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We introduce an extension of the dynamical mean field ap-
proximation (DMFA) which retains the causal properties and
generality of the DMFA, but allows for systematic inclusion
of non-local corrections. Our technique maps the problem to
a self-consistently embedded cluster. The DMFA (exact re-
sult) is recovered as the cluster size goes to one (infinity). As
a demonstration, we study the Falicov-Kimball model using
a variety of cluster sizes. We show that the sum rules are
preserved, the spectra are positive definite, and the non-local
correlations suppress the CDW transition temperature.

Introduction. Strongly interacting electron systems
have been on the forefront of theoretical and experimen-
tal interest for several decades. This interest has inten-
sified with the discovery of a variety of Heavy Fermion
and related non Fermi liquid systems and the high-Tc

superconductors. In all these systems strong electronic
interactions play a dominant role in the selection of at
least the low temperature phase. The simplest theoreti-
cal models of strongly correlated electrons, the Hubbard
model (HM) and the periodic Anderson model (PAM),
have remained unsolved in more than one dimension de-
spite a multitude of sophisticated techniques introduced
since the inception of the models.

With the ground breaking work by Metzner and Voll-
hardt [1] it was realized that these models become signifi-
cantly simpler in the limit of infinite dimensions, D = ∞.
Namely, provided that the kinetic energy is properly
rescaled as 1/

√
D, they retain only local, though nontriv-

ial dynamics: The self energy is constant in momentum
space, though it has a complicated frequency dependence.
Consequently, the HM and PAM map onto a generalized
single impurity Anderson model. The thermodynamics
and phase diagram have been obtained numerically by
quantum Monte Carlo (QMC) and other methods. [2–4]

The name dynamical mean field approximation
(DMFA) has been coined for approximations in which a
purely local self energy (and vertex function) is assumed
in the context of a finite dimensional electron system.
While it has been shown that this approximation cap-
tures many key features of strongly correlated systems
even in a finite dimensional context, the DMFA, which
leads to an effective single site theory, has some obvi-
ous limitations. For example, the DMFA can not de-
scribe phases with explicitly nonlocal order parameters,
such as d–wave superconductivity, nor can it describe

the short-ranged spin correlations seen in the metallic
state. Consequently, there have been efforts to extend
DMFA by inclusion of nonlocal correlations, which would
correspond to 1/D–corrections to the self energy of the
D = ∞ models [5,6]. These attempts have been only par-
tially successful because of the difficulties of formulating
a causal [7] theory out of nonlocal Green functions. The
nonlocal Green functions do not have a negative-definite
imaginary part, so any self energy diagram constructed
with them is not guaranteed to preserve causality. In
fact, in the work by Schiller and Ingersent [6] on the
Falicov–Kimball model (FKM) violations of the spectral
sum rule occurred for moderately large values of the in-
teraction strength.

In this work we introduce a new method that includes
short ranged dynamical correlations and allows for non-
local order parameters. The method is an iterative self-
consistency scheme on a finite size cluster with periodic
boundary conditions. The essential approximation is the
assumption that the self energy is only weakly momen-
tum dependent so that it is well approximated on a coarse
grid of cluster momentum points K. This approximation
will be very good in high dimensions, but in low dimen-
sions its validity is less clear. However, in many cor-
related systems, the momentum dependence of the self
energy is believed to be less important than its energy
dependence, since the physical properties are dominated
by a weakly dispersive feature in the electronic spectra
near the Fermi surface, as seen, e.g., in experiments on
Heavy–Fermion systems. [8]

The paper is organized as follows: First, we briefly re-
view the DMFA, which is reproduced by our method if we
choose a cluster consisting of only a single site. We then
describe the new technique which we name dynamical
cluster approximation (DCA). Finally, we demonstrate
the method by example of the Falicov-Kimball model.

Dynamical Mean Field Approximation. The DMFA
assumes that the self energy is a purely local functional
of the local Green function only, Σi,j = Σi,i(Gi,i)δi,j .
Consequently, the self energy has no momentum depen-
dence, and the lattice problem may be mapped onto a
self-consistently embedded impurity problem. The re-
sulting DMFA algorithm has the following steps: (1) The
procedure starts with a local host Green function G that
includes self energy processes at all lattice sites except
at the “impurity” site i under consideration. G defines
the undressed Green function of a generalized Anderson
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impurity model which is then solved by some technique,
e.g. the QMC-method. (2) Then Σi,i = G−1 − G−1

imp,
where Gimp is the computed Green function of the gen-
eralized Anderson impurity model. (3) This self energy
is assumed to be also the self energy of the lattice. Con-
sequently, the local lattice Green function follows from
Gi,i = 1

N

∑

k
(G−1

o (k) − Σi,i)
−1, where Go(k) is the bare

lattice Green function and N is the (infinite) number of
points of the lattice. (4) The iteration loop closes by
defining the new G−1 = G−1

i,i + Σi,i. The iteration typ-
ically continues until Gi,i = Gimp to within the desired
accuracy, and the procedure may be shown to be com-
pletely causal.

Dynamical Cluster Approximation (DCA). We consider
a cluster of size Nc = LD with periodic boundary condi-
tions. The corresponding first Brillouin zone is divided
into Nc cells of size (2π/L)D. The algorithm begins with
a guess, usually zero, for the cluster self energy Σc(K)
(here and in the following we suppress the frequency ar-
gument). We now define a Green function Ḡ as

Ḡ(K) =
Nc

N

∑

k′

(z − ǫK+k′ + µ − Σc(K))−1 , (1)

where the k′ summation runs over the momenta of the
cell about the cluster momentum K. z is the (complex)
frequency argument, µ the chemical potential.Ḡ is causal
provided that its proper self energy Σc(K) is causal. It
is a coarse grained average of the lattice Green function
in momentum space with a self energy Σc(K). Before a
new estimate for the self energy can be formulated, we
calculate the host cluster propagator G(K) using

G−1(K) = Ḡ−1(K) + Σc(K). (2)

This is the “cluster exclusion” to prevent over-counting of
self energy diagrams on the cluster. Since the self energy
in Eq. 1 is independent of the integration variable, Eqs. 1
and 2 are formally identical to the corresponding equa-
tions (steps 3 and 4) used in the DMFA (after rescaling
k′). Thus, at this point the DCA is equivalent to Nc inde-
pendent DMFA’s, one for each K. That Eq. 2 preserves
causality can be seen as follows: Since Σc(K) in Eq. 1
does not depend on k′, the sum on k′ can be rewritten as
an energy integral with a K-dependent density of states
(DOS) ρK(ǫ). However, for any positive semi–definite,

normalized function ρK(ǫ) one has
∫

dǫ ρK(ǫ)
z+µ−Σc(K)−ǫ

=

(z − Σc(K) − εK + µ − ΓK(z + µ − Σc(K)))−1 with an
effective “dispersion” εK = Nc

N

∑

k′ ǫK+k′ for the embed-
ded cluster and a causal function ΓK(z +µ−Σc(K)) [9],
which is the self energy of G.

Given a causal host cluster propagator G(K) we then
compute the interacting cluster Green function Gc(K)
(or self energy Σc) by any convenient method. This in-
troduces non-local interactions and correlations between
the different momentum cells. Σc(K) is obtained via

Σc(K) = G−1(K) − G−1
c (K). (3)

Σc(K) is assumed to be a good approximation of the
lattice self energy at the cluster momenta. It is fed into
Eq. 1 to generate a new Ḡ(K). This process is repeated
until upon convergence of the algorithm Ḡ(K) = Gc(K).
The schematics of the algorithm is sketched in Fig. 1.
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FIG. 1. Schematic sketch of the dynamical cluster algo-
rithm.

Discussion of the algorithm. Several assumptions were
made in the construction of this algorithm. The first
is the weak momentum dependence of the self energy
which is equivalent to assuming that the dynamical inter-
site correlations have some short spatial range b <∼ L/2.
Then, according to Nyquist’s sampling theorem [10],
to reproduce these correlations in the self energy, we
need only sample the reciprocal space at an interval of
∆k ≈ 2π/L; i.e., on a cluster of Nc = LD points within
the first Brillouin zone. Equivalently, Σ(K+k′) ≈ Σ(K)

for each k′ within a cell of size (π/b)
D

, so the lattice self
energy is well approximated by the self energy Σc(K) ob-
tained from the coarse-grained cluster. Thus, the algo-
rithm is a natural extension of the DMFA. The second as-
sumption is the form of Eq. 1. This choice is not unique,
but it is the simplest that maintains causality and pro-
duces an algorithm that both recovers the DMFA when
Nc = 1 and becomes exact when Nc = ∞. When Nc = 1,
the k′ summation runs over the complete Brillouin zone
and Ḡ is the local Green function. When Nc = ∞, the
k′ summation vanishes.

We want to stress that the DCA is a general scheme
not specialized to a particular model of interest or to the
technique used to obtain the cluster self energy. A variety
of techniques, including perturbation theory [11] (NCA,
the fluctuation exchange approximation [12]), quantum
Monte Carlo, or numerical renormalization group can
also be used to solve the embedded cluster problem.

Application: The Falicov–Kimball model. The spinless
FKM can be considered as a simplified Hubbard model in
which one spin species is prohibited to hop and has con-
sequently only local dynamics. The Hamiltonian reads

H = −t
∑

<i,j>

d†idj − µ
∑

i

(nd
i + nf

i ) + U
∑

i

nd
i n

f
i (4)

with nd
i = d†idi, nf

i = f †
i fi, and in the particle–hole sym-

metric case which we consider, µ = U/2. We measure
energies in units of the hopping element t. For D ≥ 2 the
system has a phase transition from a homogeneous high
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temperature phase with 〈nd
i 〉 = 〈nf

i 〉 = 1/2 to a checker-
board phase (a charge density wave with ordering vector

Q = (π, π, ...)) with 〈nd
i 〉 6= 〈nf

i 〉 for 0 < U < ∞. [13]
In contrast to the Hubbard and related models, within
the DCA the FKM can be solved without the application
of QMC because the f-electrons are static, acting as an
annealed disorder potential on the dynamic d-electrons.
We generalize the algorithm of Brandt and Mielsch [14]
to a finite size cluster. Given an initial host Green func-
tion Gij of the d-electrons, the algorithm first computes
the Boltzmann weights wf of all configurations {f} of
f-electrons on the cluster, as wf = w0

f/Z with

w0
f = 2Nc

∏

ωn

det
G−1

ij (iωn) − Unf
i δij

iωnδij

(5)

the unnormalized weight. Z =
∑

{f} w0
f is the “partition

sum”. The determinant is to be taken over the spatial
indices. Given the weights, the new d-electron cluster
Green function is given by

Gij(z) =
∑

{f}

wf

[

G−1
ij (z) − Unf

i δij

]−1

. (6)

The self–consistency loop closes by use of the Eqs. 1, 2
and 3.
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FIG. 2. Conduction electron DOS in the homogeneous
phase for various temperatures (2 × 2 cluster) and U = 1.6.
Note the emergence of “charge transfer” peaks with simulta-
neous suppression of the 2D van Hove peak at the band center.
In contrast, the DMFA result is temperature independent.

Because the number of f-configurations grows exponen-
tially with the cluster size we confine ourselves to 1 × 1,
2 × 2 and 4 × 4 clusters in 2D. We first simultaneously
determine the weights and the Matsubara Green func-
tion. Then we use knowledge of the weights to find the
retarded Green function. Convergence of the algorithm
is fast for Matsubara frequencies, but relatively slow for

real frequencies. Upon convergence we test the sum rules
of the spectral function at the cluster momenta.

The spectral functions are always positive, and the sum
rules for both the cluster Green function as well as the
host Green function G are fulfilled within numerical ac-
curacy for moderate interaction strength U . For large U
a gap opens in the DOS and convergence becomes more
difficult for ω = 0. This is because the self energy for
the momenta on the Fermi surface (e.g. K = (π, 0))
approaches the atomic limit, Σ(ω) ≈ U2/4(ω + iη) for
frequencies inside the gap (η is a positive infinitesimal).
This implies that as ω → 0, ImΣ → −∞, which is rather
difficult to converge to. On the other hand, for all other
frequencies the algorithm converges to within the desired
accuracy. Since the contribution to the DOS from ω = 0
is infinitesimal, the spectral sum rules are also fulfilled
to within numerical accuracy. We emphasize that these
peculiarities at ω = 0 are only observed for the real fre-
quency algorithm. For the Matsubara frequency algo-
rithm, the sum rules (which may be re-expressed in terms
of imaginary-time propagators) were always satisfied and
the algorithm was perfectly stable (at least at the tem-
peratures considered).
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FIG. 3. Conduction electron DOS in the homogeneous
phase for various cluster sizes for a fixed T = 1 and U = 8.
Only half of the symmetric DOS is shown. Note that the
artificial side band of the 2 × 2 cluster disappears at larger
cluster size. The entire DOS for the 6× 6 cluster is shown in
the inset.

In Fig. 2 we show the DOS of the conduction electrons
for the half filled case for the 2×2 cluster for U = 1.6. In
DMFA there is no temperature dependence of the DOS,
since the weights of the unoccupied and occupied f–state
are wo = w1 = 1/2, independent of temperature (in the
homogeneous phase). This is changed in the DCA, where
the checkerboard configurations begin to dominate as the
temperature is lowered. The result is the appearance of
the ”charge transfer” features in the DOS, the two peaks
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separated by the interaction strength U .
Next, we explore the finite size effects of the DCA at

large U where the DOS shows more features (including
a gap), and finite size effects are more severe. In small
clusters the effects of periodic boundary conditions are
strong. Our results for the DOS at U = 8 are shown in
Fig. 3. Notice how the spurious features of the 2 × 2
cluster (strong dips and an additional small gap) have
essentially disappeared in the DOS of the 4 × 4 cluster,
though small features at the edges of the gap remain
(not discernible in the figure). As larger clusters can
not be evaluated exactly (too many configurations) we
employ Monte Carlo sampling of the configurations. As
a preliminary result of work in progress we show the DOS
of the 6×6 cluster. Already at this modest cluster size all
finite size features are essentially eliminated. This hints
to the superior finite size scaling properties of the DCA
as compared to the standard lattice techniques without
coupling to a host.

Finally, we discuss the effect of nonlocal corrections
on the transition temperature Tc to the checkerboard
phase. Within the DCA, we find Tc by estimating the
temperature where the order parameter in the broken
symmetry phase vanishes. The phase diagram is dis-
played in Fig. 4. The nonlocal correlations of the DCA
suppress the Tc compared to the DMFA estimate, except
for weak U where the nonlocal corrections to the vertex
are very small (of order U2 smaller than local contribu-
tions). For large U , however, the model maps onto an
effective Ising model with a near-neighbor exchange cou-
pling J = t2/2U and a corresponding T Ising

c = 1.134/U
[15]. Fig. 4 shows that already for the 2 × 2 cluster
the achieved correction takes one almost half way to the
asymptotically (U → ∞) exact Tc of the 2D Ising model.

0 5 10 15 20
 U 

0.0

0.1

0.2

 T
c

DMFA
DCA 2x2 cluster
Exact 2D Ising

Checkerboard

FIG. 4. Phase diagram of the 2D FKM at half filling. Com-
pared to the DMFA result (circles) Tc of the 2x2 cluster DCA
(triangles) is significantly suppressed for large interaction. At
asymptotically large U the Tc of the DCA is bounded from
below by the Tc of the 2D Ising model.

Conclusions We have introduced a new dynamical clus-
ter approximation that includes short–ranged spatial cor-
relations in addition to the local correlations of the dy-
namical mean field approximation of strongly interacting
electron systems. The method interpolates between the
infinite lattice and the DMFA by evaluating the self en-
ergy on a finite size cluster with periodic boundary condi-
tions. The DCA is a general scheme and is easily adapted
to specific models and various existing exact and pertur-
bative techniques to solve these models. As an example
we applied the method to the Falicov–Kimball model in
2D and obtained the DOS as a function of temperature
for small cluster sizes. In addition, we computed the criti-
cal temperature of the checkerboard phase transition and
showed that it is suppressed for large interactions when
compared to the result of DMFA.
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