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Stable microwave oscillations due to external-cavity-mode beating in laser diodes
subject to optical feedback
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Laser diodes subject to a delayed optical feedback may exhibit high-frequency oscillating intensities as a
result of a beating between two external-cavity-modes~ECMs!. We analyze the conditions for the stability of
these microwave oscillations in the framework of the Lang-Kobayashi equations for a single-mode edge-
emitting semiconductor laser@R. Lang and K. Kobayashi, IEEE J. Quantum Electron.QE-16, 347~1980!#. We
show that two different scenarios are possible. If the linewidth enhancement factor is relatively large (a52
25), the beating occurs between a stable ECM~mode! and an unstable ECM~antimode!. The stability of the
time-periodic solution is then limited in parameter space. But if the linewidth enhancement factor is sufficiently
low (a<ac.1), a beating between two stable modes is possible allowing stable high-frequency oscillating
outputs.

DOI: 10.1103/PhysRevA.66.033809 PACS number~s!: 42.65.Sf, 05.45.2a
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I. INTRODUCTION

Semiconductor lasers subject to optical feedback from
external cavity~EC! exhibit a variety of instabilities depend
ing on the values of the laser parameters such as the
length, the feedback strength, or the pump parameter.
coherence collapse regime@1# typically occurs in systems
with sufficiently long~1 cm and more! ECs. Beyond a criti-
cal feedback rate, we note a sudden increase in linewidt
well as a drastic increase in the relative intensity noise.
herence collapse results from the interaction between the
ser relaxation oscillation frequency and the EC mode~ECM!
frequencies. Its chaotic dynamics has been widely stud
@2–5#. It disappears for short ECs~typically less than 5 mm!
as the ECM spacing becomes much larger than the l
relaxation oscillation frequency.

However, Tager and Elenkrig~1993! @6# and Tager and
Petermann~1994! @7# found that another instability is pos
sible for short ECs that results from a beating between
ECMs. They studied the Lang-Kobayashi~LK ! equations@8#
that describe the dynamics of a single-mode edge-emit
laser subject to a weak to moderate optical feedback.
numerical simulations and linear stability arguments, th
showed that an oscillatory instability resulting from the be
ing of two ECMs could lead to an efficient source in t
microwave (.20 GHz) region. The work by Tager and P
termann@7# on short ECs was motivated by the effects
optical feedback due to reflection at fiber pigtails, in optic
fiber connectors. It led to interesting guidelines for the d
sign of high-speed laser diodes with an integrated pas
cavity where the EC is typically short@9#.

Analytical studies of the LK equations@10# have yielded
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insight into this beating regime between ECMs. In additi
to the single-ECM solutions, two-ECM solutions of the L
equations are possible. Of particular engineering interes
the fact that these two-ECM solutions exhibit a rapidly o
cillating intensity. The oscillations clearly result from a bea
ing between two single-ECMs and the frequency is prop
tional to the inverse of the external-cavity round-trip tim
The two-ECM solutions appear through a Hopf bifurcati
bridge connecting a stable ECM~mode! and an unstable
saddle-type ECM~antimode!. This means that the high
frequency outputs for the parameters considered in R
@6,7# are only partially stable.

This raises the important question of the stability of
two-ECM solution. Is a stable beating between two ECM
possible in a semiconductor laser subject to optical fe
back? In this paper, we show that this is indeed the case
particular values of the laser parameters. Using the LK eq
tions, we determine analytical conditions for a stable beat
and we test our results by using a numerical continuat
method for delay differential equations@11#.

The existence of high-frequency two-ECM regimes h
motivated a series of recent experimental and theoret
studies. First, the beating between a mode and an antim
found for short ECs also appear for long ECs@12#. Second,
experimental observations of two-ECM regimes were p
sible for an edge-emitting laser subject to two optical fee
backs@13–15#. The mixed mode regime was shown to b
partially stable and quasiperiodic outputs leading to lo
frequency fluctuations~LFF! were observed after its destab
lization @15#, in good agreement with the theory@10,12#. LFF
consists of irregular fluctuations of the laser intensity on m
crosecond to nanosecond time scales. These time scale
long compared to the laser relaxation oscillation period a
the external-cavity round-trip time. Third, high-frequency o
cillations have been experimentally observed in vertic
cavity surface-emitting lasers~VCSELs! subject to a polar-
ization rotating optical feedback@16#. Systematic numerica
©2002 The American Physical Society09-1
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bifurcation studies of the rate equations@17,18# have re-
vealed that these oscillations result from the interaction
tween two stable ECMs~modes!. In all these experimenta
and theoretical studies, only partially stable microwave
cillations were reported. In this paper, we examine the bif
cation diagram of the LK equations and determine the c
ditions for stable microwave oscillations. Our analysis
based on the stability properties of a particular point~called
a two-ECM point! at which two single-ECM solutions ex
hibit identical intensities. Delayed laser systems admittin
large number of ECMs, such as the double cavity or
VCSEL system, exhibit many of these two-ECM points a
are good candidates for efficient sources of stable microw
oscillations.

The plan of the paper is as follows. In Sec. II, we intr
duce the dimensionless LK equations@8# describing a semi-
conductor laser exposed to optical feedback from a flat
ternal mirror. The typical values of the photon and carr
density decay rates then motivate an asymptotic analysi
these equations. We omit all mathematical details for clar
In Sec. III, we discuss the leading order conditions for
two-ECM beating in terms of the linewidth enhanceme
factor. We find that a stable beating is always possible if
linewidth enhancement factor is sufficiently low. Our conc
sions are tested numerically in Sec. IV by determining
bifurcation diagram of the steady and time-periodic intens
solutions.

II. FORMULATION, EXTERNAL CAVITY MODES,
AND BEATING BETWEEN MODES

The LK equations@8# describe a single longitudinal mod
edge-emitting laser subject to a weak to moderate exte
optical feedback. Previous theoretical and numerical stu
of these equations~see Ref.@19# and references therein! have
shown that we may benefit from the relative order of ma
nitudes of the laser parameters. They motivate asympt
theories of the LK equations leading to simplified problem
The solutions of these problems highlight specific bifurcat
scenarios responsible for the laser rich dynamics. The s
ing point of any asymptotic analysis is to write dimensio
less equations. The LK dimensionless rate equations are
equations for the electrical fieldY and the excess carrie
numberZ given by @20#

dY

ds
5~11 ia!ZY1hexp~2 ivu!Y~s2u!, ~1!

T
dZ

ds
5P2Z2~112Z!uYu2. ~2!

In these equations, times is measured in units of the photo
lifetime tp (s[t/tp). The parametersT andu are defined as
T[tn /tp and u[t/tp wheretn and t are the carrier life-
time and the external round-trip time, respectively,v
[v0tp is the angular frequency of the solitary laserv0 nor-
malized bytp

21 , h[g tp is the feedback rateg normalized
by tp

21 , P represents the excess pump current anda is the
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linewidth enhancement factor, andT is typically anO(103)
large parameter for semiconductor lasers. Equation~2! then
suggests thatZ is a function of the slow time variableT21s.
We shall take advantage of this observation in our analy

A basic solution of the LK equations~1! and ~2! is a
single-frequency solution of the form

Y5Aexp@ i ~s2v!s# ~3!

and Z5B whereA, s, and B are constants. It is called a
ECM solution. Substituting Eq.~3! into Eqs. ~1! and ~2!
leads to conditions forA, B, and s. Specifically, the ECM
frequencyD[su admits the implicit solution

hu52
D2vu

a cos~D!1sin~D!
~4!

and the intensity of each ECM is given by

A25
P1h cos~D!

122h cos~D!
>0. ~5!

Using Eqs.~4! and ~5!, we may study how the ECM so
lutions appear as we progressively increase the feedback
~see Fig. 1!. Although Eq.~3! is an exact solution of Eqs.~1!
and ~2!, a two-ECM solution of the form

Y5A1exp@ i ~s12v!s#1A2exp@ i ~s22v!s# ~6!

FIG. 1. Bifurcation diagram of the first two single-ECM solu
tions. Figures~a! and ~b! show the intensityuYu25A2 and the fre-
quencyD5su of each ECM. They are obtained by changingD and
computinghu andA from Eqs.~4! and~5!, respectively. The arrow
in Fig. 1~a! indicates the point where the two single ECMs adm
the same intensity and is called a two-ECM point. The values of
parameters areP51.155,u518, a54, andvu52arctan(a). The
first ECM frequency is constant (D15vu) while the second ECM
frequency emerges from a limit point. At the two-ECM pointD2

52D122p.
9-2
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STABLE MICROWAVE OSCILLATIONS DUE TO . . . PHYSICAL REVIEW A66, 033809 ~2002!
andZ5B is not an exact solution of the LK equations. Ne
ertheless, it is the leading approximation of an asympto
solution valid for largeT @10#. This solution exists at and
near critical points where two single ECMs admit the sa
intensity @10# ~this point is indicated by an arrow in Fig. 1!.
This point is called a two-ECM point and is described an
lytically in the next section. Using Eq.~6!, the intensity of
the laser field is

uYu25uA1u21uA2u212uA1uuA2ucos@~s12s2!s1f#, ~7!

wheref is a phase. By contrast to the single-ECM soluti
~3!, the intensity of the two-ECM solution~6! is oscillating
with extrema (uA1u6uA2u)2 and frequencyus12s2u. In
Refs. @10,12#, we showed that this solution emerges from
first Hopf bifurcation located on astable ECM (mode)and
that it disappears at a second Hopf bifurcation located on
unstable ECM (antimode). As a consequence, the two-EC
solution ~6! is only stable near the first Hopf bifurcation. I
this paper, however, we show that a branch of stable s
tions connecting twostable ECMs (modes)is also possible.

As we shall demonstrate analytically in the following se
tion, the stability of the two-ECM solutions depends on t
location of the two-ECM point with respect to the sadd
node bifurcation point that creates the single-ECM solutio
in pairs of mode and antimode. A direct investigation wou
be to determine analytically the stability of the two-EC
solutions. In order to investigate the stability of Eq.~6!, we
need to realize that in addition to the fast time of the EC
~time s), the solution of the linearized equations depends
the slow time scalesT21s andT21/2s. The first slow time is
obvious from Eqs.~1! and ~2! since T appears in the left-
hand side of Eq.~2! suggesting thatZ is a function ofT21s.
The second slow time is motivated by the relaxation osci
tion frequency of the solitary laser defined byvRO

[A2P/T. It suggests introducing a slow time scaled
T21/2. The analysis is not a routine application of multip
scale methods@21,22# and will be described in detail else
where@23#. In the following section, we show that the loc
tion of the two-ECM point in parameter space is enough
anticipating two distinct bifurcation scenarios.

III. STABLE AND UNSTABLE BEATING BETWEEN TWO
EXTERNAL-CAVITY MODES

Figure 1 illustrates a case where the two-ECM point
located on the low intensity part of the second ECM bran
of solutions. It corresponds to an unstable ECM~antimode!
@3#. A closed branch of two-ECM solutions connecting t
first and second ECMs through Hopf bifurcation points
possible in the vicinity of this two-ECM point@10#. The first
and second Hopf bifurcation points are then located on
stable and unstable ECMs, respectively. Consequently,
branch of two-ECM solutions connecting these points
stable only in the vicinity of the first Hopf bifurcation poin

We address now the following issue: Can the two-EC
point be located on the high intensity part of the seco
ECM branch of solutions, i.e., corresponding to a sta
ECM ~mode!? We shall examine this possibility in terms
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the linewidth enhancement factor and show that this cas
possible. A branch of stable two-ECM solutions connect
two stable bifurcation points is then possible.

The conditions for a two-ECM point is documented
Ref. @10#. The critical ECM frequenciesD1 , D2 satisfy the
following conditions:

D15vu2~pn2D1!@a cot~D1!11#, ~8!

D252D112pn, ~9!

wheren5 . . . 22,21,1,2, . . . . Thecritical feedback rate is
given by

h5u21S pn2D1

sin~D1! D.0. ~10!

The case illustrated in Fig. 1 corresponds ton521. The
intensity of the first ECM branch of solutions increas
monotonically. But the intensity of the second ECM bran
of solutions exhibits a limit or saddle-node bifurcation poin
From this point emerges a stable and an unstable ECM s
tion. The lower part~the upper part! corresponds to the un
stable~stable! solutions. The limit point satisfies the cond
tion

dh/dD50 ~11!

and using Eq.~4!, we obtain an equation for the ECM fre
quency at the limit point given by

a cos~D!1sin~D!1~vu2D!@cos~D!2a sin~D!#50.
~12!

A two-ECM point characterized by the two frequenciesD1
andD2 may coalesce with a limit point of mode 2. To dete
mine this point, we consider Eq.~8! with D152D212pn
and Eq.~12! with D5D2. They represent two equations fo
D2 and parametersa andvu. To determine the functiona
5a(vu) for the two-ECM limit point, we proceed as fol
lows. First we eliminatevu from Eqs.~8! and ~12!:

vu5D21~pn2D2!@a cot~D2!11# ~13!

5D22
a cos~D2!1sin~D2!

cos~D2!2a sin~D2!
. ~14!

After simplifying, we obtain a simple relation betweena and
D2 given by

a5
1

sin~D2! S cos~D2!1
sin~D2!

pn2D2
D . ~15!

Using Eq. ~13! for vu5vu(D2) and Eq. ~15! for a
5a(D2), we have the solutiona5ac(vu) in parametric
form (2p,D2,p). The solution is displayed in Fig. 2.
9-3
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If we assume thatvu52arctan(a) as in Refs.@7,10#
~dotted line in Fig. 2!, we find a specific value ofa which is
the root of

a

12a2
5pn2arctan~a!. ~16!

If a,ac (a.ac), the two-ECM point is located on th
stable part~unstable part! of the second ECM branch of so
lutions. Consequently, we may expect a stable bridge of
lutions connecting the two single-ECM branches ifa is suf-
ficiently low. This hypothesis is investigated in the followin
section by determining the bifurcation diagrams of the sta
steady and time-periodic intensity solutions for progressiv
smaller values ofa.

IV. NUMERICAL BIFURCATION DIAGRAMS

In this section, we use a numerical continuation meth
specially developed for delay differential equations@11# and
concentrate on the bifurcation diagram of the two first EC
solutions ash progressively increases. In addition to tw
single-ECM branches of solutions, we find a branch of tw
ECM solutions that connects the two single-ECM branch
Because our numerical method allows the determination
stable and unstable solutions and marks all bifurcat
points, we may observe how the closed branch of two-EC
solutions gradually stabilizes as we decreasea and as it
passesac .

We first consider the casea.ac ; see Figs. 3~a–c!. The
first mode exhibits a Hopf bifurcation~indicated by a dia-
mond in Fig. 3! that gives rise to a time-periodic solution
This time-periodic solution corresponds to a two-ECM so
tion, with a frequency given byus12s2u/2p, in first ap-

FIG. 2. Two-ECM limit point. The figure gives the critical valu
of a at which a two-ECM point coalesces with a limit point o
single ECMs.a5a(vu) is obtained using Eqs.~15! and~13! with
n521. We use the same values of the laser parameters as in F
The dotted line corresponds to the particular valuevu
52arctan(a) used for all our bifurcation diagrams. We note thata
maximal value remains close toa51.
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proximation.s1 ands2 are the frequencies of the two ECM
whose intensities are equal at the two-ECM point. The tw
ECM solution then changes stability through a torus bifur
tion point ~indicated by a square in Fig. 3!. At the torus
bifurcation point a new frequency appears that is prop
tional to the laser relaxation oscillation frequency, i.e., is
O(T21/2) small quantity. Our continuation method allows
follow the two-ECM solution when it becomes unstab
~shown in dashed line!. We find that the branch of two-ECM
time-periodic dynamics ends at a Hopf bifurcation point
an antimode. Modes and antimodes are therefore conne
through a Hopf bifurcation bridge and the dynamics o
served along the bridge corresponds to a mixed ECM s
tion @10,12#.

Figure 4 shows a typical quasiperiodic output for the la
intensity I[uYu2 and the field phase differencef(s)2f(s
2t)1vu. A slow modulation of the intensity oscillation
appears at the relaxation oscillation frequency given byf RO

[A2P/T/2p. For the parameters considered in Fig. 3,
corresponds tof RO;5.85 GHz if tp51 ps.

Figure 5 shows the optical spectra for the dynamical
haviors that characterize the Hopf bifurcation bridge betwe
a mode and an antimode. As we gradually increase the fe
back rate, the first ECM~a! destabilizes to a two-ECM dy
namics~b! and then quasiperiodic oscillations occur~c!. We

. 1.
FIG. 3. Numerical bifurcation diagram of the single and tw

ECM solutions. Each figure represents the extrema of the inten
I[uYu2 as a function ofh. Full and broken lines correspond t
stable and unstable solutions, respectively. The stable and uns
solutions of Eqs.~1! and ~2! have been obtained by using a co
tinuation method. The value ofa is given by~a! a54, ~b! a52,
~c! a51.25, and~d! a51. The values of the fixed parametersP, u,
vu are the same as in Fig. 1 andT51710. All figures show a
closed branch of two-ECM solutions connecting two Hopf bifurc
tion points ~diamonds!. This branch changes stability at a toru
bifurcation point~square!. The torus bifurcation point progressivel
moves to the right Hopf bifurcation point asa progressively de-
creases. In Fig. 3~d! the closed branch of two-ECM solutions
stable.
9-4
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STABLE MICROWAVE OSCILLATIONS DUE TO . . . PHYSICAL REVIEW A66, 033809 ~2002!
see clearly that the microwave oscillations involve tw
ECMs, but only the highest frequency peak which cor
sponds to a mode can be isolated in Fig. 5~a!. The lowest
frequency peak corresponds to an antimode, which is
stable and therefore not available to experiment and/or di
numerical integration of the rate equations. As the two-EC

FIG. 4. Quasiperiodic dynamics after a torus bifurcation point
the two-ECM solution. The parameters are the same as in Fig.~b!
and the feedback rate ish50.125. Figure 4~a! shows the laser
intensity I 5uYu2 as a function of times while Fig. 4~b! shows the
evolution of the field phase difference variablef(s)2f(s2t)
1vu. Note that it periodically switches between rapid oscillatio
located near one of the two single-ECM frequencies.

FIG. 5. Optical spectra. In the left column, the spectra cor
spond to a mode-antimode bridge. The values of the parameter
the same as in Fig. 3~b!, with tp51 ps, and~a! h50.12, ~b! h
50.123,~c! h50.125. Figures 5~a!–5~c! illustrate the typical spec-
trum of a single ECM, a two-ECM, and a torus regime, resp
tively. In the right column, the spectra correspond to a stable mo
mode bridge. The values of the parameters are the same as in
3~d!, with tp51 ps, and~d! h50.18, ~e! h50.182,~f! h50.185.
Figures 5~d!–5~f! illustrate the spectrum of the first single ECM, th
two-ECM solution, and the second single ECM.
03380
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solution changes stability to a quasiperiodic output, s
peaks appear around the main beating ECMs, with a
quency separation between the side and the main peaks
proximately corresponding tof RO . The recent experiment
on double cavity feedback@15# are relative to bifurcation
bridges between a mode and an antimode, similar to wha
shown in Fig. 3~a–c!, and the transition between the two
ECM dynamics and the quasiperiodic behavior as prese
in the optical spectra of Fig. 5~a–c! has been confirmed ex
perimentally in Ref.@15#.

Whena decreases, the two-ECM point becomes close
the saddle-node bifurcation point that creates the pair
mode and antimode until it merges with this limit point fo
a5ac . As a passes throughac , the two-ECM point is now
located on a mode branch; see Fig. 3~d!. The torus bifurca-
tion point disappears giving rise to a stable branch of so
tions connecting two stable ECM solutions. Figure 5~e!
shows the optical spectrum for the two-ECM solution. Wh
we decrease the feedback, we isolate the highest frequ
peak, which corresponds to the first mode@see Fig. 5~d!#. On
the other hand, increasing the feedback rate isolates the
est frequency peak, which corresponds to the second bea
mode@see Fig. 5~f!#. By contrast to the situation depicted i
Fig. 5~a–c!, both beating ECMs can be isolated in the optic
spectra and quasiperiodic oscillations do not occur.

V. DISCUSSION

To summarize, we have performed a bifurcation analy
of the LK equations and shown that stable microwave os
lations can be generated in a semiconductor laser subje
optical feedback. These high-frequency time-periodic int
sities correspond to a two-ECM solution of the LK equatio
and result from a beating between two stable ECMs~or
modes!. The stability of the microwave oscillations has be
analyzed in an asymptotic expansion of the LK equatio
valid for large ratio between carrier and photon lifetime, a
the validity of our theoretical assumptions has been chec
through numerical computations of stable and unstable ti
periodic solutions. The main conclusion is that stable tw
ECM solutions~and therefore stable microwave oscillation!
are possible for a sufficiently lowa factor (a<ac.1).

Low a factors are desirable since they improve the inte
sity modulation characteristics and reduce the chirp. Thea
factor depends on the detuning between the emission w
length and the material gain peak. In Fabry-Perot type las
the emission wavelength is given by the gain peak and
control of a to a large extent is difficult. But distributed
feedback-type lasers or VCSELs for example emit at a wa
length that is determined by the grating period and the la
design, and can strongly be detuned from the gain peak.
a factor can be further reduced using multiple quantum we
in the active region@24# or strain effects in the energy band
@25#. It is worth noting that the influence of thea factor on
the dynamics of semiconductor lasers subject to optical fe
back has been recently examined experimentally for lo
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cavities@26,27#, i.e., for external cavity round-trip time muc
larger than the relaxation oscillation period. We show h
that the reduction of thea factor can transform the sho
cavity induced instabilities into efficient sources of micr
wave oscillations.

Our results motivate further investigations in oth
external-cavity configurations that might simplify the ge
eration of these microwave oscillations. Indeed, more co
plicated feedback systems such as double external cav
@13-15# or two-polarization laser systems@16–18# will
um
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n

n.

pt
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increase the number of two-ECM points around which tw
ECM solutions appear.
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