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Summary. Krylov subspace methods are well-known for their nice properties, but
they have to be implemented with care. In this article the mathematical conse-
quences encountered during implementation of Krylov subspace methods in an ex-
isting layout-simulator are discussed. Briefly, the representation in a circuit is visited
and two methods to avoid parts of the redundancy are drawn.
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1 Introduction

Wireless applications are gaining interest in the electronic industry nowadays.
Integration plays a more and more important role into the design of these ap-
plications. Technologies like SoC and RF-SiP are needed to meet the demands
set by the consumer market. All this makes an accurate and fast modelling of
the electromagnetic (EM) effects of passive electronic structures needed.

The EM analysis of arbitrary shaped layouts can be calculated with exist-
ing tools. One specific example of such a tool was the drive for our research.
The Boundary Element Models initially generated by this tool can be simply
too large to be handled. Several reduction methods can be applied to make
the treatment of these models feasible.

In stead of the already implemented reduction method, Krylov subspace
methods, like the methods presented in [3] and [4], were proposed to be imple-
mented in the layout simulator. These methods were chosen because of their
well-known properties with respect to preservation of stability and passivity.
In this article mathematical consequences encountered during implementation
are discussed.
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2 Equation setting

We consider the following set of equations:
[
C 0
0 −L

]
d

dt

[
v
i

]
+

[
G PT

P −R

] [
v
i

]
=

[
B
0

]
u (1)

In this system the values for the capacitive elements are in the matrix
C ∈ IRn×n, the inductive values are in L ∈ IRm×m. The matrices G ∈ IRn×n

and R ∈ IRm×m represent the resistive values. P ∈ IRm×n is an incidence
matrix consisting of 1’s, −1’s and 0’s. u is the input signal. The state space
vector consists of voltages v and currents i. In this way the system represents
an RCL-circuit. Despite the precise formulation in (1), the methods mentioned
in this paper are generally applicable to systems of this form:

C
d

dt
x(t) = −Gx(t) + Biu(t)

y(t) = BT
o x(t); (2)

they are not specific for circuits.
The latter system is a Linear Time Invariant system. Because the matrix

C can be singular, this can be a Differential Algebraic Equation (DAE). A
common way to solve these systems is to transform them to the frequency
domain with a Laplace transform:

(G + sC)X(s) = BiU(s)
Y(s) = BT

o X(s); (3)

After elimination of the state space X(s) a transfer function is obtained:

H(s) = BT
o (G + sC)−1Bi (4)

This function gives a direct relation between the input and the output of
the system and is therefore representative for the behaviour of the system
in frequency domain. If the system has more than one inputs and outputs,
the transfer function is a matrix representing the transfers from one port to
the other. Typically, one tries to approximate the behaviour of this transfer
function.

3 Model Order Reduction

The aim of Model Order Reduction is to capture the essential features of a
large model into a much smaller approximation. Thus, the large system is
replaced by a smaller approximation, with the same amount of input signals,
i.e. ports in terms of a circuit and a comparable behaviour.
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The idea behind Krylov subspace methods is to generate a (basis for a)
Krylov space. A Krylov space is defined as:

Kn(b,A) = [b,AR, . . .Anb] (5)

Next, an orthonormal basis of this small space is calculated and the system
matrices are projected onto this basis. Due to space limitations for the publica-
tion, we refer the reader to [5] for the issues induced by the orthogonalisation
of the Krylov space.

If a system has more than one port, B is a matrix; the number of the
columns in B is equal to the number of ports, say p. In that case the Krylov
space consists of blocks: with every iteration a block of p columns in added to
the Krylov spac. This makes our approximation p columns and rows larger.

Well-known Krylov subspace methods in chronological order of publication
are PVL [2], PRIMA [4] and Laguerre-SVD [3]. PVL and PRIMA make use
of the fact that the transfer function can be written as:

H(s) = BT
o (G + sC)−1Bi = BT

o (I− (s − s0)A)−1R (6)

with A = −(G + s0C)−1C and R = (G + s0C)−1Bi. With this formulation
a Krylov space is generated, which represents the moments of the transfer
function:

Kq(R,A) = [R,AR, . . .AqR] (7)

Laguerre-SVD is based on the fact that the transfer function can be expanded
into scaled Laguerre functions in frequency domain:

H(s) = LT (G + sC)−1B =

2α

s + α
LT

∞∑
n=0

(
(G + αC)−1(G − αC)

)n
(G + αC)−1Bi

(
s − α

s + α

)n

(8)

From this expansion very naturally a definition for a Krylov subspace araises.
The starting vector is then R = (G + αC)−1Bi and the generating matrix
A = (G + αC)−1(G− αC). Then the Krylov space is defined as in (7).

Advantages of Krylov subspace methods are that they are very generally
applicable, because C and G do not need to be regular. Furthermore, they are
relatively cheap. Because it can be proven that the moments in the moment
expansion of the transfer function are preserved, the methods are accurate.
For PRIMA and Laguerre-SVD it is proven that stability and passivity of
the system are preserved during reduction. Especially this last property is
important in the implementation of Model Order Reduction methods into the
layout simulator. PVL convergences faster than PRIMA, but stability can be
lost in this methods. Therefore, in this setting PVL is left out of consideration.

In spite of these advantages, there are some severe disadvantages known for
Krylov subspace methods. First of all no error bound is known in general. For
PVL a bound is known and published in [1]. In PRIMA and SVD-Laguerre it
is not known when to stop. Hence, easily an unnecessarily large approximation
is generated.
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4 Validation of results

Because the original model can be represented as a circuit, namely an RCL-
circuit, and because the EM layout simulator uses a representation of its
reduced model in a circuit, it is desired to represent our reduced model in
terms of a circuit. This circuit representation enables us to use the speed of
existing circuit simulators, in evaluating the behaviour of the reduced model.

In the original model, see (1) the state space vector consisted of voltages
and currents. After projecting the system onto a smaller space, these voltages
and currents are mixed and therefore the physical meaning of the reduced
model is lost. Hence, it is not possible to represent the system without making
use of controlled sources or controlled components. Nevertheless, we obtained
a circuit representing the reduced model and this representation is tested and
compared to the output of the layout simulator. The results in frequency
domain can be made as accurate as wanted, together with the increasing size
of the reduced system. More important is that the results for a transient
analysis is stable. This was not the case for the existing reduction method,
which gave a good approximation in frequency domain, but could be instable
in time domain.

5 Redundancy

Next to the already mentioned disadvantages of Krylov subspace methods,
there is another drawback to Krylov subspace methods. Because they do not
carefully choose the needed information, a lot of information is incorporated
in the smaller model which is not needed for a good approximation. So, even
if we stopped the iterative process in time, the models are redundant. In our
research we found two ways to avoid parts of this redundancy, without too
much computational expenses.

The first proposal is a deflation of converged columns. Sometimes it can
happen that a column is generated which already existed in the space. At
that moment we want to stop iterating with this direction and want to be
able to proceed with the other columns in the block. This convergence should
be treated with care, because if we violate the basic property of Krylov spaces,
the small approximation can become really cumbersome. In the Block Arnoldi
Algorithm, used to generate the Block Krylov space a specialized QR, i.e. a
rank-revealing QR step is substituted. In this way smaller approximations
with the same transfer function can be generated.

Our second proposal is to remove insignifant poles, via an eigendecom-
position of the reduced system. Because the reduced system is small,a full
eigendecomposition can be calculated cheaply:

CV = GVΛ (9)
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Here the diagonal matrix Λ ∈ Cq×q consists of the eigenvalues, where q is
the size of the reduced system. The associated eigenvectors are in V ∈ Cq×q .
Once this decomposition is obtained, the transfer function can be written in
a pole-residue expansion:

H(s) = c +
q∑

j=1

rj

s − pj
, (10)

with r and p ∈ C.
We saw that in this sum there are terms which do not contribute to the

transfer function. This can be either because rj is very small or pj is very
large. These poles are removed, which comes down to removing the associated
columns from V. Complex poles are always removed in conjugate pairs. Naxt
a real basis is generated for the eigenvector matrix. This is finally used to
project our reduced system on.

6 Conclusions

In this article we presented the mathematical challenges of implementing
Krylov subspace methods in an existing layout simulator. We showed that
Krylov subspace methods are efficient for the given examples, but have to
implemented with care. Several adjustments can be implemented to the ex-
isting methods, to make them more efficient. There is an obvious need for
realization. Realization enables the application of Model Order Reduction in
time domain simulations of the EM behaviour.
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