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Abstract

This paper presents a new multi-sensor data fusiethod based on the combination of wavelet
transform (WT) and extended Kalman filter (EKF)plh data are first filtered by a wavelet
transform via Daubechies wavelet “db4” functionsl ahe filtered data are then fused based on
variance weights in terms of minimum mean squarereifhe fused data are finally treated by
extended Kalman filter for the final state estimati The recent data are recursively utilized to
apply wavelet transform and extract the variancthefupdated data, which makes it suitable to be
applied to both static and dynamic systems cordufg noisy environments. The method has
suitable performance in state estimation in congpariwith the other alternative algorithms. A
three-tank benchmark system has been adopted tparatively demonstrate the performance
merits of the method compared to a known algorithrterms of efficiently satisfying signal-to-
noise (SNR) and minimum square error (MSE) criteria

Keywords: Multisensor, Data Fusion, Wavelet Transform, Exezhalman Filter, Minimum
Mean Square Error (MMSE)

1. Introduction

Obtaining valid and noiseless data poses a crisighject in all the sciences. Various methods have
been introduced in the literature to cope with tthallenging issue. Multi-sensor data fusion is an
attractive method to tackle this problem in noiayionments. It is, in fact, the process of combing
information from a number of different sources toyide a robust and complete description of an
environment or process of interest. Data fusion ¢p@ecial significance in applications where a
large amount of data must be combined, fused, @siiflet to obtain appropriate information and
integrity.

To implement data fusion in a multi-sensor systda,algorithm used plays a key role and, hence,
its development has been a topical area of reseéandtent years (Xu et al., 2004). Multi-sensor
data fusion (MSDF) is a technique that effectivliges collected data from multiple sensors
installed on a process to provide a more robust aowlirate estimation of the measured state.
Typical area applications include autopilot impleraion (Wasif et al., 2012), image data fusion
(Salman et al., 2012), the assessment of physitizitg (Shaopeng et al., 2012), and fire detection
(Wang et al., 2011).
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Multi sensor data fusion can be realized via vaialgorithms. Rao et al. (2000) proposed an
interesting coherent estimator that fuses the lessan square (LMS) estimation and wavelet
denoising. The multiple inputs are first averagad the average is then denoised using a wavelet
filter. However, as the method uses the arithmatierage for the LMS estimation, it is not
optimum in terms of minimum mean square error. Xwale (2004) carried out a study on the
optimum estimation of a time-varying parameter fnomltiple observation sequences derived from
multiple sensors. In this method, the input datafaist measured by several sensors and the results
are then fused via importance weights, which caoldieined from data variance. Thus the variance
of the fused signal would naturally be less thae thinimum variance of the input signals.
However, the fused signal will not be an appropriggtimation of the expected signal, if the noise
of the input data is more than some limits. De Dehal. (2009) and Sunet et al. (2004) presented
another method based on Kalman filter, which wdizwo layers. In the first layer, the system
outputs are measured and then data are classifiegl/eral observable sets with respect to the-state
space matrices. Then, Kalman filter is separatppliad to the data sets, leading to several state
variable sets. In the second layer, the extract¢siare then fused together proportional to vaganc
matrix. High performance state estimation will iadned only when Kalman filter is applied to all
system states. Therefore, this method will not hewrable performance, because it is often applied
only to a set of system states. Moreover, the nietteonands high computation time. It should be
also noted that Kalman filter should be run forrgveystem output set in each sample time. The
fused estimates can ultimately be utilized by aetconsuming controlling algorithm to maintain
the system performance. Therefore, a fusion algworitvith low computation effort is practically
preferable to realize the fusion objective.

This paper presents a new method for data fusisedan the wavelet transform. A system with
several outputs, each of which is measured by di-sensor, is considered. The sensor outputs are
first filtered by wavelet transform and the dataiaaces are then calculated accordingly. The
outputs corresponding to every system state, beg@sured by several sensors, are considered as a
separate set. Then, appropriate weights can bénebt®ia the equation mentioned in Xu’s work
(Xu et al., 2004). Set components are consequéudhld by their corresponding weights, yielding
one optimum. Because the resultant weights havenapt values, the LMS error drawback will be
improved. At the next step, Kalman filter is apglilo the complete state set. In this method,
Kalman filter is fired just after data fusion prdcee and it is consequently used only one time at
each sample time. For this reason, the requireduatation time is less than the method proposed
by De Dona et al. (2009). In addition, Kalman filtses all the states, which results in a bettde st
estimation.

This paper is organized in three further sectidnsthe next section, the proposed method is
developed. For this purpose, an EKF-based filtdirss exploited. Then, wavelet transform will be
introduced. The proposed method is finally formedhatising an EKF filter and wavelet transform.
The performance of the developed method is evaluata simulation case study and the obtained
results are investigated in section 3. SectionmMrsarizes significant conclusions.

2. Development of the proposed method

2.1. Extended Kalman filter (EKF)

Kalman filter is a recursive method that tries &liraate the states € R™ of a discrete-time
process. The Kalman filter dynamics results from ¢bnsecutive cycles of prediction and filtering.
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The dynamics of these cycles is derived and ingeeprin the framework of Gaussian probability
density functions. When either the system statewdhyos or the observation dynamics is nonlinear,
the conditional probability density functions tipgibvide the minimum mean-square estimate are no
longer Gaussian. The optimal non-linear filter @gates these non-Gaussian functions and
evaluates their mean, which causes a high compatdtburden. A non-optimal approach to solve
the problem, in the frame of linear filters, is teatended Kalman filter (EKF). The EKF
implements a Kalman filter for a system dynamica tlesults from the linearization of the original
non-linear filter dynamics around the previousestdtimates.

Let us assume that the equations of the procesalga and measurement are described by:
% = F(Xewr Uy Wer) (1)

z, = h(x,\) (2)

where,x € R"™ andz € R™ represent the state and measurement vector rasghgcf andh are
non-linear functions and random variables and v denote process and measurement noise
respectively. In practice, however, one does nowkthe individual values of the noisesandv at
each time step. However, one can approximate #te ahd measurement vectors as read:

X =f (X4, Uy1,0) (3)
Z, = h(x,,0) (4)

X is a posteriori estimate of the state.

To estimate a process with non-linear dynamicsraadsurement relationships, Equation 1 should
be linearized as given below:

X =Ry + Al X = Xeer) + WW (5)
Z, =4+ H(x — %)+ Vy (6)
where,A andWW indicate Jacobian matrices, consisting partiaivdéves off with respect tac and

w respectively. Similarlyd and V are Jacobian matrices, including partial derivediwfh with
respect tox andw respectively. Then, the posteriori state can tienated by:

X =X, +& (7
Xy =X+ K (24 = Zy) (8)
Z, = h(%,,0) 9)

&, is the prediction error ankl, is Kalman filter gain, which can be obtained athe#eration via
the following recursive equations:
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P. = A P AL +W, QW (10)
Ky =|5|<H1(H klskH-II-<+VkRkV-l£)_l (11)
P =( _Kka)F_)k (12)

where,Q andR represent process and measurement noise covari@atcees respectively (Welch
et al., 2006).

2.2. Wavdet

A wavelet is a wave function with a compact supptris called a wave due to its oscillatory
nature, and the diminutive —let suffix is used heseaof the finite domain where it is different from
zero (the compact support). The scaling and tréioslaf the basic wavelet(x) (i.e., the “mother”
wavelet) can be defined via the wavelet basis:

wa,b(x)=%w<%), a>0 (13)

By choosing appropriate values for the scaling pa&tara and the translation parametey the
small segments of a complicated form may be reptedewith a higher resolution (zooming on
sharp, brief peaks), while the smooth sectionsbearepresented with a lower resolution.

Wavelet transform is a tool whereby data, functjoos operators are being decomposed into
various frequency components. Then, each compaaeamalyzed at the resolution best fit for its
scale. Wavelet transform provides an excellent tiesslution of high-frequency components and a
frequency (scale) resolution of low-frequency congrus.

In wavelet analysis, it is usually talked about rgpmations and details. Approximations indicate
the low frequency components of a function on lasgele represented by the first addend, while
the details denote the high-frequency componengésfahction on smaller scales represented by the
second addend in Equation 14. The wavelet transtdranfunction includes output scaling function
coefficientsa; , (approximation) and wavelet coefficierts, (details).

J
f (X):za:],k¢J,k(X)+zzbj,k¢/j,k(x) (14)
kOz j=1kOz
For determining the wavelet and scaling functioefficients, one step of the analysis consists of
the separation of the approximation and detailthefdiscrete signal, thereby yielding two signals
as a result. The procedure described is the sutd-tx@aling in signal processing and can be repeated
for further decomposition. Figure 1 illustrates ttemomposition for further levels.

The algorithm described, which represents the essehthe discrete wavelet transform, is used for
the analysis, i.e. the decomposition of signalssefysbling the components in order to gain the
initial signal with no loss of information is callereconstruction. The wavelet analysis includes
filtering and compression, while the wavelet re¢angion process is composed of decompression
and filtering (Radunovic, 2009).
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Figurel
Discrete wavelet transform decomposition (Radun@®@©9).

2.3. The proposed method

A new method is developed for multisensor dataciudiased on wavelet transform and Kalman
filter in a recursive manner. To explain how thetmo@ operates, a general system is considered
with the following characterized state-space medglations:

X = (Xygs Uy, W) (15)

zb =h(x V) =12, (16)

where,x € R™ andz € R™ represent the state and measurement vectors tieghecf andh are
non-linear functions and random variables and v denote process and measurement noises
respectively. In Equation 16,is sensor index. Each state of the system is mediday! sensors.
Therefore, every state is measured several timgslata fusion algorithm is implemented on these
outputs. To perform the data fusion algorithm, wawéransform (WT) is recursively applied to
sensor data at each sample time. To apply WT,riggsiired to have a block or a horizon of data;
thus a horizon is considered with a length. afample time intervals. As the system is presurned t
haven states and every state is measured Wighnsors, the horizon encompasses! rows and
each row is assigned to one sensor. This horizapdated at each sample time. Upon entering
each new data into the horizon, the oldest dataeam®ved or, in other words, the horizon moves
one step forward in the sample time direction. Afipdating the horizon, WT is applied to the
result. WT can extract the approximations and Hetdithe signal at different levels. The number
of levels is chosen with respect to measuremergenadf output signal has high noise, a higher
number of levels will then be allocated. For daltaring, the approximation signal in the last leve
is selected as the output. After applying WT to tiwizon, a set of approximation signals is
obtained for each sensor. It is supposed thatidatathe form of a matrix which is represented by
H, havingn x [ rows andL columns. This matrix is subsequently divided imtcsub-matrices,
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represented by;, {i = 1,2, ...,n}, which individually havd rows andL columns. Each sub-matrix
contains sensor outputs that belong to one state.

In the succeeding step, data fusion is separagfpmmed on everyt; sub matrix. For this purpose,

a parameter is needed in data fusion to indicate wdiability. Variance is employed as a useful

measure for this fusion objective. For variancewalion corresponding to each sub matrix row,

the mean value of each column is computed and eactponent difference from the calculated

mean value is then squared. Therefore, the varigndetermined by averaging all of these values
in each row according to Figure 2. It should beeddhat Figure 2 has been drawn only for state 1
for the sake of simplicity.
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Figure 2
Variance calculation procedure.

After variance calculation, appropriate weights aeeded to be determined for data fusion. Xu et
al. (2004) presented an optimum weight scheme baisedriance using the minimization of mean
square error. Suppose there aAmensors in a multi-sensor system to measure gatsh\ariable.
The observations are denoted by;;{(j = 1,2,..,,,i =1,2,..,n). The outputs can then be
described as follows:

X; (©)=% (O +1 (8 (17)

where,n;;(t) denotes the white noise added to the originaladigy(t) in the outputy;;(t). The
variance ot (t) is defined asrizj t)=E [nl-zj], andE[x] is the mathematical expectationxof

If the observations are unbiased and independent fsne another, the measuredt) can be
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estimated using the following LMS estimator:

lj
X; = Z\Nij %; (18)
=

where,x; showsith state of the systemw;; is the weight applied ta;; and§]§-=1 w;; = 1. The
variance ofx; is given by:

l
ot =)y wig (19)
j=1

Where,aizj denotes the variance jh sensor ofth state. If the weights are identical and be etpal
% for all j's, x; estimated from Equation 18 will naturally be thé@henetic average of the
observation. The variance of this estimate is givgn

Wij =

14
I =24 (20)

ij=

Although the arithmetic average has extensivelynbeggplied to estimate variables from multiple
independent observations, the estimated resutitisgtimum in terms of MMSE.

Minimizing the polynomial of Equation 19 subjethj(jy=1 w;; = 1 yields the following optimum
weighs:

1
W, =— —

i L 21)
ay =
%o

where,n andl are the number of states and sensors respectively,2, ...,n andj = 1,2, ..., [; the
minimum variance of the estimationxfcan be calculated by:

min i 1 (22)

i=1 9%

It can be proved that the result is not only smatan the variance of any observation sequences
but also smaller than the one determined by Equéi Furthermore, Equations 2 and 5 can be
used to obtain the optimum estimation of the meddarparameters in terms of MMSE (Xu et al.,
2004).

The method has some adjustable parameters forvadithe desired results:

v Length of horizonL: if it is aimed to put more strength on the pasnple time effect on
data fusion, a larger number should be selected. for

v" Number of sensors: it is obvious that for havingrenaccurate data, more sensors are
needed to be applied.

v' Wavelet transforms level: if the sensor output lhigé noise, it should be better to select a
greater WT level.

After data fusion, one set of values are obtaitedlfl the states. Kalman filter is then appliedhe
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obtained complete state set.

3. Results and discussion

According to Figure 3, to evaluate the performaotéhe proposed algorithm, a hydraulic system
consisting of three identical cylindrical tanks kvéqual cross-sectional ar84&as been considered.
These tanks are connected by two pipes with the saoss-sectional area, denotedShyhaving
the same outflow coefficients representeduby andus,. The nominal outflow located at tank 2
has the same cross-sectional area as the couppegoptween the tanks with a different outflow
coefficient, denoted by,,.Two pumps are used in the first and second tamisdvide adequate
flow rates shown by, andg,. The maximum flow rate drawn from pumjis denotedy; ;4. The
level in tanki and its maximum level in that tank are denoted;bgnd [, respectively. The
system dynamics can be derived using the follownags balance equations:

dl;_Et) :é(ql(t) —CI13(t))

Pelt) L4 1)+ ) () @3
dlé—t(t) = é(chs (t) - qsz(t))

where,qmn represents the flow rate passing from tamko tankn (m,n = 1,2,3 V. m # n) which,
based on the Torricelli law, obeys the followingat®nship:

(1) = S i 1= 102 1,{0- 100 4)

g2 represents the flow rate which can be describddllasvs:

Q2o(t) = Hp0S, 4/ 2 glz( t) (25)
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Figure3
Three tank system descriptions.
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Further details on this system are available elsesviiMendonca et al., 2008). The parameters of
three tank system are given in Table 1.

Tablel
Three tank system parameters.
Variable Notation Parameter values
Tank cross sectional area S 0.0154 m?
Inter tank cross sectional area Sy 5% 107> m?
Outflow coefficient Uiz = Uz 0.5
Outflow coefficient Uszo 0.675
Maximum flow rate Qimax | € [1,2] 1.2 X 10™*m3/s
Maximum level limax 1 €[1,2,3] 0.62 m

To properly demonstrate the comparative capabditythe proposed algorithm, the developed
algorithm together with the alternative algorithmegented by Xu et al., (2004) is applied to the
simulated system and their results are compared. dtipposed that each state is measured with
three sensors in a multi-sensor system and theutsutyh the sensong, {i = 1,2} are assumed to be
under the influences of Gaussian white neisgith variances of 0.8, 0.7, and 0.6 having themmea
value of zero. Meanwhile, it is supposed that agediainty noisev in the form of Gaussian white
noise with a variance of 0.2 and a mean value @f eluces the states.

The simulation is conducted for 15 seconds andetihgth of horizon is selected equal to 10 sample
times. This means that matrix will contain 10 sample times and the altjori is thus used for this
number of data at each sample time. Daubechiesletd\db4” is chosen as the wavelet function
and the wavelet transform level is selected todieas2. A high level of wavelet transform can be
chosen when the sensor noises are high. The owtpauthown in Figure 4.
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Figure4
Sensor output of state 1.
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The output of the first sensor corresponding ttestaand the optimized outputs of state 1 estimated
by the proposed algorithm are illustrated in Fighrdt can be seen that the optimized output is
close to the real signal. The effectiveness ofdlgorithm for state 2 is quite similar to state 1.

Furthermore, the first manipulated variable of fystem,q;, is shown in Figure 6, which shows
how it changes to follow the set point.
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Figure5
Optimized output of state 1.
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To compare the results of the proposed algorithth amn alternative algorithm presented by Xu et
al. (2004), the system has been undergone thrduglsame test experiment using this algorithm
and the result has been demonstrated in Figure $tdite 1. The close observation of the obtained
results clearly verifies that the proposed algaonithas better performance. To provide quantitative
measures for a precise comparison, MSE and SNRv#tu each of the three results are calculated
and listed in Table 2 for states 1 and 2. For titteb calculations of the results, both algorittares

run for five consecutive times and the similar aispare then averaged to produce more reliable
outcomes. The calculated SNR and MSE values atedli;n columns 2 and 3 of Table 2
respectively. The required computational timesdayout each candidate algorithm during each
sample time are summarized in column 4 for comparigurposes. It can be observed that each
sample time takes 0.1 second and the computationes corresponding to both tested algorithms
are less than the sample time. Table 2 clearlyest#tat the SNR of the proposed system is
improved in comparison with the original system dhd second algorithm. Moreover, the MSE
value of the presented algorithm has been imprdgedreased) compared to the second algorithm.
According to the results obtained, it is clear tthe proposed algorithm is able to perform better
than the second algorithm presented by Xu et GD42
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Figure7
The second algorithm output of state 1.

Table2
Comparison of the results of the presented andebhend algorithm.
SNR (db) M SE Computation time
Statel State2 Statel State? (second/sampletime)
System 13.7 19.64 1.67 0.64 -
Presented algorithm 20.84 31.8 0.36 0.21 0.051
Second method 16.1 24.75 0.73 0.44 0.047

Wavelet part 15.3 22.23 0.53 0.49 0.021
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As explained earlier, the developed algorithm imposed of two parts. In the first part, wavelet
transform is applied and then the variance of i@ @ extracted to exercise the data fusion. Then,
Kalman filter is used in the second part for theafistate estimation. To clearly reveal the
importance of applying each part, it is useful how the output obtained by the first part in terms
of state 1 in Figure 8. The corresponding SNR ai®EMalues are listed in the last row of Table 2.

Figure 8 demonstrates that the first part of tige@thm filters the input signal and fuses the déta

is naturally expected that the output of the fgatt is close to real data. Table 2 also confirnad t
the SNR corresponding to the first part outpuh@éased, while its respective MSE is decreased in
comparison to the system outputs. Thus, the oldaiesults clearly show the important role of the
first part in the developed algorithm.

First part of alghorithm
121 Model output |
10 -
8l -

Level of Tank 1
Lu )]
|

) | !
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Figure8
State 1 after applying wavelet and data fusionrlaye

4. Conclusions

A multisensor data fusion algorithm was introdudedd non-linear systems being faced with noisy

environments. The proposed method was developed) tse combined wavelet transform and the
EKEF filter in a recursive formulation. Several sagns were conducted in a three-tank benchmark
system under different noisy conditions to dematstthe performance of the proposed algorithm in
comparison with an alternative algorithm (Xu et @004) in terms of SNR and MSE evaluating

parameters.
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Nomenclature

EKF : Extended Kalman filter

LMS . Least mean square

MMSE : Minimum mean square error

MSE : Minimum square error

MSDF : Multisensor data fusion

SNR : Signal to noise ratio

WT : Wavelet transform
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