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ABSTRACT 

 
Due to customised products, shorter product life-cycles, and unpredictable patterns of 
demand, manufacturing industries are faced with stochastic production requirements. It is 
unlikely that the production requirements (product mix and demand) are known exactly at 
the time of designing the manufacturing cell. However, a set of possible production 
requirements (scenarios) with certain probabilities are known at the design stage. Though a 
large number of research works on manufacturing cells have been reported, very few have 
considered random product mix constraints at the design stage. This paper presents a non-
linear mixed-integer mathematical model for the cell formation problem with the 
uncertainty of the product mix for a single period. The model incorporates real-life 
parameters like alternate routing, operation sequence, duplicate machines, uncertain 
product mix, uncertain product demand, varying batch size, processing time, machine 
capacity, and various cost factors. A solution methodology for best possible cell formation 
using a genetic algorithm (GA) is presented, and the computational procedure is illustrated 
for the case study undertaken. 
 

OPSOMMING 
 
Vanweë doelgemaakte produkte, korter produklewensiklusse en onvoorspelbare vraag- 
patrone, staar vervaardigingsindustrieë stochastiese produksiebehoeftes in die gesig. Dit is 
onwaarskynlik dat produksiebehoeftes (produkmengsel en vraag) presies bekend sal wees 
wanneer die vervaardigingsel ontwerp word. Desnieteenstaande sal ‘n stel moontlike 
produksiebehoeftes (scenarios) met bepaalde waarskynlikhede tog op hierdie stadium 
bekend wees. Alhoewel heelwat navorsing reeds op vervaardigingselle gedoen is, is daar 
weinig gerapporteer waar lukraak produkmengselrandvorwaardes by die ontwerpfase 
oorweeg is. Hierdie artikel hou ‘n nie-lineêre gemengde-heeltal- wiskundige model voor vir 
die selformasieprobleem met onsekerheid oor die produkmengsel in ‘n enkelperiode. Die 
model inkorporeer werklike parameters soos alternatiewe roetes, bewerkingsvolgordes, 
duplikaat toerusting, onsekere produkmengsels, onsekere produkvraag, wisselende 
lotgroottes, prosesseertye, toerustingkapasiteit en verskeie kostefaktore. ‘n Oplossings-
metodologie aan die hand van ‘n genetiese algoritme vir die beste moontlike selformasie 
word voorgehou en die prosedure word by wyse van ‘n gevallestudie geïllustreer. 
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1. INTRODUCTION 
 
Cellular manufacturing (CM) is an application of group technology in which dissimilar 
machines have been aggregated into cells, each of which is dedicated to the production of 
a part family. The primary advantage of CM implementation is that a large manufacturing 
system can be decomposed into smaller subsystems of machines called cells. These cells are 
dedicated to processing part families based on similarities in manufacturing requirements. 
CM is a hybrid system linking the advantages of job shops (flexibility in producing a wide 
variety of products) and flow lines (efficient flow and high production rate). Parts with 
similar manufacturing requirements can be processed entirely in that cell. The potential 
benefits associated with the application of CM include improved market response, more 
reliable delivery promises, reduced tooling and fixtures, higher machine use, shorter 
throughput time, reduced work-in-process, reduced materials handling, improved product 
quality, and simplified production planning and control (Wemmerlov and Johnson [1]). In 
addition, cells represent sociological units conducive to team work (Huber and Hyer [2]), 
leading to higher levels of motivation for process improvements. It can be argued that, the 
more complex the product, the more can benefits be realised through the application of 
CM. Dale [3] discovered that the greater the complexity of the product, the greater are the 
benefits of CM. His survey also revealed that component variety is much more important for 
the success of CM than factors such as the number and types of machine tools, and the 
number of batches.  
 
The central issue in the design of cellular manufacturing systems (CMSs) is the formation of 
part families and machine cells. In recent decades many researchers have extensively 
studied the cell formation problem in CMS design. Different models have been proposed to 
achieve better cell formation. Comprehensive summaries and taxonomies of studies 
devoted to cell formation can be found in Wemmerlov & Hyer [4], Kusiak [5], Singh [6], 
Reisman et al. [7], Selim et al. [8], Sarker & Mondal [9], and Mansouri et al. [10]. Most of 
the design approaches for CMSs proposed over the years still have one or more of the 
following limitations: (i) Most of the suggested models consider binary machine-part 
incidence matrices. On the other hand, solving real-life problems involves the use of a 
range of production-related information (such as operation sequence of parts, production 
volume, set-up and processing times, machine capacity, machine availability, and material 
handling capacity). (ii) It is observed that the vast majority of studies in the area of cell 
formation have employed small-sized problems that are hypothetical and produce only 
theoretical studies. There is a growing need to develop specific solution procedures that 
are capable of handling large-sized real-life problems. (iii) Although many research 
approaches promise potential applications, the research does not carry over into practice. 
(iv) Most of the suggested cell design models considered a single-objective function; but the 
real life CMS design problems require a multi-objective function. There is a growing need 
for and interest in developing integrated models that address several pragmatic production 
issues simultaneously in the design of a CMS. (v) Very few works have considered 
incorporating uncertainty in production requirements into the CMS design during the design 
stage. 
 
Though a lot of research into manufacturing cells has been reported, very little has 
considered the random product mix constraint at the design stage. However, the design of 
CMS under stochastic production requirements has received attention in recent years 
(Seifoddini [11], Sankaran & Kasilingam [12], Harhalakis et al. [13], Chen [14], Wicks & 
Reasor [15], Mungwatanna [16], Schaller [17]). Seifoddini [11] developed a single-objective 
machine cell formation model incorporating the probabilistic nature of the product mix and 
the associated machine-component chart for a single period. He suggested alternative 
machine cell arrangements (one for each product mix) and determined their inter-cellular 
material handling costs under all possible product mixes. Based on the calculated expected 
inter-cellular material handling cost for each machine cell arrangement, a near-optimal 
solution is selected. His algorithm has the drawback of considering only the optimal designs 
of each product mix to calculate the expected inter-cell material handling cost. Sankaran & 
Kasilingam [12] presented a mixed integer programming model for different-sized cells 
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within a single layout for a single period. They considered three cost scenarios in their 
problem sets, and proposed a heuristic procedure to solve the model. Harhalakis et al. [13] 
developed a two-stage design approach to obtain a robust CMS design that is effective over 
the ranges of expected demand over multiple periods. They divided a system design horizon 
into elementary time periods. According to their work, the designed cell configuration is 
expected to remain unchanged over the entire multi-period horizon. In the first stage, the 
production volume for each product is determined; and in the second stage, a near-optimal 
cell formation is obtained using a heuristic method. Mungwatanna [16] presented a CMS 
model for dynamic and deterministic production requirements with the presence of routing 
flexibility. He solved the model using CPLEX software, without which large-size problems 
cannot be solved. He then extended his model to the dynamic and stochastic cell design 
problem, and also proposed a heuristic to solve it. Chen & Cao [18] proposed an integrated 
model for production planning in a CMS that minimises the inter-cell material handling cost, 
the fixed charge cost of setting up manufacturing cells, the cost of holding finished items 
over the planning horizon, the cost of setting up the system to process different parts in 
different time periods, and the machine operating cost. Ioannou [19] developed a 
comprehensive method for transforming purely functional manufacturing shops into hybrid 
production systems that have both cellular and functional areas. Schaller [17] proposed an 
integer model that considers part reallocation or equipment reallocation between cells as 
an alternative to the design of a cellular manufacturing system to handle long-term demand 
changes. He employed a problem-specific heuristic called the CB procedure, and the tabu 
search procedure, to obtain the accepted solution. However, parameters like the inter- and 
intra-cell movement of parts, the operational sequence, and batch size are not considered 
in the model. 
 
This paper presents a solution for the cell formation problem with the uncertainty of the 
product mix for a single period. The description of the problem and the development of a 
non-linear programming model are presented in the next section. The use of a genetic 
algorithm to solve the problem is discussed in section 3. A case study is presented to 
illustrate the applicability of the proposed model and the solution technique. The 
computational experience is described in section 4, and conclusions are presented in 
section 5. 
 
2. PROBLEM DESCRIPTION AND MODEL DEVELOPMENT 
 
This section covers the development of a multi-criteria non-linear mixed-integer 
mathematical model for the cell formation problem with the uncertainty of the product mix 
for a single period. The model incorporates real-life parameters like alternate routing, 
operation sequence, duplicate machines, uncertain product mix, uncertain product 
demand, batch size, processing time, machine capacity, and various cost factors. This 
model is based on the framework initially developed by Mungwatanna [16] and Tavakkoli-
Moghaddam et al. [20]. The objective of the proposed model is to minimise the sum of the 
machine constant cost, the operating cost, the inter-cell material handling cost, and the 
intra-cell material handling cost for the given period. 
 
2.1 Assumptions 
 
The following assumptions are made for the development of the model: 
1. There is a finite number of possible product mixes (scenarios) that can occur. 
2. Each product is represented by a unique set of part types and their associated demands. 
3. Each product mix has a known probability of occurrence. 
4. Operating times for all part type operations on different machine types are known. 
5. The capabilities and capacity of each machine type are known. 
6. Parts are moved between and within cells in batches. Inter- and intra-cell batches have 

different costs and sizes. The unit intra- and inter-cell material handling costs are 
constant for all moves, regardless of the distance travelled. 

7. The number of cells used must be specified in advance. Upper and lower bounds and 
the quantity of machines in each cell need to be specified in advance.  
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8. Each machine type can perform one or more operations (machine flexibility). Likewise, 
each operation can be done on one machine type with different times (routing 
flexibility). 

 
2.2 Notation used 
 
The following notations are used in the model: 
 
Indices 
c  =  index for manufacturing cells (c=1,…, C) 
m  =  index for machine types (m=1,…, M) 
p  = index for part types (p=1,…, P) 
j  = index for operations required by part p (j=1,…, Op) 
s =  index for possible product mixes (s=1,…, S) 
 
Input parameters 
tjpm =   time required to perform operation j of part type p on machine type m 
Dp  =  demand for product p 

er
pB
int

   =  batch size for inter-cell movements of part p 

ra
pB
int

 =  batch size for intra-cell movements of part p 

m  =  amortised cost of machine of type m 

m  = operating cost per hour of machine type m 

erint  = inter-cell material handling cost per batch 
raint = intra-cell material handling cost per batch 

 
Tm  =  capacity of each machine of type m (hours) 
LB  =  upper bound cell size 
UB  =  upper bound cell size 
Гs   =  product mix s 

s  =  associated probability of occurrence of product mix s 

Zsw  =     solution cost of using configuration s (designed for product mix s) for  
   product mix w 
ajpm  =     1, if operation j of part type p can be done on machine type m;  
               0, otherwise. 
 
Decision variables 

s
mcN  =  number of machines of type m used in cell c for product mix s 

s
jpmcx  =    1, if operation j of part type p is done on machine type m in cell c for product  

                mix s; 0, otherwise. 
 
2.3 Mathematical formulation 
 
Using the above notation, the mathematical model for the CMS design for a particular 
product mix that forms part families and machine groups simultaneously is presented below. 
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The non-linear integer objective function given in Eq. (1) minimises the total of the 
machine constant (investment) cost, the operating cost, the inter-cell material handling 
cost, and the intra-cell material handling cost for a particular product mix. The first term 
represents the machine investment cost, which is obtained by summing the products of the 
number of machines of each type and their respective costs. Though this term does not 
allow for the extra machine duplication, it leads to effective machine use. The second term 
is the cost of the operating machines, which is the sum of the products of the number of 
hours of each machine type and their respective costs. This term ensures a balance 
between the workload assigned to machines in each cell. The third term is the inter-cell 
material handling cost, which is obtained by summing the products of the number of inter-
cell transfers for each part type and the cost of transferring an inter-cell batch of each part 
type. The last term is the intra-cell material handling cost, which is obtained by summing 
the products of the number of intra-cell transfers for each part type and the cost of 
transferring an intra-cell batch. Equation (2) ensures that each part operation is assigned to 
one machine and one cell. Equation (3) ensures that machine capacities are not exceeded 
and can satisfy the demand. This equation also determines the required number of each 
machine type in each cell, including machine duplication. Equations (4) and (5) specify the 
lower and upper bounds of cells.  
 
3. SOLUTION METHODOLOGY 
 
Since the cell formation problem belongs to the category of NP-hard problems, the use of 
meta-heuristic algorithms such as genetic algorithm, simulated annealing, neural networks, 
and tabu search is unavoidable. A genetic algorithm for solving the proposed model is 
presented in this section. A genetic algorithm has been effectively used by many authors to 
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solve the machine-cell formation problem (Venugopal & Narendaran [21], Gupta et al. [22], 
Hu et al. [23], Onwubolu & Mutingi [24], Suer et al. [25], Tariq et al. [26]). 
3.1 Genetic algorithm 
 
Genetic algorithms (GAs) were introduced by Holland [27], and have been applied in a 
number of fields including mathematics, engineering, biology, and social science (Goldberg 
[28]). GAs are search algorithms based on the mechanics of natural selection and natural 
genetics. They combine the concept of survival of the fittest with structured yet 
randomised information exchange to form robust search algorithms.  
 
A GA is based on an analogy with the phenomenon of natural selection in biology. First, a 
chromosome structure is defined to represent the solutions of the problem. GAs can be 
implemented in a variety of ways. Using this structure, an initial solution population is 
generated, either randomly or using a given heuristic. Then members of the population are 
selected, based on an evaluation function called ‘fitness’ that associates a value with each 
member according to its objective function. The higher a member’s fitness value, the more 
likely it is to be selected. Thus the less fit individuals are replaced by those who perform 
better. Genetic operators are then applied to the selected members to generate a new 
population. This process is repeated until a certain number of iterations are reached. 
 
The main components of a GA for implementation identify six components:  
1. The scheme for coding. 
2. The initial population. 
3. An adaptation function for evaluating the fitness of each member of the population. 
4. A selection procedure. 
5. The genetic operators used to produce a new generation. 
6. Certain control parameter values (e.g. population size, number of iterations, genetic 
operator probabilities).  
 
3.2 Components of the proposed genetic algorithm 
 
1. The scheme for coding 
 
The first step is to determine the solution representation schema. The solution 
representation presented by Tavakkoli et al. [29] in the matrix form is used in this work to 
solve the single-period cell formation problem. Two matrices [X]R×P and [Y]R×P are used to 
represent a solution, as shown in Figure 1, where R = maxp{Op}. The matrix [X] represents 
the assignment of part operation to machine, and the matrix [Y] represents the assignment 
of part operation to cell. xjp is the machine that operation j of part p must be performed 

on, where xjp  jp = {m 1jpma }. Also yjp is the cell to which operation j of part p is 

allocated, where 1 ≤ yjp ≤ C. Because of Op ≤ R  p, some of the entries in the solution 
representation are inherently zero.  

 
 
 
 
 
 
 
 

 
Figure 1: Chromosome microscopic structure 

 
2. The initial population generation 
 
The initial population is generated by constructing the [X] and [Y] matrices randomly using 
a sequential strategy. First, lower bound machines are assigned to each cell randomly. Then 
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the operations related to each part type are assigned randomly to machines existing in cells 
using the ajpm values. As required, the new machines are assigned to cells or relocated 
among them. If possible, each operation should be assigned to the cell to which the 
previous operation was assigned. 
 
3. Fitness function 
 
The purpose of the fitness function is to measure how good the candidate solutions in the 
population are in relation to the objective and constraint functions of the model. In this 
work, the fitness function is the same objective function presented in the mathematical 
model. The new solution is accepted when its objective function value is lower than its 
parents’ value. 
 
4. Selection procedure 
 
The goal of selection is to allow the ‘fittest’ individuals to be considered more often in 
order to reproduce children for the next generation. Each individual is assigned a 
probability of being selected, based on its fitness value. Although better individuals will 
have a higher probability of being selected to reproduce the next generation, all individuals 
in the population will have a chance to be selected. There are many methods to select the 
chromosomes, each with its advantages and disadvantages. In this work, a normalised 
fitness strategy is used. According to this strategy, the fitness of current generation 
chromosomes are first normalised, and then the chromosomes whose normalised fitness is 
less than or equal to zero are selected as a mating pool.  
 
5. GA operators 
 
The GA operators are used to produce a new population generation. Since the chromosome 
structure is in a matrix form, the GA linear operators cannot be used in the traditional way. 
However, the objectives of three operators – cross-over, mutation, and inversion – are 
achieved by considering three cases: columnar, linear, and restricted. In each iteration, 
one of the operations is carried out randomly over one of the matrices [X] or [Y] related to 
the current chromosome.  
 
(i) Inversion operator in horizontal direction: In this case, two numbers are first selected 

randomly in either [X] or [Y] matrix row limits, then the inversion operator in a 
horizontal direction is exercised over the columns obtained (Figure 2). 

  

 
 

Figure 2: Inversion operation as columnar 
 

(ii) Inversion operator in vertical direction: In this case, two numbers are first selected 
randomly in either [X] or [Y] matrix columnar limits, then the inversion operator in a 
vertical direction is exercised over the rows obtained (Figure 3).  
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Figure 3: Inversion operation as linear 
 

(iii) Crossover operator as block: In this case, the blocks are selected randomly from two 
selected chromosomes, and then the crossover operator is carried out to produce two 
new offspring (Figure 4). 

 

 
 

Figure 4: Crossover operator as block 

After the implementation of each operator, the value of the decision variable 
s
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be updated based on the entries in [X] and [Y] matrices, using the relation given below. 
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6. Stopping criterion 
 
The maximum number of generations (N) is used as a stopping criterion. Thus the algorithm 
is stopped if the number of generations exceeds N. 
 
4. CASE STUDY AND COMPUTATIONAL RESULTS 
 
In this section, a case study problem is presented to illustrate the applicability of the 
proposed model in a stochastic environment for single-period planning. The proposed 
algorithm is coded using C++ programming language, and the experiments are run on a 
Pentium 4 2.40 GHz personal computer with 512 MB RAM. A consultancy is carried out for 
the proposed auto-components manufacturing industry to be located in the suburb of 
Chennai, Tamil Nadu, India. A reputable auto-components manufacturing industry, which is 
a batch production industry located in Ambattur Industrial Estate, Chennai (considered the 
hub of the Indian automobile industry) is a leading supplier of sub-assemblies to many 
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automobile companies, including Lucas TVS Ltd, Brakes India Ltd, and Eicher Ltd. This 
industry manufactures a variety of auto-components such as assemblers (P & V assembly 
and flywheel assembly), ball valve parts, distribution parts (shafts), starter motor parts 
(drive parts, core swifter), brake components (calibre piston, plunger adjuster), fuel 
injection pump parts (piston, barrel) and transmission parts (gears, shafts, and flywheels).  
To meet the varying demands, the company has decided to expand its production capacity 
at another location in Chennai. It has submitted a proposal to start a new industry using the 
cellular layout. Our task is to design the CMS for a new firm, for which product mix and 
demand are not known precisely at this design stage. However, from past experience and 
the demand forecasts, three possible product mixes (scenarios) and their associated 
demands are mapped. The data set is shown in Table 1. Three possible product mixes are 
likely to be produced with the probabilities of 0.4, 0.3, and 0.3 respectively in the first 
planning period. In the first product mix, fifteen part types (1, 2, 4, 5, 6, 8, 10, 11, 12, 13, 
14, 18, 19, 20 and 21) are produced. The second product mix consists of sixteen part types 
(1, 2, 3, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, and 22). Similarly, the third product mix 
consists of fourteen part types (2, 3, 4, 5, 8, 9, 11, 12, 13, 16, 17, 18, 20, and 22).  

 

 
Table 1: Product mixes and their demands 

 
The part type attributes, such as the number of operations, operation sequence, processing 
times, inter-cell batch size, and intra-cell batch size, are shown in Table 2. Part 2 requires 
four operations to be completed: operation 1 is performed in M12, operation 2 can be 
performed either in M16 having machining time 0.85 minutes or M8 having machining time 
0.41 minutes; operation 3 is done in M4; and operation 4 can be done either in M2 having 
machining time 0.32 minutes or M8 having machining time 0.48 minutes. This provides the 
routing flexibility.   
 

Part type, 
p 

Demand, Dp 
Scenario 1, Г1 Scenario 2, Г2 Scenario 3, Г3 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

3000 
7500 

0 
2750 
8550 
900 
0 

12000 
0 

4000 
1250 
3600 
8000 
11500 

0 
0 
0 

6000 
750 
5000 
1450 

0 

2000 
3500 
1350 

0 
0 

1750 
2500 
5000 

0 
2750 
750 
0 

4500 
8500 
2250 

0 
6000 

0 
1000 

0 
2750 
1250 

0 
5000 
1800 
1600 
3000 

0 
0 

7500 
2250 

0 
3000 
1750 
7500 

0 
0 

1400 
3500 
4500 

0 
2000 

0 
3000 



 

 208 

P
ar

t 
ty

p
e 

n
u
m

b
er

, 
p
 

N
u
m

b
er

 o
f 

op
er

at
io

n
s,

 
O

p
 

O
p
er

at
io

n
 

se
q
u
en

ce
 

P
ro

ce
ss

in
g 

ti
m

e 
(m

in
),

 
t j

p
m
 

In
te

r-
ce

ll
 

b
at

ch
 s

iz
e 

In
tr

a-
ce

ll
 

B
at

ch
 s

iz
e 

 
P1 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 
P10 
P11 
P12 
P13 
P14 
P15 
P16 
P17 
P18 
P19 
P20 
P21 
P22 

 
5 
4 
4 
3 
5 
7 
4 
3 
4 
5 
3 
4 
3 
6 
3 
4 
3 
3 
4 
6 
3 
4 

 
M10-M7-M14-M11-M13 
M12-M16/M8-M4-M2/M8 
M4-M9/M3-M6-M15 
M2-M5/M12-M10 
M9-M3-M6-M10-M15 
M5-M8-M16-M14-M11-M2-M6 
M6-M3-M1-M14 
M2-M4/M12-M14 
M10-M15-M8-M3 
M6-M10-M5-M12-M3 
M2-M12/M4-M8/M15 
M7-M11-M9-M6 
M12-M2/M6-M15 
M4-M9-M7-M14-M11-M12 
M5-M11-M7 
M16-M14-M12-M8/M2 
M5-M1/M9-M13 
M5-M9-M16 
M8-M11/M1-M3-M6 
M7-M9-M4-M5-M8-M12 
M14-M7/M3-M11 
M13-M8-M5-M3  

 
0.81-0.72-1.20-0.54-0.50 
0.65-0.85/0.41-0.63-0.32/0.48 
0.32-0.41/0.64-0.86-1.10 
0.95-0.65/0.45-0.80 
0.22-0.84-1.50-0.74-.62 
0.88-0.42-0.45-0.72-0.60-1.15-
0.70 
1.30-0.65-0.55-0.80 
0.80-0.55/0.70-0.90 
0.75-0.62-0.45-0.35 
0.22-0.78-0.57-0.32-0.95 
1.15-0.68/0.45-0.94/0.72 
0.36-1.40-1.15-0.74 
0.95-0.45/0.65-0.78 
0.64-0.76-0.82-0.45-0.58-0.95 
0.55-1.58-0.78 
0.68-0.42-0.74-0.36/0.64 
0.52-0.78/1.15-1.26 
1.76-0.72-0.64 
0.65-0.45/0.70-1.42-1.16 
0.95-0.36-0.42-0.66-0.90-0.54 
0.88-0.72/0.58-1.10 
0.75-0.50-0.35-0.94 

 
125 
100 
150 
150 
200 
150 
250 
225 
200 
225 
150 
175 
125 
200 
150 
125 
125 
150 
100 
225 
200 
150 

 
25 
20 
30 
30 
40 
30 
50 
45 
40 
45 
30 
35 
25 
40 
30 
25 
25 
30 
20 
45 
40 
30 

 
Table 2: Part type attributes 

 
Sixteen machine types are required to produce these part types. The machine types that 
are used include hydraulic presses, mechanical presses, CNC lathes, vertical machining 
centres, horizontal machining centres, cylindrical grinders, CNC angular grinders, angular 
CYL grinders, drilling machines, centre lathes, surface grinding machines, tapping 
machines, thread rolling machines, sealed quench furnaces, annealing furnaces, and 
tempering furnaces. Purchase and operating costs are machine-specific. The resource data 
for the different machines used are given in Table 3. Assuming that a machine operates for 
eight hours a day and five days a week for 50 weeks a year, the machine capacity is taken 
to be 2,000 hours. The inter- and intra-cell material handling costs per batch are taken to 
be $30 (γinter) and $6 (γintra) respectively. Due to the non-availability of some production 
data, some of the input parameters are taken from the literature (Chen [14], Wicks & 
Reasor [15]).  
 
This case study has been solved using the proposed genetic algorithm. The GA parameters 
used in running the program are: number of populations used in each generation, K = 150; 
and maximum number of generations (stopping criterion), N = 100. The problem is solved 
independently for each product mix, and the cell configurations are obtained 
correspondingly. For each cell configuration, the total cost – consisting of machine constant 
cost, operating cost, and inter- and intra-cell movement costs – is calculated for different 
product mixes. The solutions obtained for each product mix are shown in Table 4. 
Seifoddini [11] has chosen a cell configuration that has the lowest expected cost. In order 
to determine the expected cost, a payoff matrix for different cell configurations is obtained 
(Table 5). From the pay-off matrix, it may be noted that, if cell configuration 1 is used for 
product mix 2 (product mix 3), then the cell configuration cost is $199,229 ($195,592). If 
cell configuration 2 is used for product mix 1 (product mix 3), then the cell configuration 
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cost is $210,419 ($196,828). Similarly, if cell configuration 3 is used for product mix 1 
(product mix 2), then the cell configuration cost is $212,887 ($189,326). It is obvious that, 
if cell configuration 1 is used for product mix 2 (product mix 3), the solution cost will be 
higher than $180,651 ($192,392); similarly, if cell configuration 2 is used for product mix 1 
(product mix 3), the solution cost will be higher than $207,222 ($192,392). 
 
For each cell configuration, the total expected cost is calculated as follows: 
 

E[Z1] = 0.4 × 207,222 + 0.3 × 199,229 + 0.3 × 195,592 = $201,335 
E[Z2] = 0.4 × 210,419 + 0.3 × 180,651 + 0.3 × 196,828 = $197,411 
E[Z3] = 0.4 × 212,887 + 0.3 × 189,326 + 0.3 × 192,392 = $199,670 

 
From the above, the cell configuration for the second product mix results in the lowest 
total expected cost. Therefore, according to Seifoddini’s work, the cell configuration for 
the second product mix is selected for the design of the manufacturing system. It is possible 
that there is a system design with a lower total expected cost over all product mixes; but it 
may not be optimal for any individual product mix.  
 

 
Machine 

type 
number, m 

 
Investment 

cost ($), m  

 
Operating 

cost 

($/hr), m  

 
Machine 
capacity 

(hr/year), Tm 

M1 
M2 
M3 
M4 
M5 
M6 
M7 
M8 
M9 
M10 
M11 
M12 
M13 
M14 
M15 
M16 

3250 
4500 
3500 
3000 
1800 
1800 
2750 
2500 
3750 
5000 
7500 
1500 
3250 
3750 
3000 
2500 

35 
40 
25 
30 
20 
20 
25 
25 
35 
45 
50 
20 
30 
35 
25 
25 

2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 

 
Table 3: Machine type attributes 

 

Product 
mix, s 

Machine 
constant 
cost ($) 

Operating 
cost ($) 

Inter-cell 
movement 

cost ($) 

Intra-cell 
movement 

cost ($) 

Total cell 
configuration 
cost ($), Zww 

 
1 
2 
3 

 
72,500 
67,755 
71,356 

 
87,897 
71,635 
73,350 

 
29,463 
27,125 
28,374 

 
17,362 
14,136 
19,312 

 
207,222 
180,651 
192,392 

 
Table 4: Solutions obtained for each product mix 
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Product mix, 
s 

Probability, 

s  

Cost of cell configuration ($) 

Z1w Z2w Z3w 

 
1 
2 
3 

 
0.4 
0.3 
0.3 

 
207,222 
210,419 
212,887 

 
199,229 
180,651 
189,326 

 
195,592 
196,828 
192,392 

 
Table 5: Payoff matrix for different cell configuration 

 
Now the weighted-average product mix is used to obtain the solution. Rosenblatt & Kropp 
[30] initially proposed and used this concept of weighted-average product mix for solving 
the plant layout problem under stochastic conditions for a single-period. For the data set 

presented in Table 1, the weighted-average product mix using the relation s

S

s
s




1

 is 

determined for part types P1, P2...and P22 as 1800, 5550, 945, 1580, 4320, 885, 750, 8550, 
675, 2425, 1625, 1965, 6800, 7150, 675, 420, 2850, 3750, 600, 2600, 1405 and 1275 
respectively. Then the solution is obtained using the weighted-average product mix. The 
total cost of the new cell configuration is $189,176, which includes a machine constant cost 
of $71,225, operating cost of $72,121, inter-cell movement cost of $17,088, and intra-cell 
movement cost of $28,742. Table 6 compares the system design costs for using different 
cell configurations for different product mixes. 
 

Scenario Solution, Zs Expected solution cost, E[Zs] 
Product mix 1 
Product mix 2 
Product mix 3 
Weighted-average product mix 

Z1 
Z2 
Z3 
Z 

$201,335 
$197,411 
$199,670 
$189,176 

 
Table 6: Costs comparison 

 
It is evident that the cell configuration obtained for the weighted-average product mix 
results in a lower total cost, and so the corresponding cell configuration has been proposed 
for the launch of the new production unit. The proposed cell configuration comprises three 
cells. Cell 1 consists of machine types M2, M4, M5 (two units), M6, M9, M14, M15 and M16; 
part types P3, P6, P8, P11, P13, P14, P16 and P18 can be manufactured in this cell. Cell 2 
consists of machine types M3 (two units), M5, M6, M7 (two units), M8, M9, M12 and M15; 
part types P2, P5, P7, P8, P12, P19 and P22 can be made in this cell. Cell 3 consists of 
machine types M1, M7, M10, M11 (two units), M12, M13 and M16; part types P1, P4, P10, 
P12, P15, P17, P20 and P21 can be processed in this cell.  
 
5. CONCLUSION 
 
In this work, a genetic algorithm for a multi-objective integrated cell formation 
mathematical model to deal with the uncertainty of the product mix for a single period has 
been presented. The proposed solution model considered stochastic production 
requirements during the design stage itself. Also, a simultaneous consideration of various 
production parameters – such as alternate routing, operation sequence, duplicate machines, 
uncertain product mix, uncertain product demand, batch size, processing time, and 
machine capacity – has made the cell formation more complex but more realistic. The 
applicability of the proposed model is illustrated through the consultancy work carried out 
for the proposed auto-components manufacturing industry. It is evident from the case study 
problem that in an uncertain product mix environment, the cell configuration obtained 
using the weighted-average product mix approach results in a lower total cost than that of 
the expected cost approach proposed by Seiffoddini. The proposed model also has the 
advantage of simultaneously forming machine cells and part families. The algorithm was 
tested using problem data sets from the literature. The results suggest that the algorithm is 
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efficient and provides near-optimal solutions in a reasonable time. This work can be 
extended to the mutli-period design CMSs under stochastic production requirements. 
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