is conceptually the same.

The continuous spectrum is obtained for purely real3 [6]. In fact, in this case the
mode eigenfunction inθ space has a purely oscillatory asymptotic behaviour and cannot
be normalized: the corresponding eigenfunction in real space has logarithmic singularities
for qR0k‖ = ±3, as it may be readily verified (cf appendix B). The modes of the Alfvén
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continuum result in incoherent plasma oscillations, obtained as superposition of local (in
real space) perturbations of the type [14]

1

t
exp(−iω(r)t) (22)

wherer is a radial-like flux variable andω(r) is obtained from the ‘local dispersion relation’

q(r)R0k‖(r) = ±3(ω(r)). (23)

Note that ω(r), as obtained from equation (23), is generally complex since3 is a
transcendental function. This fact is remarkable since it predicts the existence ofunstable
continuafor Imω(r) > 0, which is impossible in ideal MHD. In fact, this is also impossible
in kinetic MHD when only diamagnetic effects are included. The novel feature is entirely
due to the inclusion of core-plasma ion compressibility in the theoretical analysis.

In order to study the various modes described by the dispersion relation, equation (21),
it is useful to classify them according to the accumulation points of the continuous spectrum,
which they merge into whenδWf → 0. The accumulation points are obtained for3 = 0,
and since3 is a transcendental function there are infinitely many of them. Thus, we will
limit ourselves to consider the most unstable (least stable) ones. For simplicity, let us
assume|ω|/ωti � 1. In this case, it may be shown that

32

βi
=

(
�2 − 7

4
q2

) (
1 − �∗pi

�

)
+ 7

4
q2 �∗Ti

�
− q2

(
1 − �∗pi/�

)2(
1/τ + �∗ni /�

)
+i

√
πq2 e−�2 (

� − �∗ni − ηi�
2�∗ni

) (
�2 + 1 − �∗pi/�

1/τ + �∗ni /�

)2

. (24)

Here, ηi = (∂ ln Ti/∂ ln ni), � = ω/ωti , �∗pi = ω∗pi/ωti and the other symbols are
analogously defined.

An explicit expression for the accumulation points of the continuous spectrum can be
found for ηi = 0, yielding

� = �∗ni and � = �0 − i

√
π

2
q2�4

0 e−�2
0 (25)

where

�2
0 =

{
( 7

4 + τ)q2 for �∗ni � |�0|
3
4q2 for �∗ni � |�0|.

(26)

Thus, we see that, in the|ω|/ωti � 1 limit, three accumulation points of the continuous
Alfv én spectrum may be found close to the real frequency axis. Two directly related to
the beta-induced gap and one associated with the ion diamagnetic gap. Hence, in the
following, we will call KBM those modes merging into the� ∼ �∗pi accumulation point
when δWf → 0. Similarly, the modes merging into the�2 ∼ ( 7

4 + τ)q2 (or �2 ∼ 3
4q2)

accumulation points asδWf → 0 will be referred to as BAE. More precisely, only the branch
with Re� > 0 will be called BAE, since we are interested only in modes propagating in
the ion diamagnetic direction (cf sections 1, 3 and appendix A).

Approximate expressions for the continuum accumulation points can also be found in
the generalηi 6= 0 case. For�2

∗pi � ( 7
4 + τ)q2, the KBM accumulation point turns out to

be

� = �∗pi

[
1 − 7

4

q2

�2
∗pi

ηi

1 + ηi
+ i

√
πq2 ηi

1 + ηi
�5

∗pi e−�2
∗pi

]
(27)
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whereas the BAE accumulation points are given by

� = �0 + q2

�∗ni

(
1 + 1 + ηi

2τ

)
− q2

2�∗pi

(
1 + ηi/4 + η2

i

1 + ηi

)
− i

√
π

2
q2 ηi

1 + ηi
�6

0 e−�2
0

�2
0 = 3

4

q2

1 + ηi

[
1 + 2ηi − 4

3
η2

i

]
. (28)

Note that the approximations leading to equation (28) require�2
0 � 1 (i.e. large and real).

Analogously, for�2
∗pi � ( 7

4 + τ)q2, we find

� = �0 + i
2

7

√
π

�5
0

�∗ni

(�0 + τ�∗ni )(�0 − �∗ni − ηi�
2
0�∗ni )

×
[(

ηi + 1 + τ

2

)2

+ 4

7
τηi(1 + ηi + τ)

]−1/2

(29)

�0 = �∗ni

1 + 4τ/7

4

7
τ(1 + ηi) + ηi + 1 − τ

2
+

[(
ηi + 1 + τ

2

)2

+ 4

7
τηi(1 + ηi + τ)

]1/2


for the KBM accumulation point, while those related to the beta-induced gap are given by

� = �0 − �∗ni

2�2
0

q2

(
7

4
ηi + τ (1 + ηi) + τ 2

)
− i

√
π

2
q2�4

0 e−�2
0
(
1 − ηi�0�∗ni

)
(30)

�2
0 =

(
7

4
+ τ

)
q2.

Equations (27) and (28) refer to the situation in which the core-plasma dynamics is
dominated by ion diamagnetic effects and core-plasma ion compressibility may be ignored.
Hence, it is not surprising that the highest frequency accumulation point is close to that of the
well known ion diamagnetic frequency gap,(0, ω∗pi). Equations (29) and (30), meanwhile,
correspond to the case where diamagnetic effects are small with respect to core-plasma
compressibility [3, 4]. The highest frequency accumulation points of the Alfvén continuum,
�2 ∼ ( 7

4 + τ)q2, are now those related to the beta-induced Alfvén gap. This is the limiting
case we must refer to in order to establish a bridge between the present kinetic theory and
previous theoretical analyses [3, 4], based on ideal MHD, which predict the accumulation
points of the beta-induced Alfvén gap at�2 = γ q2, whereγ is the ratio of specific heats.

The next section is devoted to numerical studies of the dispersion relation, equation (21),
to point out the peculiarities of both BAE and KBM modes and to clarify the strong relation
existing between these two branches. However, before proceeding further, it is worthwhile
analysing the conditions under which the accumulation points of the continuous spectrum,
mentioned so far, may be located in the upper half complex� plane, i.e. may become
unstable. From a direct check of equations (29) and (30) it is readily verified that the KBM
accumulation point is always stable for�2

∗pi � (7/4 + τ)q2. This is not the case for the
BAE accumulation point (that with Re� > 0). In fact, it may become unstable forηi larger
than a critical valueηic, given by

ηic��∗ni ' 1 ⇒ ηic ' 2√
7 + 4τ

ωti

qω∗ni

. (31)

Equation (31) can be interpreted as the threshold condition for the onset of an unstable
continuous spectrum. Note that the threshold is only an estimate, although it should give
the correct scaling with equilibrium parameters. For�2

∗pi � ( 7
4 + τ)q2, equation (27)

predicts the KBM accumulation point to be unstable, although Im(�) is expected to
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be exponentially small compared with that obtained from equation (30) forηi > ηic.
Meanwhile, equation (28) shows that the BAE accumulation point is always stable for
�2

∗pi � ( 7
4 + τ)q2.

From the previous analysis we get a qualitative picture of the Alfvén spectra described by
the dispersion relation equation (21). When�2

∗pi � ( 7
4 + τ)q2, only the BAE accumulation

point may be unstable forηi > ηic, with Im(�) increasing linearly withηi and �∗ni . If
�∗pi is further increased, the unstable BAE accumulation point is expected to smoothly
connect to an unstable KBM accumulation point, with exponentially small Im(�) when
�2

∗pi � ( 7
4 + τ)q2. This fact allows us to anticipate a result of the next section; i.e. that the

most unstable BAE/KBM accumulation point occurs at�2
∗pi ≈ ( 7

4 + τ)q2, when BAE and
KBM branches are strongly coupled.

6. Numerical studies of the dispersion relation

In the numerical studies of the dispersion relation, equation (21), we focus our attention on
the ‘gap mode’ for both BAE and KBM branches, and on the ‘local frequencies’ associated
with the continuous spectrum. We believe that these analyses are sufficient to exhaustively
illustrate the relevant aspects of the low-frequency Alfvén spectrum. Theoretical studies
of the ‘energetic particle continuum modes’ [6] for the BAE and KBM branches will be
presented in a future work. Detailed numerical simulations of energetic particle excitations
of KBMs in tokamak plasmas are presented in [15].

The numerical results, presented in the following, assumeβi = 0.01, τ = Te/Ti = 1
and q = 1.5. These parameters are kept fixed and are considered to be representative
of a typical tokamak local plasma equilibrium. In figure 1, the BAE spectrum is shown
for �∗ni = 1. The three curves which are shown are characterized by different values
of ηi . The branches marked with open squares correspond toδWf ranging in the interval
(−0.2, 0), i.e. to the BAE gap mode. Open circles refer to the solution of equation (23), with
q(r)R0k‖(r) varying between(0, 0.2), i.e. to the continuous spectrum. The accumulation
points of the Alfv́en continuum are visible as the positions where the gap mode merges
into the continuous spectrum, i.e. where open squares and open circles overlap. Figure 2
shows the same parametric studies reported in figure 1, but focused on the KBM branch.
For completeness, in figure 3 we also report the analysis of the branch propagating in the
electron diamagnetic direction, which confirms that it does not exhibit interesting features.
For this reason and for those discussed in appendix A, we shall neglect it in the following.

A direct comparison of figure 1 and figure 2 shows how the frequency spectra
qualitatively change withηi . More specifically, theηi = 0.5 case differs from the others,
since it is characterized by unstable BAE and stable KBM gap modes. Furthermore, the
Alfv én continuum associated with the BAE accumulation point is clearly unstable. This
fact confirms the existence of unstable continua above a criticalηic and indicates that this
phenomenon is deeply connected with a strong coupling between BAE and KBM modes.
Figure 4 shows this point more clearly. The four curves are all obtained forδWf ranging in
the interval(−0.14, −0.06). Open squares refer to the KBM branch, whereas open circles
indicate BAE gap modes. The coupling between the two branches is evident and it indicates
a value ofηic in the interval(0.25, 0.28); consistent with the prediction of equation (31).

Figures 5 and 6 show the same parametric studies and use the same conventions of
figures 1 and 2, except that here�∗ni = 0.5. The same considerations which were made
in the previous case hold here. In contrast, figures 7 and 8, where�∗ni = 3, exhibit new
qualitative features of the BAE/KBM spectra. First of all, the BAE branch never becomes



Kinetic theory of Alfv´en modes 2021

1.5 2 2.5 3 3.5
- 1

- 0 . 5

0

0.5

1

1.5

Re(Ω)

Im
(Ω

)

η
i
=0.5

η
i
=0.25

η
i
=0

Figure 1. The BAE branch is shown forβi = 0.01, τ = 1, q = 1.5 and�∗ni = 1. The BAE
spectrum is reported for three values ofηi = 0, 0.25, 0.5. Open squares refer to the gap mode
δWf ∈ (−0.2, 0); open circles indicate the continuumq(r)R0k‖(r) ∈ (0, 0.2).
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Figure 2. The KBM branch is shown for the same parametric studies reported in figure 1.

unstable; second, even if a value forηi can still be identified (between 0.5 and 1), above
which BAE and KBM strongly couple, this value can no longer be considered as a threshold
for the continuous spectrum to be unstable. In fact, Im� at the most unstable (that of KBM)
accumulation point is exponentially small, as predicted by equation (27). The difference with

respect to the previous cases is entirely due to the value of�∗ni . For �∗pi <

√
7
4 + τ q, the

features of the BAE/KBM spectrum are those of figures 1, 2 and 5, 6. The dominant modes
for ηi > ηic are those of the BAE branch, and in this case part of the continuous Alfvén

spectrum is unstable. In the�∗pi >

√
7
4 + τ q case, however, the features of the BAE/KBM

spectrum are those of figures 7 and 8. The dominant modes are of the KBM branch and
the Alfvén continuum is always stable (it coincides with that predicted in ideal MHD with
diamagnetic effects included). The present discussion is consistent with the statement, made
in the previous section, that the KBM accumulation point has an exponentially small Im�

for �∗pi >

√
7
4 + τ q.



2022 F Zonca et al

-0 .02

-0.015

-0 .01

-0.005

0

- 3 . 7 - 3 . 6 - 3 . 5 - 3 . 4 - 3 . 3 - 3 . 2 - 3 . 1 - 3

Im
(Ω

)

Re(Ω)

η
i
=0

η
i
=0.5

η
i
=0.25

Figure 3. The branch propagating in the electron diamagnetic drift direction is shown for the
same parametric studies reported in figure 1.
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Figure 4. Two spectra withηi = 0.25 andηi = 0.28 illustrate the coupling of BAE (open
circles) and KBM (open squares) branches.δWf ∈ (−0.14, −0.06) in all cases. Equilibrium
parameters are those of figure 1.

For �∗pi ≈
√

7
4 + τ q, BAE and KBM branches are strongly coupled. In the previous

section, it was anticipated that in this parameter range Im� of the unstable BAE/KBM
accumulation point is expected to be peaked. This aspect is examined in figures 9 and
10, where imaginary and real parts of the BAE/KBM accumulation point are respectively
shown against�∗ni and for different values ofηi . Open circles refer to theηi = 0.5

case, open squares toηi = 1.0 and open triangles toηi = 1.5. For �∗pi �
√

7
4 + τ q, the

numerical results are well described by the analytical estimate, equation (30), indicating that
the unstable accumulation point is of BAE type (note thatηi > ηic). In fact, Im� increases

linearly with both�∗ni andηi , whereas Re� linearly decreases. When�∗pi ≈
√

7
4 + τ q,

the strong coupling of BAE with KBM results in the break down of equation (30): Re�

begins to increase and the behaviour of Im� is no longer linear. Finally, the dependence of

the unstable accumulation point on�∗ni andηi becomes of KBM type for�∗pi �
√

7
4 + τ q,

as predicted by equation (27). Thus, figures 9 and 10 illustrate the smooth transition from
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Figure 5. The BAE branch is shown forβi = 0.01, τ = 1, q = 1.5 and�∗ni = 0.5. The BAE
spectrum is reported for three values ofηi = 0, 0.5, 1. Open squares refer to the gap mode
δWf ∈ (−0.2, 0); open circles indicate the continuumq(r)R0k‖(r) ∈ (0, 0.2).
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Figure 6. The KBM branch is shown for the same parametric studies reported in figure 5.

an unstable BAE to an unstable KBM branch, passing through a situation characterized
by a spectrum of modes with a mixed BAE/KBM nature. This situation, occurring for

�∗pi &
√

7
4 + τ q, corresponds to the most unstable regime, as anticipated in the previous

section.

7. Conclusions and discussions

In the present work, we have discussed a comprehensive kinetic theory of high toroidal mode
number low-frequency (ω ≈ ω∗pi ≈ ωti ) Alfv én waves in a high-β tokamak equilibrium.
By including diamagnetic effects and finite core-plasma ion compressibility on the same
footing, we have generalized the KBM theory of Tsai and Chen [6], and have discussed
the important relationship which generally exists between BAE and KBM spectra. BAE
and KBM areseparatebranches of the low-frequency shear Alfvén spectrum, which are
independent only atηi = 0. In fact, they are coupled in the generalηi 6= 0 case.
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Figure 7. The BAE branch is shown forβi = 0.01, τ = 1, q = 1.5 and�∗ni = 3. The BAE
spectrum is reported for three values ofηi = 0, 0.5, 1. Open squares refer to the gap mode
δWf ∈ (−0.2, 0); open circles indicate the continuumq(r)R0k‖(r) ∈ (0, 0.2).
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Figure 8. The KBM branch is shown for the same parametric studies reported in figure 7.

It has been shown that the theory of [6] applies forω∗pi �
√

7
4 + τqωti , as expected, a

condition under which KBM are the most unstable modes of those considered here. More
importantly, we have demonstrated that, forω∗pi <

√
7
4 + τqωti , a critical valueηic exists,

above which the BAE mode is the most unstable branch, thereby showing that BAEs are
not always Landau damped as simple considerations based on its frequency would suggest
[16]. It has also been shown that, forηi > ηic, part of the continuous Alfv́en spectrum may
be unstable. This implies that non-collective modes may be present in the plasma, formed
as a superposition of local oscillations which are quasi-exponentially growing in time. This
new feature is entirely due to the inclusion of finite core-plasma ion compressibility in the
theoretical analysis. Finally, it has been shown that the most unstable low-frequency Alfvén

modes occur atω∗pi &
√

7
4 + τqωti , corresponding to a parameter range in which BAE and

KBM are strongly coupled.
The present theory of BAE/KBM linear stability yields an analytic expression of the

mode dispersion relation, which may be generalized to include resonant wave excitations
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Figure 10. Re(�) of the most unstable BAE/KBM accumulation point is shown against�∗ni

for the same parameters of figure 9.

by energetic particles with finite orbit widths [6]. It has been shown that, in general, two
types of spectra may exist: a discrete spectrum of gap modes, which is present only when
the tokamak plasma is ideal MHD unstable; and the Alfvén continuous spectrum, which
may be characterized, under certain conditions, by unstable accumulation points.

The issue of energetic particle continuum modes [6], which may also exist forδWf > 0,
but require that the energetic particle drive be strong enough to overcome continuum
damping, is not analysed here. The numerical studies of the analytic dispersion relation deal
only with BAE/KBM gap modes and with the Alfv́en continuous spectrum. Finally, it is
clear that the present theoretical results may have important implications for the stability and
transport properties of tokamak experiments with and without energetic particles. Further
theoretical delineations and comparisons with experimental results are, however, beyond the
scope intended for this work and will be discussed in future publications.
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Appendix A. Validity of the ideal MHD limit δE‖ = 0

At order O(β), the quasi-neutrality equation, equation (5), becomes(
1

τ
+ ω∗ni

ω

)
(δ8(0) − δ9(0)) +

(
1 − ω∗pi

ω

)
biδ9

(0) = Tik⊥
nekϑ

〈
−k2

⊥ρ2
Li

4
δK

(0)

i + δK
(2)

i

〉
.

(A1)

Here,δK(2)

i is obtained from

(ωtr∂θ0 − iω)δK
(2)

i = −(ωtr∂θ1 + iωdi)δK
(1)

i + i

(
ekϑ

mik⊥

)
×QF0i

[
(δ8(2) − δ9(2)) − k2

⊥ρ2
Li

4
(δ8(0) − δ9(0)) + miv

2
⊥

2eB
δB̂

(0)
‖

]
. (A2)

In order to get from equation (A1) an expression for(δ8(0) − δ9(0)) valid up to O(β), we

need to solve equation (A2) just forδK
(2)

i , where[...] = (1/2π)
∮
(...) dθ0. It is possible to

show that

δK
(2)

i =
(

ekϑ

mik⊥

)
QF0i

ω

[
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⊥ρ2

Li

4
(δ8(0) − δ9(0)) − miv
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2eB
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‖

]
− i

ωtr

ω
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(1)

i + ωdi

ω
δK

(1)

i .

(A3)

When substituted into equation (A1), equation (A3) yields the O(β) quasi-neutrality
condition, reported in section 3:

ω2
ti

2ω2

(
1 − ω∗pi

ω

) k⊥
kϑ

∂2

∂θ2
1

[
kϑ

k⊥
(δ8(0) − δ9(0))

]
+

(
1

τ
+ ω∗ni

ω

)
(δ8(0) − δ9(0))

+
{(

1 − ω∗pi

ω

)
bi + q2bi

ωti

ω

[(
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F(ω/ωti)

−ω∗Ti

ω
G(ω/ωti) − N2(ω/ωti)

D(ω/ωti)

]}
δ8(0)

= b
1/2
i α

23/2q

ωti

ω

kϑ

k⊥

(
1 − ω∗pi

ω

)
δ9(0). (A4)

Equation (A4) demonstrates that(δ8(0) −δ9(0)) = O(β), i.e. δE‖ ' 0, for long wavelength
modes (∂θ1 = O(β1/2)) with ω∗pi/ω = O(1) and which propagate in the ion diamagnetic
direction ((1/τ + ω∗ni /ω) = O(1)). In the present paper, we refer to this type of mode.

For waves which propagate in the electron diamagnetic direction, equation (A4) predicts
that an appreciable parallel electric field can be originated for(1/τ + ω∗ni /ω) = O(bi).
Another possibility for theδE‖ ' 0 assumption to break down isω∗pi/ω = O(1/β). These
modes would interact strongly with the long wavelength slab-like ion temperature gradient
(ITG) driven mode [7–9] and are out of the scope of the present analysis.
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Equation (A4) serves also to the scope of discussing the validity of theδE‖ = 0
assumption at moderate|θ | values. In fact, for|θ | < O(β−1/2) finite bi andωdi/ω effects
may be neglected, indicating that the scale of variation of(δ8(0) − δ9(0)) is a constant.
This can be also seen from a direct examination of equations (2) and (5). Moreover, since
the large|θ | structure of the modes we are analysing is characterized by a long scale of
variation, we must also have∂θ = constant = O(β1/2) when acting on(δ8(0) − δ9(0))

for |θ | < O(β−1/2). Recalling that(1/τ + ω∗ni /ω) and ω∗pi/ω are O(1) in our analysis,
the present argument and equation (A4) indicate thatδE‖ = 0 to lowest order also for
moderate|θ | values, i.e.(δ8(0) − δ9(0)) = 0. The fact that∂θ = O(β1/2) when acting on
(δ8(0) − δ9(0)) does not indicate that the functionsδ8(0) andδ9(0) vary on the long scale
θ1 only, but simply that any short-scale variation ofδ8(0) is balanced by the same variation
of δ9(0).

The previous discussion demonstrates that the(δ8(0)−δ9(0)) = 0 assumption also holds
in the moderate|θ | region, whereδ9(0) does not have a two-scale structure, as pointed out
in section 3.2, and, in general,∂θ = O(1) due to finite(s, α) effects, as it emerges from
equation (15).

Appendix B. Logarithmic singularities and continuous spectrum

A simple derivation of equation (23) can be obtained transforming the ballooning
eigenfunctionδψ(θ) = [kϑ/k⊥(θ)]δ9(θ) back to real space [17]

δ̂ψ(nq − m) =
∫ +∞

−∞

δ9(θ) exp[−i(nq − m)θ ]

[1 + (sθ − α sinθ)2]1/2
dθ. (B1)

From equation (B1), it is easily shown that

is∂δ̂ψ(nq − m)

∂(nq − m)
=

∫ +∞

−∞

sθδ9(θ) exp[−i(nq − m)θ ]

[1 + (sθ − α sinθ)2]1/2
dθ. (B2)

Define, now, a value2 such that2 � 1 andβ1/22 � 1. In this way, the integration interval
in equation (B2) can be subdivided into [−2, 2], where the ‘ideal’ solutionδ9ID can be
used, and(−∞, −2] ∪ [2, +∞), where the ‘inertial layer’ solutionδ9IN is appropriate.
With the explicit use of equation (18), it is possible to show

is∂ δ̂ψ(nq − m)

∂(nq − m)
=

∫ 2

−2

sθδ9ID(θ) exp[−i(nq − m)θ ]

[1 + (sθ − α sinθ)2]1/2
dθ

+
∫ ∞

2

[exp i(m − nq)θ − exp i(nq − m)θ ] ei3θ dθ

+O

(
1

s222

)
+ O

( α

s2

)
+ O

(
1

2

)
. (B3)

Since the contribution from the [−2, 2] integral is typically O(2), whereas that from the
[2, ∞) interval is O(β−1/2) for |nq − m| = O(β1/2), equation (B3) implies

s∂ δ̂ψ(nq − m)

∂(nq − m)
=

[
exp i2(m − nq)

3 − (nq − m)
− exp i2(nq − m)

3 + (nq − m)

]
ei32 + O

(
1

s222

)
+O

( α

s2

)
+ O

(
1

2

)
+ O(β1/22). (B4)

Equation (B4) is readily integrated and yields

δ̂ψ(nq − m) = C − 1

s
ln[32 − (nq − m)2] (B5)
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for |nq −m| ≈ |3| = O(β1/2), where C is an integration constant and O(β1/22) terms have
been consistently neglected. Equation (B5) indicates that the wave field in real space has a
logarithmic singularity when(nq − m) = ±3, i.e. when

q(r)R0k‖(r) = ±3(ω(r))

which is equation (23). In an initial-value analysis, the just derived logarithmic singularity
becomes a logarithmic branch point in the complex omega plane. When the time asymptotic
behaviour is computed, the finite jump of the wave field across the branch cut, originating
from the logarithmic branch point, gives the contribution

1

t
exp(−iω(r)t)

of equation (22). A detailed analysis, yielding to this result, can be found in [14]. Here,
we just wish to note that the concepts of continuous spectrum, satisfying equation (23), and
of singular local plasma oscillations are closely related.
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