
A DHT-based Multi-Agent System for Semantic
Information Sharing

Agostino Poggi and Michele Tomaiuolo

Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Parma

Viale U. P. Usberti 181/A, 43100 Parma, Italy

{agostino.poggi, michele.tomaiuolo}@unipr.it

Abstract. This paper presents AOIS, a multi-agent system that supports the
sharing of information among a dynamic community of users connected
through the Internet thanks to the use of a well-known DHT-based peer-to-peer
platform: BitTorrent. In respect to Web search engines, this system enhances
the search through domain ontologies, avoids the burden of publishing the
information on the Web and guaranties a controlled and dynamic access to the
information. The use of agent technologies has made the realization of three of
the main features of the system straightforward: i) filtering of information
coming from different users, on the basis of the previous experience of the local
user, ii) pushing of some new information that can be of interest for a user, and
iii) delegation of access capabilities, on the basis of a reputation network, built
by the agents of the system on the community of its users. The use of
BitTorrent will allow us to offer the AOIS systems to the hundreds of millions
of users that already share documents though the BitTorrent platform.

1 Introduction

Nowadays, the Web is the most powerful means for getting information about any
kind of topic. However, the Web assigns a passive role to the large part of its users.
Therefore, when Internet must be used to allow the active sharing of information
among the members of a community, the use of a peer-to-peer solution may provide
several advantages [22].

This paper presents a system, called AOIS (Agents and Ontology based
Information Sharing), trying to couple the features of peer-to-peer and multi-agent
systems. The next section introduces related work on multi-agent systems for
information retrieval. Section three describes the main features and the behaviour of
the AOIS system. Section four describes how this system has been designed and
implemented by using some well-known technologies and software tools. Section five
briefly discusses the testing of the system. Finally, section six reports some
concluding remarks, gives a short introduction about the first experimentation of the
system and presents our future research directions.

2 Related Work

Multi-agent systems have always been considered one of the most important
ingredients for the development of distributed information management systems and
for proving the different services needed in such systems [13]. In particular, several
interesting works demonstrate: how multi-agent systems are a suitable means for the
management of information in a community of users, how they can take advantage of
a peer-to-peer network for performing a distributed search of information and how the
use of ontologies and user profile allows an improvement of the quality of their work.

DIAMS is a multi-agent system that provides services for users to access, manage,
share and learn information collaboratively on the Web [5]. DIAMS can be
considered one of the most complete multi-agent infrastructures for the management
and retrieval of information in a community of users. In fact, it supports the searching
and retrieval of the information from local and/or remote repositories and it
encourages the collaboration among its users by supporting the sharing and exchange
of information among them.

ACP2P (Agent Community based Peer-to-Peer) is an information retrieval system
that uses agent communities to manage and search information of interest to users
[18]. In the ACP2P system, an agent works as a delegate of its user and searches for
information that the user wants by coupling the typical propagation of the query on
the peer-to-peer infrastructure. It supports the community with the identification of
the agents that may have such information through the use of the experience gained in
its previous interactions. The experimental results of the use of the ACP2P system
demonstrated that the use of the agent experience provides a higher accuracy in
retrieving information.

CinemaScreen is a recommender system, which combines collaborative filtering
and content-based filtering [26]. The first method requires matching a user with other
users with similar behaviours and interests. The second method requires matching the
items on the basis of their characteristics (CinemaScreen, in particular, deals with
genres, actors, directors etc.). While both mechanisms exhibit weaknesses in
particular situations, their combination allows better performances since the very
beginning of the system activity. The system is built in the form of an intelligent
agent, but apparently it is modelled as an essentially centralized system.

On the other hand, pSearch is a decentralized information retrieval system [30]. In
this system, which is P2P but non-flooding, document indices are distributed through
the network according to a classification of document content. The document
semantics is generated and managed through a technique called Latent Semantic
Indexing [34]. The resulting system is proven to be efficient in the number of nodes to
contact to perform a search.

In [11] a social resource sharing system is presented. In this case, it uses a form of
lightweight knowledge representation, called folksonomy, is used. In fact, the
conceptual structures of ‘taxonomy’ are created bottom-up by ‘folks’, thus creating an
emergent semantics, instead of using the more rigid approach of the traditional
Semantic Web

Sanchez and his colleague proposed an integrated agent-based ontology-driven
multi-agent system that automatically retrieves Web pages that contain data relevant
to the main concepts of a specific domain [27]. The multi-agent system is based on

the use a Web-based ontology learning method able to automatically build ontologies
for any domain [20], and then on a set of agents that use such ontologies for the
retrieval, filtering and classification of information.

3 AOIS

AOIS (Agents and Ontology based Information Sharing) is a multi-agent system
composed of different agent platforms connected through the internet that supports
the sharing of information among a community of users. Each agent platform acts as a
“peer” of the system and is based on five agents: a personal assistant, a repository
manager, an information finder, an information pusher, and a directory facilitator.

A personal assistant (PA) is an agent that allows the interaction between the AOIS
system and the user. This agent receives the user’s queries, forwards them to the
available information finders and presents the results to the user. Moreover, a PA
allows the user to be informed about the new information that other users made
available and that may be of her/his interest. Finally, a PA maintains the information
that a user may share allowing her/him to add and remove information in a repository
where information is partitioned on the basis of the topics of interest of the user.

A repository manager (RM) is an agent that builds and maintains both the indexes
for searching information and the ontologies describing the topics of interest of its
user. Each time the user adds or removes some information, the OM updates the
corresponding index and ontology.

An information finder (IF) is an agent that searches information on the repository
contained into the computer where it lives and provides this information both to its
user and to other users of the AOIS system. An IF receives users’ queries, finds
appropriate results, on the basis of both the queries and the topic ontology, and filters
them on the basis of its user’s policies (e.g., the results from non-public folders are
not sent to other users).

An information pusher (IP) is an agent that monitors the changes in the local
repository and pushes the new information to the PA of the users whose previous
queries match such information.

Finally, the directory facilitator (DF) is responsible to register the agent platform in
the AOIS network. The DF is also responsible to inform the agents of its platform
about the address of the agents that live in the other platforms available on the AOIS
network (e.g., a PA can ask about the address of the active IF agents).

The exchange of information among the users of an AOIS system is driven by the
creation of both a search index and an ontology for each topic. The search index
allows the ranking of information on the basis of the terms contained in a query. The
ontology allows to identify additional information on the basis of the terms contained
in the ontology that have some semantic relationships (i.e., synonyms, hyponyms,
hypernyms, meronyms and holonyms) with the terms contained in the query. Both
the search index and the ontology are automatically built by the RM on the basis of
the information stored in the topic repository.

The following subsections describe the behaviour of the AOIS system through six
practical scenarios and introduce a detailed description of how members can be added

to an AOIS community and how security and privacy are managed to show how
AOIS copes with the problems of working in a real open community.

Fig. 1. Searching scenario UML sequence diagram.

3.1 Information Searching Scenario

The first scenario describes how a user can take advantage of the agents of the AOIS
system for searching information. This scenario can be divided in the following five
phases (see also figure 1):
1) a user requests her/his PA to search information on the basis of a topic, a set of

keywords. The PA asks the DF for the addresses of available IF agents and sends
the topic and the keywords to such agents (information search request phase);

2) each IF checks if the querying user has the access to at least a part of the
information about the topic stored in the corresponding topic repository, and, if it
happens, searches the information on the basis of both the received query and a
set of additional queries obtained by replacing each keyword of the received
query with the possible substitutes contained in the topic ontology. Moreover, the
IF sends the received query to the local IP and RM agents: the IP adds the query
to the profile of the corresponding remote user and the RM add the query
keywords to the list of the keywords for updating the repository ontology
(information search execution phase),

3) each IF filters the searching results on the basis of the querying user access
permissions of the querying user sends the filtered list of results to the querying
PA (information filtering and sending phase);

4) the querying PA orders the various results as soon as it receives them, omitting
duplicate results and presents them to its user (information presentation phase);

5) after the examination of the results list, the user can ask her/his PA for retrieving
the information corresponding to an element of the list. Therefore, the PA
forwards the request to the appropriate IF, waits for its answer and presents the
information to the user (information retrieval phase).

Fig. 2. Pushing scenario UML sequence diagram.

3.2 Information Pushing Scenario

The second scenario illustrates how a user can take advantage of the AOIS system to
be aware about the availability of new information of her/his interest. This scenario
can be divided in the following five phases (see also figure 2):
1) a user requests her/his PA to add some information in a specific topic repository

and the PA propagates the request to the RM (information addition request
phase);

2) the RM adds the information in the repository, updates the indexes for the
searching of information and then informs the IP about the new information
(information addition phase);

3) the IP checks if such new information satisfy some queries maintained in the
profiles of the remote users and, when happens, then the IP either sends such
information to the PA of the remote user (if the corresponding AOIS platforms
are alive), or maintains such an information until such a platform becomes alive
again. (information pushing phase);

4) Of course, when a PA receives a list of pushing results, it presents them to its
user (information presentation phase);

5) after the examination of the results list, the user can ask her/his PA for retrieving
the information corresponding to an element of the list. Therefore, the PA

forwards the request to the appropriate IF, waits for its answer and presents the
information to the user (information retrieval phase).

3.3 Repository Creation Scenario

The third scenario illustrates how a user can take advantage of the AOIS system for
the creation of a repository for maintaining the information about a specific topic.
This scenario can be divided in the following four phases:
1) a user requests her/his PA to create a repository for a specific topic indicating the

set of terms (named ontology top terms) that describe such a topic and listing a
set of information to store in the repository. The PA propagates the request to the
RM (repository creation request phase);

2) the RM creates the repository, builds the topic ontology finding the semantic
relationships (i.e., synonyms, hyponyms, hypernyms, meronyms and holonyms)
among the top terms, adds the set of information, builds the search indexes and
then informs the PA about the creation (repository creation phase);

3) the PA asks its user if she/he wants to populate the ontology with terms extracted
from the information stored in the repository and the maximum permitted
semantic distance between a new and a top term (ontology population request
phase);

4) If the user enables the operation, the PA asks the RM to analyse the repository
search indexes for finding the terms that are in direct or indirect relations with the
top terms of the ontology. Of course, in the case of indirect relationship, each
new term is only added if it satisfies the maximum semantic distance constraint
(ontology population phase).

3.4 Repository Updating Scenarios

The forth and fifth scenarios illustrate how a user can take advantage of the AOIS
system for updating both the search indexes of a repository and the related ontology.

The forth scenario is driven by the user that wants to add some information to a
repository. This scenario can be divided in the following four phases:
1) the user requests her/his PA to add some information to a repository and the PA

propagates the request to the RM (information addition request phase);
2) the RM adds the information in the repository, updates the indexes for the

searching of information and then informs the PA about the new information
(information addition phase);

3) the PA asks its user if she/he wants to populate the ontology with terms extracted
from the new information added in the repository and the maximum permitted
semantic distance between a new and a top term (ontology updating request
phase);

4) If the user enables the operation, the PA asks the RM to analyse the repository
search indexes for finding the terms that are in direct or indirect relations with the
top terms of the ontology. Of course, in the case of indirect relationship, each

new term is only added if it satisfies the maximum semantic distance constraint
(ontology population phase).

The fifth scenario starts when the user logs to the system and her/his RM has some
new keywords coming from last remote users queries. This scenario can be divided in
the following two phases:
1) when the user logs the system, the PA gets the new keywords from the RM and

asks its user if she/he likes to add some of them as top terms of the ontology
(keywords selection request phase);

2) if the user selected some of the keywords to populate the ontology, the PA asks
the RM to update the ontology finding the semantic relationships (i.e., synonyms,
hyponyms, hypernyms, meronyms and holonyms) among the new and the old top
terms (ontology updating phase);

3) Then the PA asks her/his user if she/he wants to populate the ontology with terms
extracted from the information stored in the repository and the maximum
permitted semantic distance between a new and a top term (ontology population
request phase);

4) If the user enables the operation, the PA asks the RM to analyse the repository
search index for finding the terms that are in direct or indirect relations with such
new top terms of the ontology. Of course, in the case of indirect relationship,
each term is only added if it satisfies the maximum semantic distance constraint
(ontology population phase).

3.5 Community Management Scenario

The fifth scenario illustrates how an AOIS user can connect to an existing community
and how a community can deal with new join requests.

This scenario can be divided in the following four phases:
1) the user has to be introduced into the community by a member who plays the

role of introducer;
2) the new member is acknowledged by the introducer by receiving a proper token,

which testifies the acceptance into the community;
3) once the new member has been acknowledged by the introducer, the latter also

sends a list of all other members of the community, with their basic profile and
contact information, to the new member;

4) the new member registers all members into the local list of contacts, and updates
the information of the DF of her/his AOIS platform on the basis of the profiles
received by the other members of the community;

5) the new member then sends a join request to all other members, together with all
relevant credentials, including the token received from the introducer;

6) the other members of the community add the new user’s profile to the local list of
contacts and adds his services into the local DF.

3.6 Security and Privacy Management

The information stored into the different repositories of a AOIS network is not
accessible to all the users of the system in the same way. In fact, it’s important to
avoid the access to private documents and personal files, but also to files reserved to a
restricted group of users (e.g.: the participants of a project). The AOIS system takes
care of users’ privacy allowing the access to the information on the basis of the
identity, the roles and the attributes of the querying user, as defined into a local
knowledge base of trusted users. In this case, it is the user that defines who and in
which way can access to her/his information, but. Moreover, the user can also allow
grant the access to unknown users by enabling a certificate based delegation, built on
a network of the users registered into the AOIS community. In this sense, the system
completely adheres to the principles of trust management. For instance, if the user Ui
enables the delegation and grants to the user Uj the access to its repository with
capabilities C0 to the user Uj, and Uj in turn grants to the user Uk the access to its the
repository with the same capabilities C0 to the user Uk, then Uk can access Ui‘s
repository with the same capabilities of Uj.

The definition of roles and attributes is made in a local namespace, and the whole
system is, in this regard, completely distributed. Local names are distinguished by
prefixing them with the principal defining them, i.e. a hash of the public key
associated with the local runtime. Links among different local namespace, again, can
be explicitly defined by issuing appropriate certificates. In this sense, local names are
the distributed counterpart of roles in role based access control frameworks [14]. This
model is centred on a set of roles. Each role can be granted a set of permissions, and
each user can be assigned to one or more roles. A many to many relationship binds
principals and the roles they’re assigned to. In the same way, a many to many
relationship binds permissions and the roles they’re granted to, thus creating a level of
indirection between a principal and his access rights. Like roles, local names can be
used as a level of indirection between principals and permissions. Both local names
and roles represent at the same time a set of principals and a set of permissions
granted to those principals. But, while roles are usually defined in a centralized
fashion by a system administrator, local names, instead, are fully decentralized. This
way, they better scale to Internet-wide, peer-to-peer applications, without loosening in
any way the principles of trust management.

In AOIS, the user can not only provide the permission to access his own files, but
can also assign the permission to upload a new version of one or more existing files.
In this case the PA informs his/her user about the updated files the first time he/she
logs in. This functionality, together with the trust delegation, can be useful for the
members of a workgroup involved in common projects or activities

4 Implementation

The AOIS system has been designed and implemented taking advantage of agent,
peer-to-peer, information retrieval and security management technologies and, in

particular, of five main components: JADE [3], BitTorrent DHT [6], Nutch [1],
WordNet [17] and JAWS [28].

AOIS agent platforms have been realized by using JADE [3,4,31]. JADE is
probably the most known agent development environment enabling the integration of
agents and both knowledge and Internet-oriented technologies. Currently, JADE is
considered the reference implementation of the FIPA (Foundation for Intelligent
Physical Agents) specifications [8]. In fact, it is available under an LPGL open source
license, it has a large user group, involving more than two thousands active members,
it has been used to realize real systems in different application sectors, and its
development is guided by a governing board involving some important industrial
companies.

The JADE development environment does not provide any support for the
realization of real peer-to-peer systems because it only provides the possibility of
federating different platforms through a hierarchical organization of the platform
directory facilitators on the basis of a priori knowledge of the agent platforms
addresses. Therefore, we extended the JADE directory facilitator to realize real peer-
to-peer agent platforms networks thanks to DHT indexing mechanisms and popular
file-sharing protocols.

In the first prototypes [23], we used JXTA protocols to augment JADE with the
desired peer-to-peer features [9]. In fact, FIPA had acknowledged the importance of
the JXTA protocols, and it had released some draft specifications for the
interoperability of FIPA platforms connected to peer-to-peer networks. In particular,
in the “FIPA JXTA Discovery Middleware Specification” a Generic Discovery
Service (GDS) is described, to discover agents and services deployed on FIPA
platforms working together in a peer-to-peer network. However, no advancement has
then been made for these specifications and JXTA itself has not gained the expected
popularity and maturity.

For these reasons, we turned to BitTorrent as one of the most widespread and solid
file-sharing platform, which can be configured and extended to work in a completely
decentralized fashion [6]. Actually, BitTorrent names both a file-sharing protocol and
a particular application, implementing the protocol itself. Other applications, available
for many existing hardware/software platforms, implement the protocol.

Basically, BitTorrent requires a tracker server to host so-called torrent files. A
torrent file contains the updated list of seeds from which a particular resource can be
obtained. For our purposes, i.e. to build a decentralized collaborative network, we
preferred avoiding this basic approach. Moreover, in the recent past it has been
proven vulnerable to both technical disruptions and legal actions. In fact, today some
alternatives allow the realization of trackerless systems.

Azureus was the first application to introduce a Distributed Hash Table to
supplement the centralized index. Today, this indexing mechanism is supported
through a standard plug-in and is called Distributed Database (DDB). Vuze is an
evolution of Azureus that uses such an approach [32]. The Vuze DDB is based on the
Kademlia algorithms by Maymounkov and Mazières, which are essentially used to
associate the hashes of files and chunks with their current locations (seeds), in a fully
distributed fashion [16]. A widespread standard to share a reference to a file is a
magnet-uri, which contains the hash of the file. Both nodes and shared files have
globally unique, 160 bit long, identifiers. Each node maintains a small routing table

with contact information for a small number of other nodes; the routing table is more
detailed for closer nodes. The distance is measured according to the XOR metric
defined by Maymounkov and Mazières. The information regarding the peers sharing a
given file is stored on nodes with ID close to the hash of the file. When a node wants
to download a file for which it knows the hash, it asks further information to the
nodes it knows with ID closer to the file hash. These nodes answer with the list of
peers downloading the file if they have such an information, otherwise they return a
list of nodes with IDs even closer to the file hash, which should be queried afterwards.

Apart from basic file sharing protocols, however, a generic service advertisement
system needs some mechanisms to discover a, possibly semantically enriched, service
description, starting from some requested features and desired quality of service. In
principle, keywords and tags can be associated with any file, and in particular with a
service description, quite easily even over DHTs. In fact, some decentralized file
sharing platforms use their DHT to implement two different indexes: one for
associating seeds to file IDs, the other for associating file IDs with some keywords.
However, the keyword index is hardly verifiable in an automated way and in the real
world it proved to be particularly weak with respect to pollution and index poisoning
attacks. Montassier et al. provide a measure of the credibility of the keyword index of
the popular KAD network and show that around 2/3 of the contents are polluted [19].
For this reason, in current implementation of our service discovery system, keyword
indexing is based on a DHT, but the keyword-service association is only trusted if
provided by a trusted node, participating in the same collaborative network, and
possibly other sources suggested by those trusted nodes. Specifically, each node can
associate some attributes with the descriptions of the services it provides. This
information is then published in the DHT under a unique key, which is obtained by
combining the attribute and the node’s identity in the system. Other than the attributes
associated with a service in the DHT, a node can then analyze the obtained
descriptions, in detail, to choose a particular service among those with the basic set of
attributes.

Currently, also other applications support some form of DHT indexing. In
particular, the BitTorrent application introduced a mechanism named Mainline DHT,
which is also based on Kademlia. The queries available under the Mainline DHT
allow a robust exchange of information and well support the BitTorrent file-sharing
protocol. However, they are unsuitable for our purposes. In order for the DHT to map
an attribute to some service descriptions, it is necessary to use arbitrary keys (the node
identifiers combined with the attribute) on the DHT. Essentially, a couple of put/get
queries would be needed, which would simply associate a given key to a given value
on the DHT. Those queries, instead, are readily available under the Vuze DDB, and
thus make it a preferable choice when implementing a generic service advertisement
and discovery system. As a consequence, we decided to use Vuze DDB for both our
logical DHTs, although in principle the DHT mapping hashes to the files that
generated them could have been the Mainline DHT.

Regarding the Vuze platform, it has a modular architecture, where functionality
can be added with plug-ins. The main application exposes to the plug-ins only a
restricted programming interface, which is nonetheless sufficient for our purposes.
Consequently, we decided to implement the service discovery system as a Vuze plug-
in. As Vuze is implemented as a modular system, it is possible to run it without any

graphical user interface, and thus to use its backend features inside other applications,
too. In our case, the Vuze backend is used for realizing the needed discovery, location
and sharing services inside a full agent-based system based on JADE. The multi-agent
system acts as a Vuze plugin, while Vuze APIs are used as low level primitives for
implementing the needed services inside the multi-agent system.

Even if there are some specific tools and software libraries for searching
information in a local repository (see, for example, Beagle [2] and Google Desktop
Search [10]), we adapted Nutch [1], an open source web-search software, for
searching the local repository. It has been done because it is very easy to develop
Nutch plugins for extending its capabilities (we used this feature for using its term
extraction module for building the topic ontologies) and because is available a Nutch
plugin, that extends keywords based search through the use of OWL ontologies [33].
Figure 3 shows a graphical description of the work done by the Nutch core software
and by its two plugins for indexing and building the topic ontologies and for using
them for searching information.

Fig. 3. Indexing and ontology management subsystem.

As introduced above, topic ontologies are built by a Nutch plugin. This plugin
receives the terms extracted from the information to be indexed by the Nutch
software. Then, accessing the WordNet lexical database [17,24] though the use of the
JAWS Java software library [28], for each term it identifies the top terms of the
ontology and the other terms extracted from the information that have some semantic
relationships (i.e., synonyms, hyponyms, hypernyms, meronyms and holonyms). At
the end of this process, all the terms that have a semantic distance greater than the one
fixed by the user are removed and then the WordNet ontology is saved as an OWL
file.

As introduces before, authentication and authorization are performed on the basis
of the local knowledge base of trusted users, though they can be delegated to external
entities through an explicit, certificate based delegation. In this sense, the system
completely adheres to the principles of trust management. The definition of roles and
attributes is also made in a local namespace, and the whole system is, in this regard,
completely distributed. Local names are distinguished by prefixing them with the
principal defining them, i.e., a hash of the public key associated with the local agent
platform. Links among different local namespace, again, can be explicitly defined by
issuing appropriate certificates. The theory of AOIS delegation certificates is founded
on SPKI/SDSI specifications [7], though the certificate encoding is different. As in
SPKI, principals are identified by their public keys, or by a cryptographic hash of
their public keys. Instead of s-expressions, AOIS uses XML signed documents, in the
form of SAML assertions [21], to convey identity, role and property assignments. As
in SPKI, delegation is possible if the delegating principal issues a certificate whose
subject is a name defined by another, trusted, principal. The latter can successively
issue other certificates to assign other principals (public keys) to its local name. In this
sense, local names act as distributed roles [14].

Finally, the extraction of a digest for each search result is required to avoid the
presentation of duplicate results to the user. This feature is provided by a Java
implementation of a hash function [24].

5 Testing

Practical tests on the first prototype of the AOIS system were done installing the
system in different labs and offices of our department asking some students and
colleagues to use it for sharing and exchanging information. Moreover, we tested the
system setting some computers of a Lab with different access policies and distributing
information on their repositories providing, in some cases, different copies of the
same information on different computers. The tests covered with success all the
system features and the searching and pushing of information satisfied our
expectations.

Moreover, a part of the experimentation was oriented to compare the results of the
searching and pushing operations based on the use of topic ontologies with the ones
based only on the use of keywords and what happened is that: i) the use of topic
ontologies increases the number of results, but very few were of no interest for the
users if, in particular, the users chose a good set of top terms.

Up to now, we do not perform a numeric analysis of the results, but only a
qualitative analysis derived from a discussion with the people that used the system.
The main result is that usually the quality of search and pushing operations mainly
depends on an appropriate set of top keywords. Therefore, the goodness of an
ontology usually does not depends on the keywords extracted from the information of
the repository, but mainly depends on an appropriate initial set of top keywords and
then by the introduction of the other appropriate keywords coming from the queries of
remote users.

6 Conclusions

In this paper, we presented a peer-to-peer multi-agent system, called AOIS (Agents
and Ontology based Information Sharing), that supports the sharing of information
among a community of users connected through the Internet. AOIS is an evolution of
a previous system [15], called RAIS (Remote Assistant for Information Sharing), that
performed a similar task, but was implemented by using a different search technology
(i.e., Google Desktop Search) and did not take advantage of topic ontologies for the
search of information. The first prototypes of the AOIS system used the JXTA
protocols to provide the peer-to-peer features useful to support the interaction among
remote users. However, JXTA is not used in the most known and used peer-to-peer
applications and so it is suitable to test the features of prototypes, but it is unsuitable
for developing real application. Therefore, the last AOIS implementation is based on
BitTorrent, one of the most widespread and solid file-sharing platform, which can be
configured and extended to work in a completely decentralized fashion.

AOIS derives a large part of its features from the systems for information sharing
described in the related work section. However, it offers a new feature that seems to
improve the quality of search and pushing operations: the creation of a topic ontology
through the use of a set of initial terms (i.e., the top terms), its automatic extension
through the information maintained by the user, the possibility of controlling the
semantic distance from the top terms and the terms automatically added, and, in
particular, the possibility of using the terms contained in the queries of the other users
for refining the ontology, allow the construction of high quality ontologies. Then, a
topic ontology can be customized by each user, but taking into account of the implicit
suggestions of the other users of the community, Moreover, its implementation based
on some well-known software tools guarantees good performance and reliability.

The first prototypes of the AOIS system was experimented in some “artificial”
communities involving researchers and students of our University and the results of
the experimentation encouraged us in the further development. The introduction of
BitTorrent in its last prototype will allow us to plan a real and large experimentation
thinking to the hundreds of millions of users that already share documents though the
BitTorrent platform and may be interested in using such a system.

The current implementation of the system maintains in the remote user profiles all
the queries she/he did. Often the information retrieved through some old queries
might be not yet of interest for the remote user. Therefore, we are working on a more
sophisticated technique for managing remote user profiles: all the queries are stored
together with the time they were executed; every day the IP checks the remote user
profiles and for all the queries that are older than a fixed duration (e.g., a week), it
asks the PA about the interest of its user in maintaining such queries and refreshes the
execution time for all the queries for which it receives a positive acknowledge.

The creation of topic ontologies may be a difficult activity because it requires the
identification of an appropriate set of top terms and its completion through the use of
an appropriate set of information. Therefore, the possibility of using the topic
ontologies built by other users may be an important feature of the system. In fact, we
are working to the possibility that PA agents can require some topic ontologies to
other PA agents and then either directly use them for driving the search or build new
topic ontologies by merging them with the local topic ontologies.

Beyond the definition of the top terms and of the maximum semantic distance
between terms, users have not the possibility of managing the topic ontologies. But
this would be a very important feature in the future, when the system will allow the
use of topic ontologies defined by other users and the merging among different topic
ontologies. In the current version of the system the topic ontologies are also saved as
OWL files because the search ontology Nutch plugin requires an OWL file for
proving ontology based search. Therefore, users may manipulate topic ontologies by
using one of the available tools for manipulating OWL ontologies (e.g., Protégé [24]).
However, in the OWL view of the topic ontologies there is not information about the
top terms. Therefore, we are developing a very simple graphical tools (based on the
use of the Jung software library [12]) that: i) shows the graph defining an ontology, ii)
distinguishes top terms from the other terms, iii) distinguishes the different kinds of
semantic relationships among terms, iv) allows the introduction of new terms and the
deletion of existing terms, v) allows the introduction and the deletion of the “top”
attribute to any term, and vi) allow the modification of the maximum semantic
distance (when such a distance is reduced, the tool removes all the terms that do not
satisfy the new constraint).

Acknowledgments

This work is partially supported by the Italian Ministry MIUR (Ministero
dell’Istruzione, dell’Università e della Ricerca).

References

1. Apache Foundation (2011) Nutch software. Available from http://nutch.apache.org.
2. Beagle Team (2011) Beagle software. Available from http://beagle-project.org.
3. Bellifemine F, Poggi A, Rimassa G (2001) Developing multi agent systems with a FIPA-

compliant agent framework. Software Practice & Experience 31:103-128.
4. Bellifemine F, Caire G, Poggi A, Rimassa G (2008) JADE: a Software Framework for

Developing Multi-Agent Applications. Lessons Learned. Information and Software
Technology Journal 50:10-21.

5. Chen, JR, Wolf SR, Wragg SD (2000) A Distributed Multi-Agent System for Collaborative
Information Management and Sharing. In: Proc. of the 9th ACM International Conference
on Information and Knowledge Management, pp. 382-388.

6. Cohen B (2003) Incentives build robustness in BitTorrent. In Proceedings of the First
Workshop on Economics of Peer-to-Peer Systems. Berkeley, CA.

7. Ellison, C, Frantz, B, Lampson, B, Rivest, R, Thomas B, Ylonen T (1999) SPKI Certificate
Theory. RFC 2693.

8. FIPA Consortium (2011) FIPA Specifications. Available from http://www.fipa.org.
9. Gong L (2001) JXTA: A network programming environment. IEEE Internet Computing,

5(3):88-95.
10. Google (2011) About Google Desktop Search software. Available from

http://desktop.google.com.

11. Hotho, A, Jäschke R, Schmitz C, Stumme G (2006) Information Retrieval in Folksonomies:
Search and Ranking. In: The Semantic Web: Research and Applications, Lecture Notes in
Computer Science, vol. 4011, pp. 411-426. Springer, Berlin, Germany.

12. Jung Team (2011) Jung software. Available from http://jung.sourceforge.net.
13. Klusch M (2001) Information Agent Technology for the Internet: A survey. Data &

Knowledge Engineering 36(3):337-372.
14. Li N, Mitchell JM (2003) RT. A Role-based Trust-management Framework In: Proc. of the

Third DARPA Information Survivability Conference and Exposition (DISCEX III), pp. 201-
212. Washington, DC.

15. Mari M, Poggi A, Tomaiuolo M, Turci P (2008) Enhancing Information Sharing Through
Agents. In: Agent-Oriented Information Systems IV, Lecture Notes in Computer Science,
vol. 4898, pp. 202-211. Springer, Berlin, Germany.

16. Maymounkov P, Mazières D (2002) Kademlia: A Peer-to-Peer Information System Based
on the XOR Metric. In: Peer-to-Peer Systems, Lecture Notes in Computer Science, vol.
2429, pp. 53-65. Springer, Berlin, Germany.

17. Miller GA (1995) WordNet: A Lexical Database for English. Communications of the ACM
38(11):39-41.

18. Mine T, Matsuno D, Kogo A, Amamiya M (2004) Design and implementation of agent
community based peer-to-peer information retrieval method. In: Cooperative Information
Agents VIII, Lecture Notes in Computer Science, vol. 3191, pp. 31-46. Springer, Berlin,
Germany.

19. Montassier G, Cholez T, Doyen G, Khatoun R, Chrisment I, Festor O (2011) Content
pollution quantification in large P2P networks: A measurement study on KAD. In: Proc. of
the IEEE International Conference on Peer-to-Peer Computing, pp. 30-33, Kyoto, Japan.

20. Moreno A, Riano D, Isern D, Bocio J, Sanchez D, Jimenez L (2004) Knowledge
Exploitation from the Web. In: Practical Aspects of Knowledge Management, Lecture Notes
in Computer Science, vol. 3336, pp. 175–185, Springer, Berlin, Germany.

21. OASIS (2011) SAML specifications. Available from http://saml.xml.org.
22. Parameswaran M, Susarla A, Whinston AB (2001) P2P Networking: An Information-

Sharing Alternative. Computer 34(7):31-38.
23. Poggi A, Tomaiuolo M (2011) A Multi-Agent System for Information Semantic Sharing. In;

Proc. of the 5th International Workshop on New Challenges in Distributed Information
Filtering and Retrieval, Palermo, Italy.

24. Princeton Universty (2011) Wordnet. Available from http://wordnet.princeton.edu.
25. Rivest RL (1992) The MD5 Message Digest Algorithm. Internet RFC 1321.
26. Salter J, Antonopoulos N (2006) CinemaScreen Recommender Agent: Combining

Collaborative and Content-Based Filtering IEEE Intelligent Systems 21(1):35-41.
27. Sanchez D, Isern D, Moreno A (2006) Integrated Agent-Based Approach for Ontology-

Driven Web Filtering. In: Knowledge-Based Intelligent Information and Engineering
Systems, Lecture Notes in Computer Science, vol. 4253, pp. 758-765. Springer, Berlin,
Germany.

28. Southern Methodist University (2011) JAWS software. Available from
http://lyle.smu.edu/~tspell/jaws.

29. Stanford University (2011) Protégé software. Available from http://protege.stanford.edu.
30. Tang, C, Xu Z, Dwarkadas S (2003) Peer-to-peer information retrieval using self-organizing

semantic overlay networks. In: Proc. of ACM SIGCOMM, pp. 175–186.
31. Telecom Italia (2012) JADE software. Available from http://jade.tilab.com.
32. Vuze BitTorrent Client (2012) Available from http://vuze .sourceforge.net.
33. W3C Consortium (2009) OWL 2 Web Ontology Language Overview. Available from

http://www.w3.org/TR/owl2-overview.
34. Wiemer-Hastings PM (1999) How Latent is Latent Semantic Analysis? In: Proc. of the

Sixteenth International Joint Conference on Artificial Intelligence (IJCAI '99), pp. 932-941.

