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Abstract 

In this paper, we analyze the impact of five Arabic dialects on 

the front-end and pronunciation dictionary component of an 

Automatic Speech Recognition (ASR) system. We use ASR‟s 

phonetic decision tree as a diagnostic tool to compare the 

robustness of MFCC to MLP front-ends to dialectal variations 

in the speech data and found that MLP Bottle-Neck features 

are less robust to dialectal variation. We also perform a rule-

based analysis of the pronunciation dictionary, which enables 

us to identify dialectal words in the vocabulary and 

automatically generate pronunciations for unseen words. We 

show that our technique produces pronunciations with an 

average phone error rate 9.2%. 
 

Index Terms: automatic speech recognition, dialect 

analysis, front-end evaluation 

1. Introduction 

Arabic language is characterized by its multitude of dialects. 

Although Modern Standard Arabic (MSA) is used in writing, 

TV/radio broadcasts and for formal communication, all 

informal communication is typically carried out in one of the 

regional dialects of Arabic. Dialectal variations influence the 

pronunciation dictionary, acoustic and language models in an 

ASR. Previous works on dialectal Arabic ASR include cross-

dialectal data sharing [1], improved pronunciation and 

language modeling [2, 3], etc. In this paper, we describe our 

experiments on a dialectal Arabic speech database, where we 

focus on analyzing the behavior of different front-ends and 

pronunciation dictionary due to dialectal variations between 

speakers. We evaluate Mel-Frequency Cepstral Coefficients 

(MFCC) and Multi-Layer Perceptrons (MLPs), on their ability 

to handle these variations that arise due to different dialects. 

Extending our previous work on gender normalization [4], we 

use phonetic decision trees as a diagnostic tool to analyze the 

influence of dialect in the clustered models. We introduce 

questions pertaining to dialect in addition to context in the 

building of the decision tree. We then build the tree to cluster 

the contexts and calculate the number of leaves that belong to 

branches with dialectal questions. The ratio of such „dialectal‟ 

models to the total model size is used as a measure for dialect 

normalization. The higher the ratio, the more models are 

affected by the dialect, hence less normalization and vice 

versa. 

We further extend our analysis to the pronunciation 

dictionary, where we investigate ways to generate rule-based 

pronunciations for unseen words in a dialect with minimum 

manual effort. Our setup features a „Pan-Arabic‟ dictionary, 

which contains pronunciations typically found in five Arabic 

dialects. We analyze the pronunciation variants in our 

common dictionary using acoustic model alignments to derive 

the dialect-specific pronunciations for each word. This forms 

the source of our rule-learning algorithm which maps word 

pronunciations from one dialect to another. These rules are 

then used to generate pronunciations for unseen words and the 

accuracy is estimated.  

2. Pan-Arabic Database 

All our experiments are carried out on the Pan-Arabic dataset 

provided by AFRL. The database consists of Arabic speech 

collected from regional Arabic speakers, corresponding 

transcriptions and lexicons for 5 different dialects – United 

Arab Emirates (UAE), Egyptian, Syrian, Palestinian and Iraqi. 

It is a balanced data set with approximately 50 recording 

sessions for each dialect, with each session comprising of 2 

speakers. The amount of data broken down according to 

dialect is shown in Table 1 below. 

Table 1. Amount of audio data in the Pan-Arabic database 

Dialect No. of Hours 

UAE (AE) 29.61 

Egyptian (EG) 28.49 

Syrian (SY) 28.51 

Palestinian (PS) 29.29 

Iraqi (IQ) 24.92 

Total 140.82 

Each speaker is recorded in separate channels, including long 

silences between speaker-turns. Hence the actual 

conversational speech in the dataset amounts to around 60 

hours. The transcriptions of the speech are fully diacritized 

and included both UTF8 and Buckwalter representations. The 

first 5 sessions in each dialect are held out and used as test 

data, while the remaining form the training set. The database 

also contains dialect-specific pronunciation dictionaries.  

All the dialects have a common phone set, except for one 

minor variation. UAE, Egyptian and Iraqi have the voiced 

postalveolar affricate, /dZ/ phone. Palestinian and Syrian have 

the voiced postalveolar fricative, the /Z/ phone instead. These 

phones are merged into one, while designing the ASR phone 

set. The final phone set contains 41 phones, including, 6 

vowels, 33 consonants in SAMPA representation [5, 6] plus a 

noise and a silence phone. 

3. Baseline ASR  

The baseline ASR is trained on speech data from all five 

dialects, with no dialect adaptation. The individual, dialect-

specific dictionaries are merged to form a single ASR 

dictionary which contains pronunciation variants derived from 

each dialect. The total vocabulary size is 75046 words with an 

average of 1.6 pronunciations per word. The language model 

is a 3-gram model trained on the training transcriptions and 

Arabic background text, mainly consisting of broadcast news 

and conversations. The OOV rate of the LM on the test data is 

1.8%. The perplexity of LM on the test set is 112.3. 

3.1. Acoustic models 

We trained two sets of acoustic models based on MFCC and 

MLP features. For MFCC features, we extract the power 
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spectrum using an FFT with a 10 ms frame-shift and a 16 ms 

Hamming window from the 16 kHz audio signal. We compute 

13 MFCC features per frame and perform cepstral mean 

subtraction and variance normalization on a per-speaker basis. 

To incorporate dynamic features, we concatenate 15 adjacent 

MFCC frames (±7) and project the 195 dimensional features 

into a 42-dimensional space using a Linear Discriminant 

Analysis (LDA) transform. After LDA, we apply a globally 

pooled ML-trained semi-tied covariance matrix. For the 

development of our context dependent (CD) acoustic models, 

we applied an entropy-based, poly-phone decision tree 

clustering process using context questions of maximum width 

±2, resulting in quinphones. The system uses 2000 states with 

a total of 62K Gaussians with diagonal covariance matrices 

assigned using merge and split training. The total number of 

parameters in the acoustic model amounted to 7.8M. 

In addition to MFCC system, we trained another set of 

acoustic models using MLP Bottle-neck features [7, 8, 9]. A 

multi-layer perceptron is trained using ICSI‟s QuickNet MLP 

package [10]. We stack ±7 MFCC frames, which serve as 

input to the MLP. The context-independent (CI) state labels 

are used as targets. The MLP has a 4-layer architecture – input 

(195), 2 intermediate (1000, 42) and output (125) layers, with 

a total of 243,292 parameters. The training data for the MLP is 

derived from the ASR training set, 90% of the training speaker 

list is used for training MLP while the remainder 10% of the 

speakers is used as a development set. For each training 

iteration MLP‟s accuracy on the development set is calculated. 

The training is stopped when the accuracy saturates on the 

development set. In our case, MLP training took 5 epochs, and 

reached a frame-level accuracy of 63.86% on the training data 

and 63.56% on the development data. The activations in the 

third layer, also called the bottle-neck layer [11] are used as 

inputs to build GMM-based HMM acoustic models. Apart 

from MLP parameters, the MFCC and MLP acoustic models 

used same number of parameters. The baseline Word Error 

Rate (WER) for the MFCC and MLP system is given in Table 

2 below. The WER of MLP ASR system is 0.6% (absolute) 

lower than the MFCC system. The speaker adapted system 

produces a WER of 26.8% 

Table 2. Word Error Rate of MFCC and MLP ASR systems 

Dialect 
Pan-Arabic ASR (WER) 

MFCC MLP 

UAE 28.7 28.2  

Egyptian 30.0 29.5  

Syrian 27.9 27.2  

Palestinian 29.4 28.6  

Iraqi 27.7 27.0  

Average 28.7%  28.1%  

4. Decision Tree based Dialect Analysis 

Phonetic decision trees have been traditionally used in ASR to 

cluster context-dependent acoustic models based on the 

available training data. The number of leaves in a phonetic 

decision tree refers to the size of the acoustic model. In our 

training process, the decision tree building is initialized by 

cloning the CI models to each available context in the training 

data. Two iterations of Viterbi training is performed to update 

the distributions while the codebooks remain tied to their 

respective CI models. Several phonetic classes of the 

underlying phones such as voiced/unvoiced, 

vowels/consonants, rounded/unrounded, etc are presented as 

questions, to the decision tree algorithm. The algorithm then 

greedily chooses the best question at each step which 

maximizes the information gain in a top-down clustering of 

CD distributions. The clustering is stopped once the desired 

model size is reached or when the number of training samples 

in the leaves has reached the minimum threshold [12]. A 

threshold of 2500 training samples is enforced for all clustered 

models in the experiments reported in this paper. 

In our previous work, we used decision trees as a 

diagnostic tool to measure the capability of MLP and MFCC 

features on gender normalization by building decision trees 

with gender questions, and to measure model sharing in 

English and Arabic ASR systems [4]. In this paper, we use the 

decision tree as a diagnostic tool to analyze the influence of 

dialects in different front-ends. We combine dialectal 

questions with contextual questions and let the entropy-based 

search algorithm to choose the best question at each stage. The 

resulting decision tree will have a combination of dialectal and 

contextual phonetic questions. The earlier the question is 

asked, the greater its influence on the ensuing models. For 

each leaf node, we traverse the tree back to the root node. If 

we encounter a dialectal question in a node, then that leaf is 

assigned as a dialectal model. The ratio of dialectal to total 

leaves is used as an estimate of dialectal influence. The 

calculation is repeated for different model sizes.  

4.1. Analysis of dialectal models 

In the first experiment, we examine the influence of dialect in 

MFCC front-end. Table 3 summarizes the dialectal analysis 

for different model sizes. 

Table 3. Ratio of dialect nodes in MFCC decision tree 

Model 

Size 

Dialect 

nodes 

Non-

Dialect 

nodes 

Ratio Dialect 

Nodes 

Non-

Dialect 

nodes 

Ratio 

 MFCC MFCC (VTLN + FSA) 

1000 13 987 1.3% 9 991 0.9% 

2000 82 1918 4.1% 72 1928 3.6% 

3000 224 2776 7.5% 226 2774 7.5% 

4000 483 3517 12.1% 465 3535 11.6% 

We observe that speaker adaptation, including vocal tract 

length normalization (VTLN) and feature space adaptation 

(FSA) training, only marginally reduce the influence of dialect 

(~0.5% absolute) in the acoustic models. In the resulting 

decision trees, we observe that the /Z/ appears very early in the 

split. This is the phone we merged from /dZ/ and /Z/ that 

belongs to two different dialect classes. Dialect questions in 

the decision tree allowed the phone to split into its dialectal 

counterparts. The distribution of different dialects for each 

model size is shown in Figure 2. 

 

Figure 2: Distribution of different dialects among the 

dialectal modes 



 

We noticed that most dialectal models belong to Egyptian 

across different model sizes. This behavior is consistent with 

the results found in the literature, where Egyptian is found to 

be most distinguishable from other dialects [13, 14].  We also 

observed that vowels are more influenced by dialect than 

consonants. Table 4 shows the ratio of dialectal models to all 

clustered models for vowels and consonants.  Except for the 

case of model size 1000, vowels have more dialectal models 

and hence more dialectal influence, than consonants. This 

result is in line with the fact that the majority of differences 

between Arabic dialects are characterized by vowels. These 

observations indicate that decision trees can be used as an 

effective analytic tool to evaluate the effect of different 

dialects in acoustic models. 

Table 4: Ratio of dialectal models for vowels and consonants 

Size 
Dialectal 

models 

Ratio of Dialectal models 

Vowels Consonants 

1000 13 1.1% 1.4% 

2000 82 6.2% 2.9% 

3000 224 10.8% 5.4% 

4000 483 17.1% 8.8% 

4.2. MFCC Vs MLP dialect normalization 

In this section, we examine the influence of dialect in MLP 

and MFCC front-ends.  The number of dialectal models for 

MLP and MFCC systems is shown in Figure 3. From the 

graph, it can be seen that speaker adaptation marginally 

reduces the influence of dialect in the final models, in both 

MFCC and MLP. Comparing, the two front-ends, MFCC has 

less dialectal models than MLP for all cases. 

 
Figure 3: Dialectal nodes in MFCC and MLP trees 

 
Figure 4: Dialectal nodes for MFCC and MLP with single 

pronunciation dictionary and combination of dialect questions 

To confirm the hypothesis that MLP features are more 

sensitive to dialect, we created a more rigorous setup. The 

pilot experiment used a combined dictionary obtained by 

composing individual, dialect-specific dictionaries. The use of 

different “dialectal” pronunciation variants can render the 

models to be insensitive to dialectal variations. Hence, in our 

next experiment, we constrained the dictionary to have only 

one pronunciation for each word. The training data is force-

aligned with the combined dictionary and the most frequent 

pronunciation variant is selected for each word, which is the 

only variant used in the experiment. Also, in the previous 

experiment only singleton dialect questions (eg. Is current 

phone IRAQI?) were used. We experimented with 

combinations of dialect questions in the following setup (eg. Is 

current phone IRAQI OR EGYPTIAN?). This would allow 

more dialectal questions to be available for clustering. Figure 

4 shows the results of the new setup. It can be observed that 

more MLP models are influenced with dialect than in the case 

of MFCC. These results show that MLP features are more 

sensitive to linguistic variations, i.e. dialect.. This contradicts 

our findings with respect to gender in this database (Figure 5) 

and in our previous work [4], where we found that both MLP 

and speaker adaptation greatly reduce the influence of gender 

in the clustered models. 

Figure 5: Gender models for MFCC and MLP with and 

without speaker adaptation 

To analyze the dialect sensitive behavior of MLP, we 

calculated the frame-level accuracy of vowels and consonants 

in the MLP outputs on the development set. The average 

accuracy for vowels and consonants is shown inTable 5. 

Table 5. MLP frame accuracy for Vowels and Consonants 

Phone class MLP Frame Accuracy 

Vowels 26.41% 

Consonants 40.80% 

Noise/Silence 85.78% 

 

It is clear from Table 5 that MLP frame level accuracy is 

higher for vowels than consonants. We already observed that 

dialectal models are dominated by vowels, which indicates 

that most dialectal variations occur in vowels. Hence, we 

suspect that the low MLP frame accuracy for vowels rendered 

MLP to be more sensitive to dialectal variations. 

5. Pronunciation based Dialect Analysis 

In this section, we present a technique to derive rules for 

converting dialect-specific pronunciations from one dialect to 

another.  These automatically learnt pronunciation rules are 

applied to a source dialect to produce pronunciations for new 

words in a target dialect. Previous work on automatic 

pronunciation generation includes using various machine 

learning techniques on grapheme-to-phoneme tasks [15, 16]. 

Our approach differs from these methods as we make use of 

already available pronunciations from a different dialect, and 

learn the transformation rules from a limited set of parallel 

pronunciations. 

For this experiment, we selected the words in the Pan-

Arabic dictionary that had dialect-specific pronunciation 

variants. To identify these „dialectal‟ words, we first restricted 

our search to words that are very common in source and target 

dialect. Frequency statistics of the pronunciation variants for 

these words are obtained from the forced aligned labels, using 

a trained speech recognizer. An example of the statistics can 



 

be seen in Figure 6, which clearly shows that there are 

dialectal preferences in pronunciation for this example. Other 

words may not exhibit such apparent pronunciation 

preferences between dialects. Hence the Kullback-Leibler 

(KL) divergence is used to identify words that exhibit dialectal 

pronunciations.  If the KL-Divergence over distribution of 

pronunciation variants for the source and target dialects is 

sufficiently large, the word is considered to have a dialectal 

pronunciation.  The specific pronunciation variants that are 

most used by the source or target are identified using a simple 

heuristic that involves identifying pronunciation variants that 

possess greater than some amount of the probability mass. 

Once pronunciations that are believed to exhibit dialectal 

differences are identified, we use the Levenshtein distance 

algorithm to identify the transformation rules between the 

source and target pronunciations. When a substitution, 

deletion, or insertion is detected in the alignment, the source 

and target phones were recorded.  Additionally, the right and 

left phonetic context were also recorded. The transformation 

rules were aggregated across all selected words. These edit 

rules can be used as regular expressions to generate 

pronunciations in the target dialect given a pronunciation in 

the source dialect based on the context.  

 

Figure 6: Pronunciation statistics for “taqoriybaAF” 

Egyptian dialect prefers variant 4, while the Iraqi dialect 

prefers the use of variants 1 and 3 

This method was used to regenerate pronunciations for words 

in the unseen test set for all permutations of dialects.  The 

Nelder-Mead algorithm [17] was used to locally maximize the 

number of pronunciation variants that agreed with the original 

pronunciations by optimizing the initial word count threshold, 

the KL-Divergence threshold, and the proportion of the 

probability mass used to determine the preferred dialectal 

pronunciations.  For each dialect, around 19 dialect words 

were chosen to produce the conversion rules, and the rules 

were applied to an unseen test set of 1047 words across the 

dialectal pairs. The transformation resulted in an average of 16 

variants per word.  

Table 6: Phone Error Rate for Forced Aligned 

Pronunciation Variants. 

     Source 

Target 

AE EG IQ PS SY 

AE - 16.2% 9.4% 7.1% 4.3% 

EG 12.4% - 9.8% 14.3% 12.9% 

IQ 5.9% 13.6% - 6.5% 4.8% 

PS 8.6% 7.1% 7.5% - 7.6% 

SY 10.4% 10.1% 7.6% 7.6% - 

On an average, this technique created 68% more 

pronunciation variants than existed in the original Pan-Arabic 

pronunciation dictionary.  To obtain the final pronunciation 

variant in the target dialect, the newly produced variants were 

used during a second forced alignment. The pronunciation 

variant chosen via initial forced-alignment is used as the 

reference for the target dialect. The final hypothesized variant 

is compared against its reference to obtain the phone-error 

rate. The procedure is repeated for each pair of dialects, one 

being the source and the other the target. Table 6 shows the 

phone error rate between the reference pronunciation and the 

final hypothesized variant after second forced-alignment. 

Our experiments with the Pan-Arabic corpus showed that 

our technique produced pronunciations with an average phone 

error rate 9.2%. This technique uses less training data and can 

be helpful in situations where we need to extend a small 

pronunciation dictionary in target dialect, using pronunciation 

dictionaries from other dialects of the language.  

6. Conclusions 

In this paper, we compared MFCC and MLP front-ends under 

the influence of dialect using a phonetic decision tree. While 

we show that MLP front-end produces lower WER, there is no 

evidence that MLP „Bottle-Neck‟ features are robust to 

dialectal variations. We also presented a method for generating 

pronunciations for different dialects of the same language 

using partially existing information. The preliminary 

experiments show promising results. We plan to extend this 

analysis to other languages/dialects. We also plan to examine 

the behavior of other front-ends including phonetic features 

under the influence of dialectal variations. 
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