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We investigated the design of a neural-network-based adap-
tive control system for a smart structural dynamic model of
the twin tails of an F-15 tail section. A neura network con-
troller was developed and tested in computer simulation for
active vibration suppression of the model subjected to para-
metric excitation. First, an emulator neura network was
trained to represent the structure to be controlled and thus
used in predicting the future responses of the model. Second,
aneurocontroller to determine the necessary control actionon
the structure was developed. The control was implemented
through the application of a smart material actuator. A strain
gauge sensor was assumed to be on each tail. Results from
computer-simulation studies have shown great promise for
control of the vibration of the twin tails under parametric
excitation using artificial neural networks.

1. Introduction

In aeroelastic investigationsof aircraft, the structural
behavior of aircraft componentsis assumed to be lin-
ear [1]. However, in reality nonlinearities are present
in one form or another. It is always important to de-
velop and verify several techniques to predict flight-
vehicle dynamic and aeroel astic behavior to prevent vi-
bration damage and aeroelastic instabilities. One of
the available techniques that can be used to solve crit-
ical structural problems on fixed-wing aerospace vehi-
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clesis neural networks. During the past several years,
neural networks have emerged as one of the most ac-
tive areas in system identification and control of non-
linear systems. Also, neural networks are becoming
more and more popular for a variety of applications
including electronics, dynamic modeling of chemical
process systems, speech recognition, telecommunica-
tions, and transportation. Lisboa[9] summarizes some
of the widespread use of neural networks. The reason
for the wide variety of applications of neural networks
inamost al fields of study istheir usefulnessin avoid-
ing the complexity involved in directly modeling the
system dynamics.

Another interesting application for neural networks
is active vibration control of smart structures. The de-
sign of controllersto suppressvibrationsin smart struc-
tures is a challenging problem due to the presence of
nonlinearities in the structural system and the actua-
torsaswell asthelimited availability of control forces.
One of the main objectives is to deal with imprecise
mathematical models due to unmodeled dynamics and
hence remove the requirement of having an exact de-
tailed mathematical model for the system which can
be a very time consuming process. This is where the
power of neural networks is stressed; it can identify
the system using the true input/output data without any
prior model information.

There are severa types of neural networks that have
evolved over the last decade and half of them have
proven to be efficient tools in identifying nonlinear
systems. Some of these are Volterra series models,
group method of data handling models (GMDH), self
organizing neural networks, and radial basis functions
(RBN) [5,6,13,14]. Also, it has been shown that multi-
layer perceptrons (MLPs) are universal function ap-
proximators [8]. Later this model type has been used
to train neurocontrollers to suppress the vibrations of
nonlinear smart structures. The linear and nonlinear
mapping properties of neural networks have been ex-
tensively utilized inthe design of multi-layered feedfor-
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ward neural networksfor theimplementation of control
algorithms[10,11].

The vibration controller used in this paper is similar
to an indirect linear model following control (LMFC)
system[2,15]. Itisalso similar to the backpropagation-
through-timeneural controller (BTTNC), whichispre-
sented by Chen et a. [3]. The BTTNC was used in the
active control of structures under strong dynamic load-
ings. To train the neurocontroller, one needsthe differ-
ence between the network output and the ideal input to
theplant. Since nothingisknown about theideal input,
the necessary data must be provided in a different way.
It is possible to model the plant by a neural net. After
finding an appropriate model, one can train the con-
troller network by backpropagating the error through
the plant model. Thus, the present study consists of
two steps. First, amodel of theplant wastrained. After
achieving a well performing plant model, we fixed its
weights. Second, the plant was replaced by its model.
The cascade of both networkswasthen used to train the
neurocontroller. Only the controller network weights
were updated. Here, the overall system is tested and
the performance of the network is discussed.

2. Backpropagation neural network

A prerequisite of the system identification task isto
acquire as much information about the plant behavior
as possible using input signals that excite the relevant
dynamic processes of the structure under considera-
tion. In addition, the signa amplitude has to cover
the stationary operating range of interest. In this pa-
per we use the backpropagation algorithm to train both
the emulator and the controller multilayer perceptron
(MLP)networks. An input to the network generates
some output; then, the error between the desired out-
put and the network output is used in the backpropa-
gation learning algorithm. Each neuron in the network
receivesits own error factor and adjusts its weights ac-
cordingly. Thistraining processcontinuesuntil adesir-
ablelevel of performanceis reached. This can be done
by specifying the sum-squared error between the net-
work output and the desired target output. That is, the
network seeks to minimizethe following cost function:

E=> (di—y)’ (1)
=1

where d; is the target output, y; is the neural network
output, and n is the number of input-output training

Fig. 1. Three-dimensional view of the twin-tail assembly.

pairs. These forward and backward sweeps are contin-
ued until a desirable level of performance is reached.
After the network has been sufficiently trained, only
the feedforward paths are used. Illustrative examples
of the backpropagation algorithm can be found in [7].

3. Mathematical model of thetwin tails

Theproblemat handisto suppressthevibrationsof a
structural dynamic model (1/16 dynamically scaled) of
thetwin tails of the F-15 fighter plane. Thetail section
construction includes a series of aluminum channels,
brass rings, composite plates, metal masses, and vari-
ous adhesives. Figure 1 presents a three-dimensional
view of thetail section used to acquire the training and
validation data sets and to verify the on-line predictive
control scheme. The modél is approximately 0.355 m
long, 0.228 mtall and 0.482 m wide. A series of bolts
is used to fix the model and several positioning blocks
to avertical shaker table.

The dynamics of the twin tails can be described by
the following two nonlinear coupled differential equa-
tions. If u; and uy denote the generalized coordinates
of the first modes of the isolated right and left tails,
respectively, then we assume that the first modes of
the twin-tail assembly are governed by the following
two mass-normalized second-order coupled differential
equations:

iy 4 wiug + 2ep 0y + earud 4 ezt | 1y |
—ek(ug —u1) — euym F cos(Q + 1) + K f1
=0 2
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Fig. 3. Training of the twin tails (a) input forcing, (b) tail response, (c) error between the desired and the network responses.

fin + Wity + 2€patiy 4+ €qnul 4 epugtia | Uy |
—ek(u1 — ug) — eugmoF cos(Qt + 12) + K fo
=0 3)

where w; and w, are the natural frequencies of the
isolated right and left tails, 21and 2uo are the linear
damping coefficients, oy and i, are the coefficients of
the cubic nonlinearity, 15 and 4 are the aerodynamic
damping coefficients, k is the coupling term between
the twin tails, n, F' cos(Q2t + 1 )and 02 F cos(2t + 12)
are the parametric excitation forces applied to the tail
section, K is aproportionality constant (between volts
and pe, measured experimentally), and f; and f, are
the control action forces. Here, n; and 7, aretransmis-
sibility termsthat make the units of the whole equation

consistent and ¢ is a bookkeeping parameter which is
set equal to unity in thefinal analysis.

This model was provided by a system identification
process [4] and al of the parameters were identified
by techniques adopted from nonlinear dynamics the-
ory [12]. Having thismodel facilitated the design of the
neural networksfor the identification and the control of
the system since, instead of collecting real datafroman
experiment, we used this mathematical model to pro-
vide the necessary data for network training purposes.

These two second-order differential equations were
transformed into a set of four first-order differential
equations to make use of the available numerical rou-
tines that are specifically used for first-order systems.
To this end, we let z1(t) = u1(t), z2(t) = w1 (t) ,
23(t) = wa(t) and z4(t) = uq(t), and thus rewrite
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Fig. 4. Validation of the twin-tail neural networks: (a) model output signal, (b) neural network output signal, (c) error between theoutputs of the

model and the neural network outputs.
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Fig. 5. Time histories of the responses of the tails (-) without control and (-.) with control.

Equations (2) and (3) in the following alternate form:

B(t) = A(t) o(t) + n(t) @
y(t) = Cx(?) ©)
where
B(t) = [d @ ds da]” ©)
0 1
A(t): —w% — ek + 677(1)F COS(Qt + 7'1) _QSul
0 0
Ek’ 0
0 1

—w3 — ek + ena F cos(Ut + T2) —2epo

n(t)=[0 — ez} —eusas |22 | —Kfi 0 ®

T
—eqprs — epaxy | T4 | —ng]

Itisvery important to be ableto discretizethe system
for simulation purposes; thus, a discretization scheme
representing a zero-order-hold (ZOH) using the Euler
formula (forward rule) was first tried. Also, a bilinear
transformation (Tustin) scheme was also tried. Both
schemes are considered to be very crude and require a
very fast sampling frequency. Finaly, a Runge-Kutta
integration scheme was used with the period T of inte-
gration being specified. Inthis study, the datasampling
period as well asthe period T of integration were cho-
sentobeT = 0.001 sec. Thefirst bending mode of the
right tail is9.135 Hz and that of theleft tail is9.05Hz.
The state vector was updated after every step of inte-
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Fig. 6. Left-tail response after control using theungeneralized trained
neural net.

gration. The input to the system is f; and f, and the
output is the strain. After discretization of the system,
the governing differential equations can be rewritten as
difference equations; that is,

a(k+1) = ®(k)x(k) + n(k) 9)
y(k) = Cx(k) (10)

Emulator Neural Network

To suppress vibrations using a neurocontroller, we
had to train an emulator neural network first. The emu-
lator learnsto predict the response of thetails given the
actuation forces. Thus, the emulator can be considered
as representing the transfer function from the actuator
signal to the sensor reading. This transfer function in-
cludes the nonlinear response of thetails aswell asthe
effect of the actuator dynamicsin the control loop. The
emulator learns this rel ationship between the input and
the output from the past history of the response given
the actuation forces. The output y(k) of the plant is
a function of the input forcing function f(k). Thus,
the neural net requires f(k) to be an input to the net-
work. We choseto havean f (k) aswell astwo delayed
versions of it as inputs to the emulator network. Also,
as may be seen from the equations describing the sys-
tem, the nonlinear plant is of second order. To increase
the accuracy of the emulator network, we also fedback
the output of the network as inputs to the network; i.e.
y(k — 1) and y(k — 2). The emulator was chosen to
have one hidden layer. The input layer consisted of
five units, which was found to be sufficient for a good

model. The output layer had one unit that represented
the current strain in the tail. Thus a 5-5-1 MLP was
used. Figure 2 shows the detailed architecture of the
emulator neural network together with the neurocon-
troller.

Two emulator networks were trained in this study.
One network for the right tail, the other for the left
tail. Totrain the network, since nothingisknown about
the ideal input, one must provide the necessary input
data in a different way. A combination of uniformly
distributed random data was used as input to the sys-
tem. All desired values were simulated before the ac-
tual training process. In the real training process, the
input vector was chosen randomly from the simulated
data. The model was trained in one epoch, which was
found to be enough. The values of the learning co-
efficients used in the training epoch are 0.8 and 0.5,
respectively. The squashing functions used in the net-
works were hyperbolic tangent functions. Scaling of
the input and output data pairs was necessary, since
the effective range of the hyperbolic tangent function
used is between —1 and 1. In this paper, the largest
element in any input vector was used to scalethe inputs
to the specified range. The appropriate scaling factor
was used before any neural network simulations. At
the end, the output datawas then scaled back to recover
the original range of values of the signal. Figure 3
represents the results of this training for the right and
left tails. These plots show the input to the system in
volts, the output in microstrains, and the corresponding
error between the desired and the actual responses of
the network.

4. Model validation

In general, model validation addresses the verifica-
tion of the dynamic model with respect to its predic-
tion accuracy. Model validation is a significant step
within the model development procedure. Validation
tests ensure adequacy of the model be generalized to
transient and stationary operating states, which were
not introduced to the network during its training. Vali-
dation signal s can be chosen arbitrarily, so that rel evant
process characteristicsin certain ranges can be verified.
Figure 4 shows the output signal from both the model
and the neural net after fixing the weights. The input
signal used was provided by a proportional derivative
control law and it was used to validate the trained MLP
network. We know that such an input signal will not
affect the response of the tails since the external dis-
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turbance to the system is parametric. This signal pos-
sessed different characteristics compared to the signals
used for the training.

Clearly, the MLP model neura network identified
the dynamics of the twin tails and can predict the sys-
tem responseto a high degree of accuracy. A prime ad-
vantage of the MLP neural network is its capability to
generatethe steady-state characteristics of the dynamic
process identified.

5. Modd based control

The second step of the design was to train the con-
troller network, having replaced the plant by its neural
network model. Only strain can be measured from the
twin tails. Therefore, the strain signal was chosen to
be the input to the neurocontroller; that is two delayed
versions of it y(k — 1) and y(k — 2). The outputs of
the neurocontroller f1 and f> were used asinputsto the
neuroemulator (the plant model). Its output, the strain
y(k) of thetail, was computed and the error function e
was cal culated as the difference between the computed
output strain of the neuroemulator and the model ref-
erence. The weights of the actuation network were ad-
justed based on the control command errors computed
from the error function backpropagating through the
emulator network, which was fixed. This process was
done for both the right and left tails. The target re-
sponsefor these cases was chosen to be once a second-
order oscillator with a high-damping ratio ¢ = 0.707
and the same natura frequency as the true system and
the other timethetarget valuewas chosento bezero. In
both cases, the training process converged quickly with
the model reference being slightly slower than the zero
reference. The neurocontroller used was implemented
as 2-5-1 MLP. Figure 5 displays the results of training
the cascaded system. From thisfigure, it is clear that
the neurocontroller did a good job in suppressing the
steady-state vibrations of the two tails.

6. Generalization of the neuro-controller

Since the governing equations of the twin tails are
nonlinear, we can expect several steady-state responses
in the phase plane aswell asthetrivial solution. So the
task of any controller in this case would be similar to
that of a sliding-mode controller where all we need is
to put the states of the system in the basin of attraction
of the trivial solution (i.e., the no-vibration case). For
these two coupled differential equations, therearethree
different possible solutions. Two of them are of the
same order of magnitude of vibration, but are different
in phase, and the third one has a smaller amplitude.
Instead of training a neurocontroller for each solution,
we tried the solution we had. Although there were
many differencesin the peak amplitudes of both solu-
tions, the performance of the neurocontroller trained
for thefirst solution was also very good for controlling
the lower-amplitude solution, but this was not the case
for the other way around, as seen in Fig. 6 since the
steady state amplitude of the tail converged to aout 40
pe. Thisis expected because, in the second case, the
system was operating outside the range of the training
region and was thus expected to behave badly. Con-
sequently, it is important for the designer to train the
networksin thefull regionsof operation of the structure
so that the networks can be generalized. Another issue
that was taken into consideration during the design of
the networks was that the networks were trained under
high-disturbance levels so that lower-disturbance lev-
els could also be controlled through the same trained
networks. For this reason the networks were trained
assuming a disturbance level of 3.5 g, which was even
higher than we could excite experimentally (3.2 g).

After training the controller, the model was replaced
by the true plant again. The system was tested accord-
ing to the signa flowchart shown in Fig. 7. Similar
plotswere realized for the control of the system, which
is expected since the neural network behaves similar to
the mathematical model of the system.
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7. Conclusion

This study demonstrated that neural networks can
accurately identify and control a nonlinear system. To
control the system, we first trained a neural network
emulator to learn the mapping between the control sig-
nal and the response of the tails. Then, the neurocon-
troller learns how to control the structure with the help
of the emulator network, which was used as a gate-
way to backpropagate the errors between the emula
tor’soutput and amodel reference. Thiserror was used
to modify the weights of the neurocontroller until the
system converged to the desired output provided by the
reference model.
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