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Abstract 

The effects of arbuscular mycorrhizal colonisation of Leucanthemum vulgare on parasitism of 

a leaf-mining insect was studied in a field and a laboratory experiment. In the field, parasitism 

of Chromatomyia syngenesiae by Diglyphus isaea was lower on mycorrhizal plants, 

compared with plants where the association was reduced.  A laboratory experiment, in which 

L. vulgare was inoculated with three species of AM fungi, showed that the effects on 

parasitism rates were mycorrhizal species dependent.  Some fungal combinations increased 

parasitism, some decreased it, while others had no effect.  It is concluded that the most likely 

cause of these differences is plant size, with parasitoid searching efficiency being reduced on 

the larger plants, resulting from certain mycorrhizal species combinations.  However, a 

mycorrhizal effect on herbivore-produced plant volatiles cannot be ruled out. 

 

INTRODUCTION 

Arbuscular mycorrhizal (AM) fungi have been shown to have significant effects on the 

growth and/or survival of foliar-feeding insects in the majority of cases examined (Gehring & 

Whitham 2002).  These effects may be positive or negative, depending on the mode of 

feeding and degree of specialism of the phytophage.  Thus, generalist chewing insects seem to 

respond in a negative fashion to AM colonisation of their hosts (Rabin & Pacovsky 1985; 

Gange & West 1994), while specialist chewing or sap-feeding insects show increases in 

performance on mycorrhizal plants (Borowicz 1997; Goverde et al. 2000; Gange et al. 2002). 

Recent reviews of multitrophic interactions involving insects, plants and fungi (van der 

Putten et al. 2001; van Dam et al. 2003) have highlighted the lack of studies involving higher 

trophic levels.  Studies with foliar endophytes in grasses have shown that these fungi can 

produce chemical toxins that reduce the growth of the phytophage, and hence the parasitoid 

(Barker & Addison 1996).  Furthermore, the community structure of parasitoids associated 

with foliar-feeding insects can be different on hosts with or without the fungus (Omacini et al. 

2001).  However, studies involving the effects of soil organisms on higher trophic levels are 

remarkably few, but critically important, if we are to understand community interactions in a 

multitrophic context (van der Putten et al. 2001).  Masters et al. (2001) have shown that root-

feeding insects can increase the parasitism rate of seed-feeding insects in Cirsium palustre, 

while Wurst & Jones (2003) found no effect of earthworm activity on aphid parasitism.  To 

date, no study has examined the interactions between AM fungi and the parasitoid of a 

herbivorous insect.  This paper demonstrates that such interactions occur and are detectable in 

both field and laboratory. 
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MATERIALS AND METHODS 

 

Field experiment 

An experimental wildflower meadow, 50 m x 50 m, was treated with a weedkiller 

(Glyphosate, Monsanto) in autumn of 1996, rotovated in winter and hand raked in spring 

1997.  It was sown with a wildflower seed mixture, suitable for acidic sandy soils (pH of soil 

5.7).  Twenty plots, each 3 m x 3 m, were established and allocated to one of two treatments: 

a) application of the fungicide Rovral (Bayer Environmental Science) (containing 40% w/w 

iprodione) to the soil to reduce levels of AM colonisation and b) control, untreated and 

therefore with natural levels of mycorrhizas.  The fungicide was applied at a rate of 2 g m-2 of 

formulated product at six weekly intervals.  Plots were arranged in a randomised block 

design.  During the second year of growth, Ox-eye daisy, Leucanthemum vulgare Lam., began 

to establish in the sward, and by the spring of 1999 was the dominant species in the 

community.  Observations in summer 1998 revealed that these plants were attacked 

commonly by leaf-miners of the generalist species Chromatomyia syngenesiae Hardy 

(Diptera: Agromyzidae), and these were attacked by the generalist parasitoid, Diglyphus isaea 

Walker (Hymenoptera: Eulophidae). Field observations of miner density and parasitism were 

conducted during four consecutive seasons, 1999-2002, during which time the host plant 

declined in density. 

Plants were sampled in mid June of each season, when they had reached maximum height 

and leaf number, and leaf miners were mature.  On each occasion, a minimum of five plants 

in each plot were selected at random, and the total number of leaves and mines of C. 

syngenesiae counted on each plant.  Twenty leaves bearing fully-developed mines were 

randomly picked from each plot and maintained on moist tissue paper in a constant 

environment (CE) room (18:6 L:D) at 20°C until either an adult fly or parasitoid emerged.  At 

this time in each season, three plants per plot were selected at random and excavated and their 

roots washed free of soil.  AM colonisation was revealed by epifluorescence microscopy 

(Gange et al. 1999), and the percent of root length colonised (% RLC) quantified with the 

cross hair eyepiece method (McGonigle et al. 1990). 

In each season, differences in miner density and rate of parasitism (percent mines attacked) 

between treatments were examined with one factor Analysis of Variance, using plot means as 

replicates.  Percentage data were subject to the angular transformation prior to analysis. 
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Laboratory experiment 

In June 1999, spores of AM fungi were isolated from 20 soil cores (4 cm x 10 cm deep), with 

two cores taken from each control plot.  Spores were extracted by a combination of wet 

sieving and sucrose centrifugation (Brundrett et al. 1996) and identified using Schenck & 

Pérez (1990) and Yao et al. (1996).  Single spore cultures of the three most common species 

(Glomus caledonium (T.H. Nicolson & Gerd.) Trappe & Gerd., G. fasciculatum (Thaxt.) 

Gerd. & Trappe and G. mosseae (Nicol. & Gerd.), (hereafter referred to as G.c., G.f. and G.m. 

respectively) were established on the roots of L. vulgare seedlings, grown in inert, expanded 

clay granules (Seramis®, (Pedigree Petfoods)) and each seedling maintained within a 

Sunbag® (Sigma Chemical Co) to prevent cross-contamination.  Cultures were maintained in 

the CE room at 20 ºC for 12 months.  At this time, plants were allowed to die by cessation of 

watering.  Root samples were checked for AM colonisation and contamination using ink 

staining (Vierheilig et al 1998) and spore identity checked after sucrose extraction.  Any 

cultures showing contamination (by non-mycorrhizal fungi or unidentified AM spores) or no 

colonisation were discarded.  The dry granules, containing spores, hyphal fragments and roots 

were stored at 10 °C and used as AM inoculum. 

In June 2001, cloned material of L. vulgare was produced by propagation of leaf cuttings.  

After 3 months of growth, plants were potted into 13 cm pots, containing 450 g John Innes 

No. 2 compost (Gem Gardening).  At potting, plants were inoculated with AM fungi (see 

above) in all possible combinations, in a factorial design.  Plants were given either 3 g of a 

single species AM inoculum, or 1.5 g of each of two species or 1 g of each of all three 

species.  Control plants received 3 g of sterilised inoculum (consisting of 1g of each species).  

There were 20 replicate plants of each of the eight fungal treatments. 

Plants were arranged in a randomised block in the CE room, within a large net cage (1 mm 

diameter mesh).  One hundred freshly emerged adults of C. syngenesiae were placed in the 

cage and flies allowed to mate and oviposit freely.  At 20 °C, the time from oviposition to the 

moult into the second larval instar is approximately 13 days (Merrett 1978).  To allow 

parasitism to occur, 50 newly emerged adults of D. isaea were released into the cage 14 days 

after introduction of the flies.  

Plants were maintained for a further three weeks (Merrett 1978), after which the leaf 

number and percentage of mined leaves on each plant were recorded.  Mature mines were 

collected and parasitism rates recorded as before.  The roots of each plant were washed free of 

soil and AM colonisation recorded as described above. 
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The effects of mycorrhizal colonisation on leaf number, miner density and percentage 

parasitism were examined with three-factor Analysis of Variance, with each fungal species as 

a main effect.  Percentage data were transformed, as above. 

 

 

RESULTS 

 

Field experiment 

In each year, there was a significant reduction in AM colonisation levels from application of 

fungicide, with control plants averaging about 36% Root Length Colonised (% RLC) and 

fungicide-treated plants 8.3%.  Fungicide-treated plants were significantly smaller than 

control plants (Fig. 1a) in all four years.  Leaf miners were most abundant in the first two 

years of the study (Fig 1b), but there was no significant effect of treatment on miner density in 

any year.  Levels of parasitism declined over the four years (Fig. 1c) with parasitism in 1999 

and 2000 being significantly lower on mycorrhizal plants (F1,18 = 2.5, P < 0.05 and F1,18 = 

14.7, P < 0.01, respectively). 

 

Laboratory experiment 

Colonisation of roots occurred in every inoculated treatment, but was absent in control plants.  

There was no difference in % RLC of any of the inoculated treatments, the grand mean being 

26%.  Inoculation with G.m. produced a significant increase in leaf number (Fig. 2a; F1,152 = 

98.8, P < 0.001).  There were significant interactions between G.c and G.f., because single 

inoculations of these species reduced leaf number, while dual inoculations produced plants 

with more leaves than the controls (Fig. 2a). 

Miner density also varied between treatments (Fig. 2b).  Inoculation with G.m. colonisation 

reduced miner density (F1,152 = 8.4, P < 0.01), but again there was an interaction between G.c. 

and G.f. (F1,152 = 5.9, P < 0.05), with single species inoculations reducing mine density, 

whereas plants with both fungi had a mine density indistinguishable from that of the control. 

Overall, G.m. caused a highly significant reduction in parasitism (Fig. 2c, F1,152 = 15.3, P < 

0.001), while G.c. increased it (F1,152 = 5.8, P < 0.05).  However, there was also a significant 

interaction between these two species (F1,152 = 5.1, P < 0.05), as the antagonistic effect of 

G.m. was only clearly seen when G.c. was absent.  Mines on plants colonised with the single 

inoculum of G.f. suffered greater parasitism than the controls (Fig. 2c).  
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DISCUSSION 

AM fungi have clear effects on parasitism of herbivorous insects, detectable in both field and 

laboratory conditions.  In two of the four years, when densities of the miner were higher, 

parasitism of C. syngenesiae in the field was lower on mycorrhizal plants.  The fact that a 

consistent result was not found every year is important and may have been due to the 

abundance of the host plant and the miner.  By 2001, the site was in its sixth year of 

succession and both plant and fly were considerably rarer than in the previous two years.  

This trend continued in 2002, when the fly was virtually absent.  Multitrophic effects of AM 

fungi on parasitoids are therefore likely to be determined by the successional age of a 

community and future studies need to be set within a successional context. 

AM effects on parasitoids may come about through some or all of three different 

mechanisms.  These fungi have well known positive effects on plant size (Smith & Read 

1997).  However, as Gange & Ayres (1999) discuss, negative growth effects can often arise 

through certain host fungal combinations, high colonisation densities or particular abiotic 

situations (e.g. high soil P).  Given that increased plant size or architecture can lead to 

decreased parasitoid searching efficiency (Cloyd & Sadof 2000; Gingras & Boivin 2002), one 

might predict that under ‘normal’ conditions of AM fungi increasing a host’s stature, 

parasitoid attack rates may be lower on mycorrhizal plants, because these are larger.  In the 

field, this certainly appeared to be so, with mycorrhizal plants being taller.  However, the 

laboratory experiment showed that the situation is far more complex, with the mycorrhizal 

effect depending on the species of fungus colonising the root system.  Certain fungal species 

or combinations reduced parasitism, while others increased it.  In the three single species 

treatments, there was a pattern of decreased plant size leading to increased parasitism (G.c 

and G.f.) and vice versa (G.m.), a similar situation to that of Cloyd & Sadof (2002), where 

parasitism was negatively correlated with leaf number.  However, dual or triple species 

inoculations of fungi tended to increase leaf number, but these did not always result in 

decreased miner abundance or parasitism.  

A second mechanism is that parasitoids respond to volatiles emitted from the herbivore-

damaged host plant (DeMoraes et al. 1998; Oppenheim & Gould 2002).  Van Dam et al. 

(2003) point out that there are no known effects of AM fungi on induced defences in plants, 

as these fungi seem to suppress the defence response of their hosts (Mohr et al. 1998).  

However, AM fungi can have significant effects on the chemistry of host plant leaves, leading 

to alterations in herbivore performance (Gange & West 1994; Goverde et al. 2000).  It is 

therefore possible that the chemistry of leaves on mycorrhizal plants may be altered to such 
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an extent as to affect the attractiveness of damaged leaves to a foraging parasitoid.  Finidori-

Logli et al. (1996) have identified several widely-occurring volatiles that are released in 

response to herbivore damage and that are attractive to foraging D. isaea.  These occur within 

the closely-related genus Chrysanthemum (Storer et al. 1993) and so it is quite possible that 

they occur within L. vulgare.  Furthermore, their production could be affected by 

mycorrhizally-determined carbon availability within the leaf (Gange & West 1994). 

Parasitoids may respond to the density of their hosts in a positive, negative or null manner 

(Hassell 2000).  While not explicitly tested for in this study, there appeared to be little 

evidence for density-dependent parasitism, with no relations between miner density and 

parasitism.  The extremely limited evidence available in the literature suggests that AM 

effects on folivorous insects may translate into differences in population densities (Gehring & 

Whitham 2002).  Thus, the potential exists for AM fungi to alter parasitism rates through 

changing the abundance of the phytophage if density-dependence occurs.  These effects are 

likely to be confounded by effects of plant size or chemistry. 

The community composition of AM fungi inhabiting the root system of a plant can change, 

both temporally and spatially (Helgason et al. 1999).  We have shown that variations in AM 

fungal species within a root system can have different effects on higher trophic levels, 

mediated through changes in plant size and possibly chemistry.  The nature of these effects 

needs to be understood, not just to enhance our knowledge of community structuring forces, 

but for the application of strategies involving natural enemies in pest control situations. 
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FIGURE LEGENDS 

Figure 1  (a) Mean height of L. vulgare, (b) Percent of leaves mined by C. syngenesiae and 

(c) Percent of mines parasitised in mycorrhizal (�) and reduced-mycorrhizal (�) plots in a 

wildflower meadow over a four year period.  Vertical lines represent one standard error. 

Figure 2 (a) Mean leaf number of L. vulgare, (b) percent of leaves mined and (c) percent of 

mines parasitized when host plants were grown with different combinations of arbuscular 

mycorrhizal fungal species.  Key to abbreviations: -: no mycorrhiza (control); c: Glomus 

caledonium, f: G. fasciculatum and m: G. mosseae.  Vertical lines represent one standard 

error. 
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Figure 1 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)

0

15

30

45

60

- c f  m cf cm fm cfm

P
er

ce
nt

 le
av

es
 m

in
ed

(a)

0

30

60

90

120

- c f  m cf cm fm cfm

M
ea

n 
le

af
 n

um
be

r p
er

 p
la

nt

(c)

0

8

16

24

32

- c f  m cf cm fm cfm

P
er

ce
nt

 m
in

es
 p

ar
as

iti
se

d


