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Abstract. Randomized response (RR) is an interview technique that can be used to protect the privacy of respondents if sensitive questions are
posed. This paper explains how to measure change in time if a binary RR question is posed at several time points. In cross-sectional research
settings, new insights often gradually emerge. In our setting, a switch to another RR procedure necessitates the development of a trend model that
estimates the effect of the covariate time if the dependent variable is measured by different RR designs. We also demonstrate that it is possible to
deal with self-protective responses, thus accommodating our trend model with the latest developments in RR data analysis.
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Randomized response (RR) is an interview technique that
can be used if sensitive questions are posed and respondents
are reluctant to answer directly (Chaudhuri & Mukerjee,
1988; Warner, 1965). Sensitive questions can be about
fraud, drinking, or sexual behavior. A recent meta-analysis
shows that RR designs lead to more valid answers than other
conventional question-and-answer methods (Lensvelt-
Mulders, Hox, van der Heijden, & Mass, 2005). RR designs
can be defined in various ways, but they all have a specified
probability mechanism that protects the privacy of individ-
ual respondents. The resulting RR variables represent mis-
classified responses on categorical variables if conditional
misclassification probabilities are fixed by design (Chen,
1989). The true status of individual respondents is not
revealed because their observed answers depend on the
misclassification design as well as on the true status.

In addition to the RR setting, misclassification probabil-
ities occur in several other fields of research. The one most
closely related to RR is the postrandomization method
(PRAM, Kooiman, Willenborg, & Gouweleeuw, 1997) that
misclassifies values of categorical variables using a comput-
erized process after the data are collected to protect the
respondents’ privacy. PRAM uses RR after the data collec-
tion. Misclassification also plays a role in medicine and epi-
demiology with the probabilities correctly classified as a
case (sensitivity) or noncase (specificity), see Chen (1989),
Copeland, Checkoway, McMichael, and Holbrook (1977),
Greenland (1980, 1988), and Magder and Hughes (1997).
Misclassified data can be analyzed with loglinear models

or with the general framework of latent variable models
and latent class models (see e.g., Haberman, 1979;
Hagenaars, 1990, 1993; Rabe-Hesketh & Skrondal, 2007;
Vermunt & Magidson, 2003; Vermunt, 2005; Walter, Irwig,
& Glasziou, 1999).

This paper proposes a model to measure changes in time
whenever RR is used to pose sensitive questions at several
time points cross-sectionally. The model is illustrated with
data from a Dutch repeated cross-sectional study on
noncompliance to rules regarding social benefits. Data are
collected every 2 years since 2000 and given that measures
to prevent regulatory noncompliance are intensified during
this period, the question arises as to whether the prevalence
of regulatory noncompliance changes over the years and
how the change can be modeled.

Considering time a covariate, we propose a method to
measure the effect of this covariate if the dependent variable
is measured by RR. Several aspects of the cross-sectional
study at hand make it impossible to use standard analysis
methods and necessitate a new approach in the analysis of
RR data to deal with research questions of this type. Firstly,
the fact that RR variables represent misclassified responses
on categorical variables precludes the use of, for example,
the linear logit model (Agresti, 2002, p. 180), to test for a
linear trend. Using the framework of Van den Hout and
van der Heijden (2004) and the results obtained by Maddala
(1983) and Scheers and Dayton (1988), the trend tests pro-
posed in this paper take the misclassification induced by the
RR design into account. Secondly, as a consequence of
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increasing knowledge about the efficiency of RR designs, a
change in the design occurs during the cross-sectional study.
In this paper, we show how to accommodate the trend
model for design changes. Thirdly, to account for self-pro-
tective responses (SP) being a new development in RR data
analysis (Böckenholt & van der Heijden, 2007; Cruyff, van
den Hout, van der Heijden, & Böckenholt, 2007), we also
present a way to incorporate SP into the trend model.

The outline of this paper is as follows. The following
section explains the RR design as a misclassification design
and shows how to deal with changes in the RR design over
time. The section ‘‘Logit Model for Trend’’ introduces the
trend model for RR variables with an additional procedure
to account for SP. The section ‘‘Application: Prevalence of
Regulatory Noncompliance Regarding Social Benefits’’
shows an application of the model. The last section
concludes the paper with a discussion.

The RR Design

The basic idea of RR is that perturbation induced by a mis-
classification design protects the respondents’ privacy. Since
the researcher is familiar with the statistical properties of the
perturbation, a correct analysis of the observed data is feasi-
ble that takes the misclassification into account. There are
several RR designs (cf. Fox & Tracy, 1986, Chap. 2).
Two of these designs are used and discussed below. Each
design uses a different randomizing device, that is, playing
cards and dice.

For Kuk’s RR design (Kuk, 1990), the randomizing
device consists of two stacks of cards, conditional on true
status. The randomizing device generates binary outcomes,
that is, the yes and no answers, according to two Bernoulli
distributions with known parameters. One way to elicit the
required binary outcomes is using two stacks of cards with
varying numbers of red cards. Assume answering yes to the
sensitive question is associated with the color red, the Kuk
design can be implemented by creating a stack that contains
more red than black cards, 8/10 and 2/10, respectively. The
other stack, representing the no answer, contains more black
than red cards, with 2/10 red cards. After shuffling each
stack, the respondent is asked to draw a card at random from
each stack. Then the sensitive question is posed. If the
answer is yes, the respondent should name the color of the
card from the right stack (with more red cards) and if
the answer is no, the respondent should name the color of
the card from the left stack (with more black cards). More
details on using the Kuk design can be found in Van der
Heijden, van Gils, Bouts, and Hox (2000).

The forced response design (Boruch, 1971) uses dice as
randomizing device. The binary responses are generated
according to the known distribution of the sum of the out-
comes of two dice. After a sensitive question is posed, the
respondent throws two dice and keeps the outcome hidden
from the interviewer. If the outcome is 2, 3, or 4, the respon-
dent should answer yes. If the outcome is 5, 6, 7, 8, 9, or 10,
the respondent should answer truthfully. If the outcome is 11
or 12, the respondent should answer no (for details on using

the forced response method, see Lensvelt-Mulders, van der
Heijden, & Laudy, 2006).

In the RR design by Kuk, violations are associated with
the color red. As a result, the probability of a correct classi-
fication is 8/10 for the respondents who violate regulations
as well as those who do not. The RR matrix that contains
the conditional misclassification probabilities

pij ¼ P ðcategory i is observed j true category is jÞ ð1Þ
is therefore given by

PKuk ¼
p11 p12
p21 p22

� �
¼ 8=10 2=10

2=10 8=10

� �
: ð2Þ

Similarly, the forced response design yields the follow-
ing transition matrix:

PFR ¼ 11=12 2=12

1=12 10=12

� �
: ð3Þ

As an illustration, given the forced response design with
the transition matrix of Equation 3, the probability of a
forced yes is equal to p12 = 1/6, the probability of a forced
no is p21 = 1/12, and the probability of a truthful answer is
1 – (p12 + p21) = 3/4. The probability of an observed yes
response is equal to p�

1 ¼ p12 þ ð1� ðp12 þ p21ÞÞp1, with
p1 representing the latent yes answer. The observed propor-
tion of yes answers, denoted by p̂�

1, serves as an estimate of
p�
1. An estimate p̂1 of the latent probability of a yes answer

p1 can be obtained as follows:

p̂1 ¼ p̂�
1 � p12

1� ðp12 þ p21Þ
ð4Þ

and the estimated variance of p̂1 is given by (cf. Fox &
Tracy, 1986, p. 21):

r̂p̂1 ¼
p̂�
1ð1� p̂�

1Þ
Nðp12 þ p21Þ2

: ð5Þ

The general form of RR designs is (Chaudhuri &
Mukerjee, 1988; Van den Hout & van der Heijden, 2002)

p� ¼ Pp; ð6Þ
where in the event of dichotomous items, p� ¼ p�

1; p
�
2

� �0
is

a vector with the probabilities of the observed answers,
p = (p1,p2)0 is the vector of the probabilities of the latent
status, and P is the 2 · 2 matrix defined in Equation 2
or Equation 3. If P is nonsingular and the observed propor-
tion of yes and no answers are unbiased point estimates p̂�

of p*, then p can be estimated by the unbiased moment
estimator (ME) (Chaudhuri & Mukerjee, 1988; Kuha &
Skinner, 1997):

p̂ ¼ P�1p̂�: ð7Þ
If a binary RR question is posed on several occasions t,

the vector with the probabilities of the observed answers in
Equation 6 can be expressed as p� ¼ p�

1; p
�
2; . . . ; p

�
k

� �0
,

where k = 2t because at each time point t both yes and no
answers are observed. Accordingly, the matrix of condi-
tional misclassification probabilities P in Equation 6 has
the dimensions k · k and estimates of P can be obtained
with Equation 7. An example of this extension to several
time points is given in the following section.
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It should be noted that in practice it is possible to obtain
estimates that are outside the parameter space [0,1]k if, for
example, the observed proportion of yes answers is very
small. Van den Hout and van der Heijden (2002) demon-
strate that the maximum likelihood estimator is, in general,
a good alternative to the ME and, in the event of boundary
solutions, the authors propose using the maximum of the
likelihood for point estimation and the bootstrap percentile
method to obtain confidence intervals for the point
estimates.

Repeated Cross-Sectional RR Data
and RR Design

Estimation Efficiency and Perceived Privacy
Protection

In research settings with repeated measurements, design
changes can occur as more knowledge gradually emerges
about the design properties. For example, the repeated
cross-sectional study on regulatory noncompliance that
serves as an illustration in the application section of this
paper uses two different RR designs, that is, Kuk’s method
in 2000 and the forced response design in the other years.
The switch to the forced response design in 2002 results
from greater insight into its advantages.

The probabilities of the randomization device result from
a compromise between estimation efficiency and perceived
respondent privacy protection. Fox and Tracy (1986, pp.
25–26) discuss this issue extensively: to provide optimal
respondent protection, the probability of giving a truthful
response should be as small as possible. However, the smal-
ler the truthful response probability, the larger the variance
of the estimator, thus leading to less efficiency.

Although Kuk’s design has the advantage that respon-
dents answer by naming the color of a card instead of giving
a more self-incriminating yes or no answer, the forced
response design has more advantages. A comparison
between the forced response design and Kuk’s design shows
that they both yield the same estimated prevalences, but the
forced response design is more efficient and comparatively
easy for respondents to follow (Van der Heijden et al.,
2000). Moreover, the probabilities of a forced yes or no
tend to be overestimated by the respondents (Moriarty &
Wiseman, 1976).

As regards the perception of the privacy protection pro-
vided by the forced response design in our cross-sectional
study, the choice of the value 3/4 for the probability of a
truthful answer, as described in the section ‘‘The Random-
ized Response Design’’, does not seem to be the smallest
possible probability, but it follows from the results obtained
byMoriarty and Wiseman (1976) and Soeken and Macready
(1982) who demonstrate that the probability of a truthful
answer can be chosen between .7 and .8 without interfering
with the perceived grade of anonymity. Given their results,
by choosing .75, there is a probability of .25 to be divided
between the forced yes and the forced no probability.

The yes answer represents the acknowledgment of noncom-
pliance and because of the respondents’ reluctance to admit
noncompliance, the forced yes probability is twice as large
as the forced no answer to make the respondent more com-
fortable answering yes. At the same time the forced yes
probability is approximately in the same range as the
expected prevalence of the sensitive topic in the population,
as recommended by Clark and Desharnais (1998).

Accommodating Changes in the RR Designs

Given the switch of RR design, the misclassification proba-
bilities can be arranged in such a way that it is possible to
estimate the prevalences of RR variables collected in a
repeated cross-section. In our application (see the section
‘‘Application: Prevalence of Regulatory Noncompliance
Regarding Social Benefits’’), RR variables are measured
on three time points and the matrix of misclassification prob-
abilities in Equation 6 can be generalized as follows. Firstly,
the probabilities of the observed answers need to be restruc-
tured. The RR variable with two categories i = 1,2 is
observed at three time points (t = 1,2,3), leading to the prob-
abilities for the observed answers p�

it. The 2 · 3 table of
observed answer probabilities can be represented as a vector
p� ¼ ðp�

11; p
�
21; p

�
12; p

�
22; p

�
13; p

�
23Þ0, and similarly, we obtain

the vector p = (p11, p21, p12, p22, p13, p23)0. The transition
matrix P in Equation 6 can be extended to a block diagonal
matrix P composed of blocks Pt for each time point t. The
result is the following 6 · 6 matrix:

P ¼
P1 0 0

0 P2 0

0 0 P3

0
B@

1
CA: ð8Þ

To accommodate the various RR designs used in our
application, which consist of a combination of Kuk’s
method and the forced response method, the block diagonal
matrix can be changed in the following way: P1 is defined
by the misclassification probabilities of the Kuk design in
Equation 2, and P2 and P3 are defined by the misclassifi-
cation probabilities of the forced response design in
Equation 3.

Logit Model for Trend

We now return to our research question: Has the prevalence
of noncompliance changed over the years? How can the
change be modeled? This sensitive question is the depen-
dent variable and the time points represent the independent
variable with scores t = 1, 2, 3. If one expects a monotone
trend, this hypothesis can be tested with the linear logit
model (cf. Agresti, 2002, p. 180):

p1t ¼ expðb0 þ b1tÞ
1þ expðb0 þ b1tÞ

; ð9aÞ
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p2t ¼ 1

1þ expðb0 þ b1tÞ
; ð9bÞ

where p1t and p2t refer to the probability of a latent yes and
no answer, respectively, at time point t. The independence
model is the special case where b1 = 0. An expansion of
the model to include a quadratic trend is obtained by add-
ing the term b2t

2 to the model b0 + b1t. The log likelihood
is given by

lðbjnÞ ¼
X
t

n1t log p1t þ
X
t

n2t log p2t; ð10Þ

which can be expressed more concisely as

lðbjnÞ ¼ uðn log pÞ; ð11Þ
where u is the unit vector.

If the dependent variable is an RR variable, the log like-
lihood should take the resulting misclassification into
account. Using the misclassified observed frequencies n�it
and probabilities p�

it, the adaptation of the log likelihood
in Equation 10 becomes

lðbjn�Þ ¼
X
t

n�1t log p
�
1t þ

X
t

n�2t log p
�
2t:

Analogously to Equation 11, the log likelihood can also
be expressed in matrix algebra as

lðbjn�Þ ¼ uðn� log p�Þ ¼ uðn� log PpÞ; ð12Þ
where elements p1t and p2t of vector p are defined in
Equations 9a and 9b, and P is a block diagonal matrix
as in Equation 8. Maximizing the log likelihood in Equa-
tion 12 over parameters b leads to estimated probabilities
for the yes and no answers on each time point, that is, p̂1t

and p̂2t.
A goodness-of-fit measure for the trend models can be

obtained with the likelihood ratio statistic using the log like-
lihood defined in Equation 12. It makes it possible to test the
hypotheses of no change (the independence model) and lin-
ear or quadratic trend (the latter is only possible, of course, if
there are enough time points to leave degrees of freedom). It
is well known that using the order in the time points leads to
more efficient estimates of pit and more powerful tests (cf.
Agresti, 2002, Section 6.4, p. 236). The R-code to fit the
models described in this section is available from the
authors.

Accounting for SP

Although the respondents’ privacy is protected by the RR
design, the respondents do not always perceive it this way.
Since the RR forces respondents to give a potentially self-
incriminating answer about something they did not do, they
might give SP, that is, respondents say no even if – accord-
ing to the randomizing device – they should have said yes
(see e.g., Edgell, Himmelfarb, & Duncan, 1982). In our
application, the on-line questionnaires are designed in such
a way that the outcome of the dice is not recorded and this is
noted in the instructions given to the respondents. As a
result, the respondents are free to give a different answer

than the yes or no based on the dice. Although RR performs
relatively well, by eliciting more admissions of fraud than
direct questioning or computer-assisted self-interviews
(Lensvelt-Mulders et al., 2005), noncompliance prevalence
might still be underestimated if SP is not taken into account.

Recently, several studies have focused on the detection
or estimation of SP in the RR setting. Clark and Desharnais
(1998) show that by splitting the sample into two groups
and assigning each group a different randomization proba-
bility, it is possible to detect the presence of SP responses
and to measure their extent. Böckenholt and van der Heijden
(2007) use a multivariate approach to estimate SP by pro-
posing an item randomized-response (IRR) model, with a
common sensitivity scale assumed for a set of RR variables.
Response behavior that does not follow the RR design is
approached by introducing mixture components in the
IRR models with the first component consisting of respon-
dents who answer truthfully and follow an item response
model, and the second component consisting of respondents
who systematically say no to every item in a subset of items.
A similar approach is adopted by Cruyff et al. (2007) who
work out the same idea in the context of loglinear models.

Since we feel this new development to correct RR esti-
mates for SP responses is important, we propose the follow-
ing procedure to incorporate SP into the trend model. In the
first step, we estimate the amount of SP at each wave using
the Profile Likelihood method proposed by Cruyff et al.
(2007). In the second, change in time is modeled using
the frequencies adjusted for SP.

The combination of SP estimation with an opportunity to
account for changes in RR design, as described in the sec-
tion ‘‘Repeated Cross-Sectional RR Data and RR Design’’,
presents a new approach in the setting of cross-sectional RR
data and has the following advantages. A change in the RR
design might lead to differences in the precision of the esti-
mated noncompliance prevalences, which are associated
with the amount of trust respondents have in a particular
RR design. Less trust leads to more SP. Correcting for SP
could lead to better estimates of noncompliance at each time
point, and thus to a more valid estimate of the trend. In addi-
tion, the estimation of SP at each time point makes it possi-
ble to adjust the misclassification probabilities of the RR
design at the next time point, leading to a better balance
between estimation efficiency and privacy protection.

A drawback of the two-step approach we propose is that
the uncertainty about SP estimates in the first step is not
automatically taken into account in the theoretical standard
errors of the trend model in the second step. Empirical stan-
dard errors are thus obtained for the regression coefficients
of the trend model using the non-parametric bootstrap
(Efron & Tibshirani, 1998). The details of the bootstrap pro-
cedure are as follows:

• At each time point, sample B times n respondents with
replacement, with n equal to the sample size at each
time point.

• At each time point, estimate SP for each bootstrap sam-
ple. Adjust the bootstrap sample frequencies for SP at
each time point (first step of the two-step approach).
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• Fit the independence model and the linear trend model
to each of the B bootstrap samples. This results in B
estimates of the intercept in the independence model
(or intercept only model) and B estimates of the inter-
cept and slope in the linear trend model. The standard
deviations of the distributions of these B intercept and
slope estimates yield the bootstrap estimates of stan-
dard errors and the 95% bootstrap percentile intervals
(second step of the two-step approach).

Application: Prevalence of Regulatory
Noncompliance Regarding Social
Benefits

The Data

It is mandatory for Dutch employees to be insured under the
Disability Insurance Act and, provided certain conditions are
met, a formerly employed person is entitled to financial ben-
efits amounting to as much as 70% of his last income. The
welfare system is rather costly and the Dutch Department of
Social Services regularly monitors the prevalence of
noncompliance to the rules. After a pilot in 1998, three
waves followed in 2000, 2002, and 2004. A detailed
description of the 2002 cross-sectional study is given in
Lensvelt-Mulders et al. (2006). The Department of Social
Affairs intensifies the measures to prevent regulatory non-
compliance in these years and is interested in knowing

whether the prevalence of regulatory noncompliance
changes over the years and how the change can be modeled.

The application focuses on the following sensitive ques-
tion about the health of the respondent: For periods of any
length at all, do you ever feel stronger and healthier and
able to work more hours without informing the Department
of Social Services of this change? If noncompliance is
detected, it can lead to sanctions and sometimes even to loss
of invalidity insurance benefits. Given the sensitivity of the
topic, asking respondents directly whether they violate the
rules will not yield valid results (cf. Van der Heijden
et al., 2000). A RR design is thus used at each wave to
ensure the confidentiality of the answers. For the question
just described, Table 1 displays the observed frequencies
of yes (n�1) and no (n�2) answers at the three time points as
well as estimated probabilities of regulatory noncompliance
corrected for the RR design (as explained in the section
‘‘The Randomized Response Design’’). Person weights are
used to weight the sample toward population characteristics
(cf. Lensvelt-Mulders et al., 2006). A change of the RR
design occurred at time point 2002, where Kuk’s design is
replaced by the forced response design. Accordingly, the
block diagonal matrix of misclassification probabilities in
Equation 8 is used to accommodate this RR design change.

Results

Two models, the independence model and the linear trend
model, are fitted to the RR data. The goodness-of-fit of
the models is evaluated with the likelihood ratio statistic.
Figure 1 shows that the estimated regulatory noncompliance
prevalences decrease monotonically over the time points,
and the estimated logistic regression parameter for the linear
trend thus has a negative value (see Table 2). The value of
the likelihood ratio statistic L2 in Table 2 indicates that the
independence model does not fit (L2 = 10.415, df = 2,
p = .001), whereas the linear model produces a good fit:
L2 = 0.004, df = 1, p = .95. Testing the linear model against
the independence model (see the DL2-values in the lower
part of Table 2) leads to the conclusion that the linear trend
model is a significant improvement. In addition, both param-
eters of the linear trend model depart significantly from zero.
This means that of the people entitled to social benefits, the
proportion of respondents who do not obey the rule of
informing the Department of Social Services about any
improvement in their health significantly decreased during
the period 2000–2004.

Table 1. Cross-sectional data consisting of observed
weighted frequencies of yes (n�1) and no (n�2)
answers measured at three time points, and
estimated prevalences of noncompliance (p̂1)
with 95% confidence intervals

2000
(n = 1308)

2002
(n = 1760)

2004
(n = 830)

n�1 388 466 197
n�2 920 1294 633

p̂1 0.16 0.10 0.07
95% CI [0.13, 0.19] [0.07, 0.13] [0.03, 0.11]

Table 2. Results trend analyses (the model of choice is in bold typeface)

Model L2 df p b̂0 r̂b̂0

� �
b̂1 r̂b̂1

� �

[1] Independence 10.415 2 .001 �2.09 (0.10)
[2] Linear 0.004 1 .95 �1.17 (0.28) �0.49 (0.16)

DL2 Ddf p
[1]–[2] 10.411 1 .001
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Accounting for SP

We now present the results of the trend analysis that takes
SP into account using the two-step approach. It should be
noted that simply because multivariate RR data are needed
to estimate the probability of SP, it is not possible to simul-
taneously model change in time and SP behavior, whereas
we have repeated univariate data here (note that at each time
point a distinct sample is used, see Table 1). At the first step,
we estimate the amount of SP at each wave using multivar-
iate data consisting of three additional RR questions about
health, which are part of the full data set. Given the esti-
mates of SP for each wave, a correction for SP is carried
out by adjusting the sampling weights of the data in accor-
dance with the estimated amount of SP. In the second step,
we use the estimates of SP as external information in our
trend analyses. Using this approach, the SP proportion is
estimated regarding the data in Table 1 with the Profile Like-
lihood method proposed by Cruyff et al. (2007). The result-
ing proportion of SP-answers in the three waves are .13, .15,
and .11, in 2000, 2002, and 2004, respectively.

Adjusting the observed frequencies for the SP propor-
tions yields the following estimates of regulatory noncom-
pliance prevalences p̂: .24, .17, and .11 for 2000, 2002,
and 2004, respectively. Comparing these SP-corrected
noncompliance prevalences with the uncorrected probabili-
ties in Table 1 clearly shows that the SP-corrected probabil-
ities are higher and that not accounting for SP leads to an
underestimation of noncompliance prevalences. Since the
estimated proportions of SP-answers do not change consid-
erably over the years and the findings by Van der Heijden
et al. (2000) show that Kuk’s design and the forced respond
method yield the same estimates of noncompliance preva-

lences, no adjustments are made to the misclassification
probabilities of the RR design in the cross-sectional study.

In the second step, change in time is modeled by fitting
the trend model to the observed frequencies adjusted for SP
and leads to the results shown in Table 3. The likelihood
ratio statistic L2 is equal to 17.62 (df = 2, p = .00) for the
independence model and for the linear trend model
L2 = 1.27 (df = 1, p = .26). The model fit clearly improves
after adding a parameter to account for linear trend. Follow-
ing the bootstrap set-up explained in the section ‘‘Account-
ing for Self-protective Responses’’, the variability of the
logistic regression parameters is estimated by bootstrap stan-
dard deviations. The results are based on the observed fre-
quencies of yes or no responses in Table 1 and three
additional RR questions about health in each of the three
waves. For each of the years 2000, 2002 and 2004, 1,000
times n respondents are sampled with replacement, with n
equal to the sample size 1308, 1760, and 830 for the years
2000, 2002, and 2004, respectively.

The 95% bootstrap confidence intervals (percentile
method) show that both of the parameters of the linear
model depart significantly from zero, leading to the conclu-
sion that the SP-corrected noncompliance prevalences
decrease linearly on the logit scale over the three time
points. This means the proportion of people who do not
obey the rule about informing the authorities if their health
improves decreases in the period from 2000 to 2004.

Discussion

This paper shows how to measure the effect of the covariate
time on repeated cross-sectional RR data taking RR design
changes and SP into account. Due to the misclassification
design, traditional trend models cannot be used. A key ele-
ment of the proposed method is the construction of a block
diagonal matrix with conditional classification probabilities
for each time point, making it possible to use different RR
designs over time. The block diagonal matrix can easily
be extended to include one or more additional categorical
covariates. For example, one might wish to know whether
noncompliance behavior differs between men and women
or whether the difference remains constant over time.

0.
05

0.
10

0.
15

0.
20π

2000 2002 2004

Figure 1. Univariately estimated regulatory noncompli-
ance prevalences (represented by the dots) with 95%
confidence intervals, and fitted trend line on the RR
question For periods of any length at all, do you ever feel
stronger and healthier and able to work more hours
without informing the Department of Social Services of
this change?

Table 3. Results trend analyses on univariately estimated
regulatory noncompliance prevalences corrected
for SP with likelihood ratio statistics (L2),
bootstrap estimates of standard errors (̂sB), and
bootstrap percentile confidence intervals

Model b̂ ŝB 95% CI

[1] Independence (L2 = 17.62, df = 2, p = .00)
b̂0 �1.61 0.10 [�1.75, �1.41]

[2] Linear (L2 = 1.27, df = 1, p = .26)
b̂0 �0.67 0.30 [�1.07, �0.09]
b̂1 �0.50 0.16 [�0.81, �0.26]
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Although the RR method protects the respondents’ pri-
vacy, it does not entirely exclude an evasive response bias.
As a result, noncompliance prevalences might still be under-
estimated if SP is not taken into account. We show that it is
possible to correct RR estimates for SP in the trend model
using a two-step procedure with the amount of SP estimated
in the first step and the trend model fitted on frequencies
corrected for the SP estimates in the second step.

The two-step procedure has the disadvantage of being
computationally demanding, but it seems inevitable in the
setting of repeated univariate data, with a distinct sample
used at each time point. In this situation, it is not possible
to simultaneously model change in time and SP behavior,
as is shown in the recently developed methods to correct
RR estimates for SP responses. It should be noted that the
two-step procedure uses the same data twice, that is, to esti-
mate the SP probabilities and fit the model with associated
standard errors for the model parameters. A possible solu-
tion would be to use cross-validation, estimating the SP
and fitting the model on the training set and obtaining the
variability estimates for the model parameters in the test
set, although this would lead to a very complex simulation
set-up. Estimating SP is a recent development and requires
further research.

It is the combination of taking design changes and SP
into account that constitutes a new approach to cross-sec-
tional RR data. The possible effects of RR design changes
on the trend in the estimated prevalences can be accommo-
dated by taking the presence of SP into account. In addition,
it is now possible to adjust the misclassification probabilities
of the RR design according to the SP estimates at the previ-
ous time point, thus providing a better balance between
estimation efficiency and privacy protection.
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& Böckenholt, U. (2007). Log-linear randomized-response
models taking self-protective response behavior into account.
Sociological Methods & Research, 36, 266–282.

Edgell, S. E., Himmelfarb, S., & Duncan, K. L. (1982). Validity
of forced response in a randomized response model. Soci-
ologial Methods and Research, 11, 89–110.

Efron, B., & Tibshirani, R. (1998). An introduction to the
bootstrap. London: Chapman and Hall.

Fox, J. A., & Tracy, P. E. (1986). Randomized response. A
method for sensitive surveys (No. 58). Newbury Park: Sage
Publications.

Greenland, S. (1980). The effect of misclassification in the
presence of covariates. American Journal of Epidemiology,
112, 564–569.

Greenland, S. (1988). Variance estimation for epidemiologic
effect estimates under misclassification. Statistics in Medi-
cine, 7, 745–757.

Haberman, S. J. (1979). Analysis of qualitative data: New
developments (Vol. 2). New York: Academic Press.

Hagenaars, J. A. (1990). Categorical longitudinal data. Loglin-
ear analysis of panel, trend and cohort data. Newbury Park:
Sage.

Hagenaars, J. A. (1993). Loglinear models with latent variables.
Newbury Park: Sage.

Kooiman, P., Willenborg, L. C. R. J., & Gouweleeuw, J. M.
(1997). PRAM: A method for disclosure limitation of
microdata. Voorburg/Heerlen: Statistics Netherlands
(Research paper No. 9705).

Kuha, J., & Skinner, C. (1997). Categorical data analysis and
misclassification. In L. Lyberg (Ed.), Survey measurement
and process quality. New York: Wiley.

Kuk, A. Y. C. (1990). Asking sensitive questions indirectly.
Biometrika, 77, 436–438.

Lensvelt-Mulders, G. J. L. M., Hox, J. J., van der Heijden,
P. G. M., & Maas, C. J. M. (2005). Meta-analysis of
randomized response research: Thirty-five years of valida-
tion. Sociological Methods and Research, 33, 319–348.

Lensvelt-Mulders, G. J. L. M., van der Heijden, P. G. M., &
Laudy, O. (2006). A validation of a computer-assisted
randomized response survey to estimate the prevalence of
fraud in social security. Journal of the Royal Statistical
Society A, 169, 305–318.

Maddala, G. S. (1983). Limited dependent and qualitative
variables in econometrics. Cambridge: Cambridge Univer-
sity Press.

Magder, L. S., & Hughes, J. P. (1997). Logistic regression when
the outcome is measured with uncertainty. American Journal
of Epidemiology, 146, 195–203.

Moriarty, M., & Wiseman, F. (1976). On the choice of a
randomization technique with the randomized response
model. In Proceedings of the social statistics section of the
American statistical association (pp. 624–626). Washington,
DC: American Statistical Association.

Rabe-Hesketh, S., & Skrondal, A. (2007). Multilevel and latent
variable modeling with composite links and exploded
likelihoods. Psychometrika, 72(2), 123–140.

Scheers, N. J., & Dayton, C. M. (1988). Covariate randomized
response models. Journal of the American Statistical Asso-
ciation, 83, 969–974.

Soeken, K. L., & Macready, G. B. (1982). Respondents’
perceived protection when using randomized response.
Psychological Bulletin, 92, 487–489.

Van den Hout, A., & van der Heijden, P. G. M. (2002).
Randomized response, statistical disclosure control and
misclassification: A review. International Statistical Review,
70, 269–288.

Van den Hout, A., & van der Heijden, P. G. M. (2004). The
analysis of multivariate misclassified data with special
attention to randomized response. Sociological Methods
and Research, 32, 384–410.

Frank et al.: Repeated Cross-Sectional Randomized Response Data 151

� 2009 Hogrefe & Huber Publishers Methodology 2009; Vol. 5(4):145–152



Van der Heijden, P. G. M., van Gils, G., Bouts, J., & Hox, J. J.
(2000). A comparison of randomized response, computer-
assisted self-interview, and face-to-face direct questioning.
Eliciting sensitive information in the context of welfare and
unemployment benefit. Sociological Methods and Research,
28, 505–537.

Vermunt, J. K. (2005). Mixed-effects logistic regression models
for indirectly observed outcome variables. Multivariate
Behavioral Research, 40, 281–301.

Vermunt, J. K., & Magidson, J. (2003). Latent class models for
classification. Computational Statistics and Data Analysis,
41, 531–537.

Walter, S. D., Irwig, L., & Glasziou, P. P. (1999). Meta-analysis
of diagnostic tests with imperfect reference standards.
Journal of Clinical Epidemiology, 10, 943–951.

Warner, S. L. (1965). Randomized response: A survey technique
for eliminating answer bias. Journal of the American
Statistical Association, 60, 63–69.

Laurence E. Frank

Department of Methodology and Statistics
Universiteit Utrecht
Heidelberglaan 1
P.O. Box 80140
3508 TC Utrecht
The Netherlands
Tel. +31 30 253 4438
Fax +31 30 253 5797
E-mail L.E.Frank@uu.nl

152 Frank et al.: Repeated Cross-Sectional Randomized Response Data

Methodology 2009; Vol. 5(4):145–152 � 2009 Hogrefe & Huber Publishers


