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Abstract—Wideband multi-frequency chirp waveforms
combined with stretch processing on receive provides a
way to obtain linear projection of range profiles at sub-
Nyquist sampling rates. Stable recovery of high resolution
range profiles from these projections is guaranteed only if
the mutual coherence between the columns of the sensing
matrix is sufficiently small. In this note, we derive the
sensing matrix for the compressive radar sensor with
multi-frequency chirp waveforms and analyze its coher-
ence structure. We show that for suitable choice of system
parameters the inter-column coherence of unstructured
random sensing matrices is achieved.

I. INTRODUCTION

Imaging sensors achieve high resolution using wide-
band modulated waveforms and match filtering on re-
ceive. Digital implementation of match filtering requires
sampling of the received waveforms at the Nyquist
rate of the transmit waveform. For the special case
of chirp waveforms with linear frequency modulation
(LFM) the match filtering can be implemented through
a combination of analog mixing stage and sampling at
a fraction of the Nyquist rate proportional to the ratio
of the target delay support to the pulse width. The
resolution of the LFM waveforms is limited by the total
bandwidth of the transmitted waveform. Even for sparse
scenes with few nonempty range bins, reconstruction
beyond this resolution is not guaranteed due to high
coherence between returns from adjacent range bins. In
the following we derive the sensing matrix for stretch
processed LFM waveforms and note that it results in
highly correlated columns when range dimension is
oversampled. Then we show that the coherence between
columns can be minimized when multi-frequency chirp
waveforms are used in illumination.

A. Sensing Matrices for Radar Imaging

We consider the following system model for radar
sensing. The radar sensor transmits a waveform φ(t)
which is convolved by the target channel response h(t)
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and then filtered by the receive filter r(t) and sampled.
We assume the waveform φ(t) is the complex baseband
form of the transmitted waveform with finite energy
E. The noise waveform n(t) is a Gaussian random
process with known constant power density, bandlimited
to transmitter bandwidth.

Discretization of the sensing model results in the
vector model given in Equation (1), where the M × 1
measurement vector y is a noise-corrupted version of the
transmitted waveform φ that has propagated through a
sequence of two linear operators: target channel filter H
and receiver shaping filter R.

y = RHφ+ n (1)

The convolution matrix H is formed using the unknown
target response, whereas the receive filter convolution
matrix R is formed using the known filter impulse
response r(t). The vector n represents sensor output
noise with complex circularly symmetric additive white
Gaussian noise with known variance σn. Linearity of
the channel operator H enables us to write the channel
output vector Hφ equivalently as Φh, where h is an
N × 1 vector of channel impulse response h(t), and Φ
is a linear operator appropriately constructed from φ .
This results in y = RΦh+ n. In addition we consider
target responses with a sparse representation in some
given basis Ψ (i.e., h = Ψx for sparse x), resulting in
the standard sparse sensing model:

y = A(φ, r)x+ n (2)

where the M × N matrix A(φ, r) , RΦ(φ)Ψ serves
as the sensing matrix of the radar system.

B. Sparse Signal Recovery and Mutual Coherence

Compressed sensing research considers the linear in-
verse problem given in Equation (2), which is recovery
of a signal x from measurements of its (noisy) linear
projections. The emphasis is on the underdetermined
problem where the sensing matrix A forms a non-
complete basis with M < N . The resulting ill-posed
inverse problem can be regularized if the unknown



signal x is known to have at most K non-zero en-
tries. Results in CS theory provides sufficient conditions
for stable inversion of the forward problem given in
(2) for appropriate forward operators A. In particular
conservative sufficient conditions for recovery can be
formulated through the mutual coherence of the columns
of A defined as µ(A) = maxi 6=j

|AH
i Aj |

‖Ai‖‖Aj‖ . Well known
results [1], [4], [5] links mutual coherence to recovery
guarantees. In particular, if:

K <
1

2

(
1 +

1

1 + µ(A)

)
(3)

then for each measurement vector y0 there exists a
unique signal x0, such that y0 = Ax0. Under this con-
dition, Basis Pursuit and Orthogonal Matching Pursuit
algorithms are guaranteed to recover the signal in the
absence of noise. Furthermore, the mutual coherence
provides an upper bound on RIP-constant δR through
δR < (K − 1)µ. RIP constant quantifies how close the
subset of columns of A are close to being isometry and a
low RIP constant guarantees stable recovery under noise.

Practically all radar sensors can be formulated as
linear operators acting on range profiles. However stable
recovery at high resolution is guaranteed only if the
mutual coherence of the resulting sensing operator is
sufficiently small. In the next section we analyze the mu-
tual coherence of a compressive radar sensor employing
multi-frequency chirp waveforms.

II. SENSING MATRICES FOR SINGLE AND

MULTI-FREQUENCY CHIRP WAVEFORMS

A. Single chirp transmit waveform with stretch process-
ing receiver

First we consider a radar sensor employing a single
chirp transmit waveform φ(t) = ejπβt

2/τ sweeping a
total bandwidth of β Hz, over τ seconds expressed in
complex baseband notation. The stretch receiver uses a
mixing waveform e−jπβt

2/τ and taking N samples at
a sampling rate of ∆T = τ/(Tuβ) over the sampling
interval of τ , where Tu denotes the unambiguous range
interval in seconds and N = Tuβ. The echo from a point
single target at time delay δ with complex reflectivity
x(δ) results the following discrete time output vector
sampled at the output of the stretch receiver

y[k] = e−
j2πβδ

τ
(k∆T )ejπβ/τδ

2

x(δ) (4)

= e−
j2πδ

Tu
kejπβ/τδ

2

x(δ) (5)

Inspection of the first term reveals that the return from
the target is a complex sinusoid with normalized fre-
quency 2πδ/Tu. The second term is a complex valued

constant known for a given value of δ . In SAR literature
it is termed as the residual video phase and it can be
easily compensated for after estimation of the target
amplitudes.

We focus on the underdetermined problem of recon-
struction where the range interval Tu is oversampled by a
factor of c where the element of the unknown reflectivity
vector x[l] represent the complex reflectivity at delay
δ = i TucN = i

cβ . Therefore we have:

yi[k] = e−j2πi/(cN)k

The sensing matrix A for a single chirp
with the range oversampled by a factor
c is simply the oversampled DFT matrix
A = [A1 A2 · · · AcN ] with column i given
by Ai =

[
1 e−j2πi/(cN) . . . e−j2πi(N−1)/(cN)

]T
if a single chirp waveform φ(t) = ejπβt

2/τ with a
bandwidth β and pulse length τ is used to illuminate
the target. The resulting coherence between the columns
can be expressed in terms of the Dirichlet kernel DN (x)

µi,j =
DN (2π|i− j|/cN)

N
(6)

where

DN (x) =

N−1∑
k=0

ejkx = ejω(N−1)/2 sinNx/2

sinx/2
(7)

For fixed β increasing oversampling factor c results in
large coherence as DN (2π/cN)/N converges to unity as
c increases. Figure 1 shows the intercolumn coherence
of the sensing matrix A for a traditional radar sensor
with single chirp on transmit and stretch processing on
receive.

B. Multi-frequency chirp transmit waveform with stretch
processing receiver

In this section we will consider a transmit waveform
which is the sum of frequency shifted versions of the
chirp used in the stretch receiver. We start with a single
frequency shifted chirp of the form

φ(t, fs) = e
j2π

(
fst+β

t2

2τ

)
(8)

where fs is chosen from the interval [0, cβ]. The echo
from a point single target at time delay δ results the
following discrete time output vector sampled at the
output of the stretch receiver (ignoring the common
residual video phase term):

y[k] = ej2πfs(k∆T )e−j2πfsδe−
j2πδ

Tu
k

= ej2π
fsτ

βTu
ke−j2πfsδe−

j2πδ

Tu
k (9)
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Fig. 1. Coherence of the Sensing matrix for single chirp with
oversampled range. The columns are labeled in time samples with
spacing 1

cβ
, with c = 5.

The first term in (9) is a normalized frequency shift
of magnitude fs = mod (−fsτβTu

, 1), circularly shifting
the columns of the sensing matrix. The second term
is a range dependent phase shift factor. Therefore, the
column Ai of the sensing matrix for a radar sensor with
the transmit waveform in (8) will be:

Ai(fs) = e−j
2πfs
cβ

i[
1 ej2π(fs+

i

cN
) . . . ej2π(N−1)(fs+

i

cN
)
]T

where the index i refers to the discretized range δ(i) =
i
cβ as before. The resulting sensing matrix A(fs) is a
circularly shifted oversampled DFT matrix modulated by
a phase ramp:

A(fs) = [A1(fs) A2(fs) · · · AcN (fs)].

Now we consider the multi-frequency chirp waveform
introduced in [2], [3]. The illumination waveform is ob-
tained by superposition of chirps of equal chirp rate β/τ
and with varying initial phases and frequency offsets:

φ(t) =
∑
k

ejφkej2πfktejπ
β

τ
t2 . (10)

The sensing matrix Ac for the radar with compressive
illumination on transmit and stretch processing on re-
ceive is superposition of circularly shifted oversampled
DFT matrices each modulated with a phase ramp of rate
fk/(cβ):

Ac =
∑
k

ejφkA(fk).

To study the coherence of the columns of A we start
with the limiting case of K = cN LFM waveforms each
separated by a frequency offset of kβ/N :

φ(t) =

cM−1∑
k=0

ejφkej
2πβk

N
tejπ

β

τ
t2 . (11)

For this case the mutual coherence between the i and
j’th column of the sensing matrix Ac is

µi,j =
1

N

K∑
k=0

exp(
2πk

cN
|i− j|)DN (

2π

cN
|i− j|)

+
1

N

K−1∑
k=0

K−2∑
l=0

DN (
2π

cN
|i− j +mk −ml|)ej(φk−φl)

(12)

where mk = c mod (pk,N) represents the discrete
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Fig. 2. Coherence of the Sensing matrix for single chirp with
oversampled range. The columns are labeled in time samples with
spacing 1

cβ
, with c = 5.

frequency shift after aliasing with p = τ/Tu denoting the
stretch factor. Second term is random sum of zero-mean
complex numbers with finite variance and scales as the
coherence of randomized sensing matrices. The first term
is equal to DcN (2π/cN |i−j|)DN (2π/cN |i−j|)/(cN2)
and eliminates the bias term that leads to the large
coherence in the case of the single chirp waveform.
Figure 2 shows the two components for the first term.
We observe that by expanding the bandwidth of the
transmitted waveform by a factor of c and uniform
sampling of the start frequencies fk over the bandwidth
[0, cβ] we achieve low coherence between the columns.
In the next section, through numerical simulations we



show that low coherence can be achieved using a multi-
frequency chirp waveform with much fewer components
than the limiting case of cN chirps discussed above.

III. NUMERICAL STUDY WITH SMALL NUMBER OF

CHIRP COMPONENTS

As shown in the previous section, incorporating ad-
ditional frequency shifted chirps in transmit minimizes
the inter-column coherence of the sensing matrix after
the stretch processing with a single chirp on receive.
Eliminating large entries of the inter-column coherence
is essential for stable recovery of a sparse signal from
its noisy projections. The previous section provided a
theoretical analysis based on large number of chirp
components. Here we resort to numerical simulations
to study the inter-column coherence of compressively
illuminated stretch processor when few subcarriers are
employed. In particular we consider multi-frequency
linear FM signals with 750 MHz total bandwidth and
10 µsecond duration, composed of K subcarriers each
with 50 MHz bandwidth. The center frequencies and
complex phases of the subcarriers are randomly selected
at each simulation run. The wideband received waveform
is then dechirped using a single stretch processor with a
single reference chirp of 50 MHz bandwidth and sampled
at a rate of 5 Msample/sec of complex I/Q samples.
Figure 3 shows the empirical histogram for of the inter-
column coherences for multi-frequency chirp transmit
waveform with K = 1, 7, 15 subcarriers. We observe
that the percentage of large entries is significantly higher
for the traditional single carrier waveform suggesting a
higher percentage of target realizations will result in poor
recovery with a standard LFM radar with K = 1 carrier.

REFERENCES

[1] D. Donoho and M. Elad. Optimally sparse representation in
general (nonorthogonal) dictionaries via 1 minimization. Pro-
ceedings of the National Academy of Sciences, 100(5):2197,
2003.

[2] E. Ertin. Frequency diverse waveforms for compressive radar
sensing. In International Waveform Diversity and Design Con-
ference (WDD2010), pages 216 –219, August 2010.

[3] E. Ertin, L. C. Potter, and R. L. Moses. Sparse target recovery
performance of multi-frequency chirp waveforms. In 19th
European Signal Processing Conference (EUSIPCO2011), pages
446–450, Barcelona, Spain, August 2011.

[4] R. Gribonval and M. Nielsen. Sparse representations in unions of
bases. IEEE Transactions on Information Theory, 49(12):3320
– 3325, dec. 2003.

[5] J. Tropp. Greed is good: algorithmic results for sparse approxi-
mation. IEEE Transactions on Information Theory, 50(10):2231
– 2242, oct. 2004.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Coherence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Coherence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Coherence

Fig. 3. Empirical histogram of the intercolumn coherences of multi-
frequency chirp transmit waveforms with M = 1, 7, 15 subcarriers


