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Abstract 

This paper presents a new multi-sensor data fusion method based on the combination of wavelet 
transform (WT) and extended Kalman filter (EKF). Input data are first filtered by a wavelet 
transform via Daubechies wavelet “db4” functions and the filtered data are then fused based on 
variance weights in terms of minimum mean square error. The fused data are finally treated by 
extended Kalman filter for the final state estimation. The recent data are recursively utilized to 
apply wavelet transform and extract the variance of the updated data, which makes it suitable to be 
applied to both static and dynamic systems corrupted by noisy environments. The method has 
suitable performance in state estimation in comparison with the other alternative algorithms. A 
three-tank benchmark system has been adopted to comparatively demonstrate the performance 
merits of the method compared to a known algorithm in terms of efficiently satisfying signal-to-
noise (SNR) and minimum square error (MSE) criteria. 

Keywords: Multisensor, Data Fusion, Wavelet Transform, Extended Kalman Filter, Minimum 
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1. Introduction 

Obtaining valid and noiseless data poses a critical subject in all the sciences. Various methods have 
been introduced in the literature to cope with this challenging issue. Multi-sensor data fusion is an 
attractive method to tackle this problem in noisy environments. It is, in fact, the process of combing 
information from a number of different sources to provide a robust and complete description of an 
environment or process of interest. Data fusion has special significance in applications where a 
large amount of data must be combined, fused, and distilled to obtain appropriate information and 
integrity. 

To implement data fusion in a multi-sensor system, the algorithm used plays a key role and, hence, 
its development has been a topical area of research in recent years (Xu et al., 2004). Multi-sensor 
data fusion (MSDF) is a technique that effectively fuses collected data from multiple sensors 
installed on a process to provide a more robust and accurate estimation of the measured state. 
Typical area applications include autopilot implementation (Wasif et al., 2012), image data fusion 
(Salman et al., 2012), the assessment of physical activity (Shaopeng et al., 2012), and fire detection 
(Wang et al., 2011). 
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Multi sensor data fusion can be realized via various algorithms. Rao et al. (2000) proposed an 
interesting coherent estimator that fuses the least mean square (LMS) estimation and wavelet 
denoising. The multiple inputs are first averaged and the average is then denoised using a wavelet 
filter. However, as the method uses the arithmetic average for the LMS estimation, it is not 
optimum in terms of minimum mean square error. Xu et al. (2004) carried out a study on the 
optimum estimation of a time-varying parameter from multiple observation sequences derived from 
multiple sensors. In this method, the input data are first measured by several sensors and the results 
are then fused via importance weights, which can be obtained from data variance. Thus the variance 
of the fused signal would naturally be less than the minimum variance of the input signals. 
However, the fused signal will not be an appropriate estimation of the expected signal, if the noise 
of the input data is more than some limits. De Dona et al. (2009) and Sunet et al. (2004) presented 
another method based on Kalman filter, which utilized two layers. In the first layer, the system 
outputs are measured and then data are classified in several observable sets with respect to the state-
space matrices. Then, Kalman filter is separately applied to the data sets, leading to several state 
variable sets. In the second layer, the extracted sets are then fused together proportional to variance 
matrix. High performance state estimation will be obtained only when Kalman filter is applied to all 
system states. Therefore, this method will not have suitable performance, because it is often applied 
only to a set of system states. Moreover, the method demands high computation time. It should be 
also noted that Kalman filter should be run for every system output set in each sample time. The 
fused estimates can ultimately be utilized by a time-consuming controlling algorithm to maintain 
the system performance. Therefore, a fusion algorithm with low computation effort is practically 
preferable to realize the fusion objective. 

This paper presents a new method for data fusion based on the wavelet transform. A system with 
several outputs, each of which is measured by a multi-sensor, is considered. The sensor outputs are 
first filtered by wavelet transform and the data variances are then calculated accordingly. The 
outputs corresponding to every system state, being measured by several sensors, are considered as a 
separate set. Then, appropriate weights can be obtained via the equation mentioned in Xu’s work 
(Xu et al., 2004). Set components are consequently fused by their corresponding weights, yielding 
one optimum. Because the resultant weights have optimum values, the LMS error drawback will be 
improved. At the next step, Kalman filter is applied to the complete state set. In this method, 
Kalman filter is fired just after data fusion procedure and it is consequently used only one time at 
each sample time. For this reason, the required computation time is less than the method proposed 
by De Dona et al. (2009). In addition, Kalman filter uses all the states, which results in a better state 
estimation. 

This paper is organized in three further sections. In the next section, the proposed method is 
developed. For this purpose, an EKF-based filter is first exploited. Then, wavelet transform will be 
introduced. The proposed method is finally formulated using an EKF filter and wavelet transform. 
The performance of the developed method is evaluated in a simulation case study and the obtained 
results are investigated in section 3. Section 4 summarizes significant conclusions. 

2. Development of the proposed method  

2.1. Extended Kalman filter (EKF) 

Kalman filter is a recursive method that tries to estimate the states � � �� of a discrete-time 
process. The Kalman filter dynamics results from the consecutive cycles of prediction and filtering. 
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The dynamics of these cycles is derived and interpreted in the framework of Gaussian probability 
density functions. When either the system state dynamics or the observation dynamics is nonlinear, 
the conditional probability density functions that provide the minimum mean-square estimate are no 
longer Gaussian. The optimal non-linear filter propagates these non-Gaussian functions and 
evaluates their mean, which causes a high computational burden. A non-optimal approach to solve 
the problem, in the frame of linear filters, is the extended Kalman filter (EKF). The EKF 
implements a Kalman filter for a system dynamics that results from the linearization of the original 
non-linear filter dynamics around the previous state estimates. 

Let us assume that the equations of the process dynamics and measurement are described by: 

1 1 1( , , )k k k kx f x u w− − −=  (1) 

( , )k k kz h x v=  (2) 

where, � � �� and � � �� represent the state and measurement vector respectively. � and � are 
non-linear functions and random variables 
 and � denote process and measurement noise 
respectively. In practice, however, one does not know the individual values of the noises 
 and � at 
each time step. However, one can approximate the state and measurement vectors as read: 

1 1ˆ( , ,0)k k kx f x u− −=ɶ  (3) 

( ,0)k kz h x=ɶ  (4) 

�̃
 is a posteriori estimate of the state. 

To estimate a process with non-linear dynamics and measurement relationships, Equation 1 should 
be linearized as given below: 

1 1 1ˆ( )k k k k kx x A x x Ww− − −= + − +ɶ  (5) 

( )k k k k kz z H x x V v= + − +ɶ ɶ  (6) 

where, � and � indicate Jacobian matrices, consisting partial derivatives of � with respect to � and 

 respectively. Similarly, � and  � are Jacobian matrices, including partial derivatives of h with 
respect to x and w respectively. Then, the posteriori state can be estimated by: 

ˆˆk k kx x e= +ɶ  (7) 

ˆ ( )k k k k kx x K z z= + −ɶ ɶ  (8) 

( ,0)k kz h x=ɶ ɶ  (9) 

ê
 is the prediction error and �
 is Kalman filter gain, which can be obtained at each iteration via 
the following recursive equations: 
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1
T T

k k k k k kP A P A W QW−= +  (10) 

1( )T T T
k k k k k k k k kK P H H P H V R V −= +  (11) 

( )k k k kP I K H P= −  (12) 

where, � and � represent process and measurement noise covariance matrices respectively (Welch 
et al., 2006). 

2.2. Wavelet 

A wavelet is a wave function with a compact support. It is called a wave due to its oscillatory 
nature, and the diminutive –let suffix is used because of the finite domain where it is different from 
zero (the compact support). The scaling and translation of the basic wavelet ���� (i.e., the “mother” 
wavelet) can be defined via the wavelet basis: 

,

1
( ) ( ), 0a b

x b
x a

aa
ψ ψ −= >

 
(13) 

By choosing appropriate values for the scaling parameter � and the translation parameter �, the 
small segments of a complicated form may be represented with a higher resolution (zooming on 
sharp, brief peaks), while the smooth sections can be represented with a lower resolution. 

Wavelet transform is a tool whereby data, functions, or operators are being decomposed into 
various frequency components. Then, each component is analyzed at the resolution best fit for its 
scale. Wavelet transform provides an excellent time resolution of high-frequency components and a 
frequency (scale) resolution of low-frequency components. 

In wavelet analysis, it is usually talked about approximations and details. Approximations indicate 
the low frequency components of a function on large scale represented by the first addend, while 
the details denote the high-frequency components of a function on smaller scales represented by the 
second addend in Equation 14. The wavelet transform of a function includes output scaling function 
coefficients ��,
 (approximation) and wavelet coefficients ��,
 (details). 

, , , ,
1

( ) ( ) ( )
J

J k J k j k j k
k z j k z

f x a x b xϕ ψ
∈ = ∈

= +∑ ∑∑  (14) 

For determining the wavelet and scaling function coefficients, one step of the analysis consists of 
the separation of the approximation and details of the discrete signal, thereby yielding two signals 
as a result. The procedure described is the sub-band coding in signal processing and can be repeated 
for further decomposition. Figure 1 illustrates the decomposition for further levels. 

The algorithm described, which represents the essence of the discrete wavelet transform, is used for 
the analysis, i.e. the decomposition of signals. Assembling the components in order to gain the 
initial signal with no loss of information is called reconstruction. The wavelet analysis includes 
filtering and compression, while the wavelet reconstruction process is composed of decompression 
and filtering (Radunovic, 2009). 
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Figure 1 
Discrete wavelet transform decomposition (Radunovic, 2009). 

2.3. The proposed method 

A new method is developed for multisensor data fusion based on wavelet transform and Kalman 
filter in a recursive manner. To explain how the method operates, a general system is considered 
with the following characterized state-space model equations: 

1 1 1( , , )k k k kx f x u w− − −=  (15) 

( , ) 1,2,...,i i
k k kz h x v i l= =  (16) 

where, � � �� and � � �� represent the state and measurement vectors respectively; � and � are 
non-linear functions and random variables 
 and � denote process and measurement noises 
respectively. In Equation 16, � is sensor index. Each state of the system is measured by � sensors. 
Therefore, every state is measured several times and data fusion algorithm is implemented on these 
outputs. To perform the data fusion algorithm, wavelet transform (WT) is recursively applied to 
sensor data at each sample time. To apply WT, it is required to have a block or a horizon of data; 
thus a horizon is considered with a length of � sample time intervals. As the system is presumed to 
have � states and every state is measured with � sensors, the horizon encompasses �  � rows and 
each row is assigned to one sensor. This horizon is updated at each sample time. Upon entering 
each new data into the horizon, the oldest data are removed or, in other words, the horizon moves 
one step forward in the sample time direction. After updating the horizon, WT is applied to the 
result. WT can extract the approximations and details of the signal at different levels. The number 
of levels is chosen with respect to measurement noise; if output signal has high noise, a higher 
number of levels will then be allocated. For data filtering, the approximation signal in the last level 
is selected as the output. After applying WT to the horizon, a set of approximation signals is 
obtained for each sensor. It is supposed that data is in the form of a matrix which is represented by 
�, having �  � rows and � columns. This matrix is subsequently divided into � sub-matrices, 
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represented by �! , "� # 1,2, … , �', which individually have � rows and � columns. Each sub-matrix 
contains sensor outputs that belong to one state. 

In the succeeding step, data fusion is separately performed on every �! sub matrix. For this purpose, 
a parameter is needed in data fusion to indicate data reliability. Variance is employed as a useful 
measure for this fusion objective. For variance calculation corresponding to each sub matrix row, 
the mean value of each column is computed and each component difference from the calculated 
mean value is then squared. Therefore, the variance is determined by averaging all of these values 
in each row according to Figure 2. It should be noted that Figure 2 has been drawn only for state 1 
for the sake of simplicity. 

 

Figure 2 
Variance calculation procedure. 

After variance calculation, appropriate weights are needed to be determined for data fusion. Xu et 
al. (2004) presented an optimum weight scheme based on variance using the minimization of mean 
square error. Suppose there are � sensors in a multi-sensor system to measure each state variable. 
The observations are denoted by {�!�} �( # 1,2, … , �, � # 1,2, … , ��. The outputs can then be 

described as follows: 

( ) ( ) ( )ij i ijx t x t n t= +  (17) 

where, �!��)� denotes the white noise added to the original signal �!�)� in the output �!��)�. The 

variance of �!��)� is defined as *!�
+ �)� # ,-�!�

+ ., and ,-�. is the mathematical expectation of �.  

If the observations are unbiased and independent from one another, the measured �!�)� can be 
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estimated using the following LMS estimator: 

1

ˆ
il

i ij ij
j

x w x
=

=∑  (18) 

where, �! shows �th state of the system; 
!� is the weight applied to �!� and ∑ 
!� # 10
�12 . The 

variance of �! is given by: 

2 2 2

1

il

i ij ij
j

wσ σ
=

=∑  (19) 

where, *!�
+  denotes the variance of jth sensor of ith state. If the weights are identical and be equal to 


!� #
2

03
 for all (’s, �! estimated from Equation 18 will naturally be the arithmetic average of the 

observation. The variance of this estimate is given by: 

2 2

1

1 i

avr

l

i ij
i jl

σ σ
=

= ∑
 

(20) 

Although the arithmetic average has extensively been applied to estimate variables from multiple 
independent observations, the estimated result is not optimum in terms of MMSE. 

Minimizing the polynomial of Equation 19 subject to ∑ 
!� # 10
�12  yields the following optimum 

weighs: 

2
2

1

1

1
ij L

ij
j ij

w

σ
σ=

=

∑
 

(21) 

where, n and l are the number of states and sensors respectively, � # 1,2, … , � and ( # 1,2, … , �; the 
minimum variance of the estimation of �! can be calculated by: 

min

2

2
1

1

1i
i l

j ij

σ

σ=

=

∑

 
(22) 

It can be proved that the result is not only smaller than the variance of any observation sequences 
but also smaller than the one determined by Equation 20. Furthermore, Equations 2 and 5 can be 
used to obtain the optimum estimation of the measurable parameters in terms of MMSE (Xu et al., 
2004). 

The method has some adjustable parameters for achieving the desired results: 

� Length of horizon �: if it is aimed to put more strength on the past sample time effect on 
data fusion, a larger number should be selected for �. 

� Number of sensors: it is obvious that for having more accurate data, more sensors are 
needed to be applied. 

� Wavelet transforms level: if the sensor output has high noise, it should be better to select a 
greater WT level. 

After data fusion, one set of values are obtained for all the states. Kalman filter is then applied to the 
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obtained complete state set. 

3. Results and discussion 

According to Figure 3, to evaluate the performance of the proposed algorithm, a hydraulic system 
consisting of three identical cylindrical tanks with equal cross-sectional area S has been considered. 
These tanks are connected by two pipes with the same cross-sectional area, denoted by 45, having 

the same outflow coefficients represented by 627 and 67+. The nominal outflow located at tank 2 
has the same cross-sectional area as the coupling pipe between the tanks with a different outflow 
coefficient, denoted by 6+8.Two pumps are used in the first and second tanks to provide adequate 
flow rates shown by 92 and 9+. The maximum flow rate drawn from pump � is denoted 9!�:;. The 
level in tank i and its maximum level in that tank are denoted by �� and ���:; respectively. The 

system dynamics can be derived using the following mass balance equations: 

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1
1 13

2
2 32 20

3
13 32

1

1

1
   

dl t
q t q t

dt S
dl t

q t q t q t
dt S

dl t
q t q t

dt S

= −

= + −

= −

 (23) 

where, 9
<�

 represents the flow rate passing from tank m to tank n (<, � # 1,2,3 > < ? �) which, 

based on the Torricelli law, obeys the following relationship: 

( ) ( ) ( )( ) ( ) ( ) 2  mn mn p m n m nq t S sign l t l t g l t l tµ= − × −  (24) 

9+8 represents the flow rate which can be described as follows: 

( ) ( )20 20 2  2   pq t S gl tµ=  (25) 

 

Figure 3 
Three tank system descriptions. 
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Further details on this system are available elsewhere (Mendonca et al., 2008). The parameters of 
three tank system are given in Table 1. 

Table 1 
Three tank system parameters. 

Variable Notation Parameter values 

Tank cross sectional area 4 0.0154 <+ 

Inter tank cross sectional area 45 5  10DE <+ 

Outflow coefficient 627 # 67+ 0.5 

Outflow coefficient 6+8 0.675 

Maximum flow rate 9!�:;  � � -1,2. 1.2  10DH<7/J 

Maximum level �!�:;     � � -1,2,3. 0.62  < 

To properly demonstrate the comparative capability of the proposed algorithm, the developed 
algorithm together with the alternative algorithm presented by Xu et al., (2004) is applied to the 
simulated system and their results are compared. It is supposed that each state is measured with 
three sensors in a multi-sensor system and the outputs of the sensors K! , "� # 1,2' are assumed to be 
under the influences of Gaussian white noise � with variances of 0.8, 0.7, and 0.6 having the mean 
value of zero. Meanwhile, it is supposed that an uncertainty noise 
 in the form of Gaussian white 
noise with a variance of 0.2 and a mean value of zero induces the states. 

The simulation is conducted for 15 seconds and the length of horizon is selected equal to 10 sample 
times. This means that � matrix will contain 10 sample times and the algorithm is thus used for this 
number of data at each sample time. Daubechies wavelet “db4” is chosen as the wavelet function 
and the wavelet transform level is selected to be set at 2. A high level of wavelet transform can be 
chosen when the sensor noises are high. The outputs are shown in Figure 4.  

 

Figure 4 
Sensor output of state 1. 
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The output of the first sensor corresponding to state 1 and the optimized outputs of state 1 estimated 
by the proposed algorithm are illustrated in Figure 5. It can be seen that the optimized output is 
close to the real signal. The effectiveness of the algorithm for state 2 is quite similar to state 1. 
Furthermore, the first manipulated variable of the system, q1, is shown in Figure 6, which shows 
how it changes to follow the set point. 

 

Figure 5 
Optimized output of state 1. 

 

Figure 6 
Manipulated variable (q1) 
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To compare the results of the proposed algorithm with an alternative algorithm presented by Xu et 
al. (2004), the system has been undergone through the same test experiment using this algorithm 
and the result has been demonstrated in Figure 7 for state 1. The close observation of the obtained 
results clearly verifies that the proposed algorithm has better performance. To provide quantitative 
measures for a precise comparison, MSE and SNR values for each of the three results are calculated 
and listed in Table 2 for states 1 and 2. For the better calculations of the results, both algorithms are 
run for five consecutive times and the similar outputs are then averaged to produce more reliable 
outcomes. The calculated SNR and MSE values are listed in columns 2 and 3 of Table 2 
respectively. The required computational times to carry out each candidate algorithm during each 
sample time are summarized in column 4 for comparison purposes. It can be observed that each 
sample time takes 0.1 second and the computational times corresponding to both tested algorithms 
are less than the sample time. Table 2 clearly states that the SNR of the proposed system is 
improved in comparison with the original system and the second algorithm. Moreover, the MSE 
value of the presented algorithm has been improved (decreased) compared to the second algorithm. 
According to the results obtained, it is clear that the proposed algorithm is able to perform better 
than the second algorithm presented by Xu et al. (2004). 

 

Figure 7 
The second algorithm output of state 1. 

Table 2 
Comparison of the results of the presented and the second algorithm. 

 
 

SNR (db) MSE Computation time 
(second/sample time) 

State 1 State 2 State 1 State 2 

System 13.7 19.64 1.67 0.64 - 

Presented algorithm 20.84 31.8 0.36 0.21 0.051 

Second method 16.1 24.75 0.73 0.44 0.047 

Wavelet part 15.3 22.23 0.53 0.49 0.021 
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As explained earlier, the developed algorithm is composed of two parts. In the first part, wavelet 
transform is applied and then the variance of the data is extracted to exercise the data fusion. Then, 
Kalman filter is used in the second part for the final state estimation. To clearly reveal the 
importance of applying each part, it is useful to show the output obtained by the first part in terms 
of state 1 in Figure 8. The corresponding SNR and MSE values are listed in the last row of Table 2. 

Figure 8 demonstrates that the first part of the algorithm filters the input signal and fuses the data. It 
is naturally expected that the output of the first part is close to real data. Table 2 also confirms that 
the SNR corresponding to the first part output is increased, while its respective MSE is decreased in 
comparison to the system outputs. Thus, the obtained results clearly show the important role of the 
first part in the developed algorithm. 

 

Figure 8 
State 1 after applying wavelet and data fusion layer. 

4. Conclusions 

A multisensor data fusion algorithm was introduced for non-linear systems being faced with noisy 
environments. The proposed method was developed using the combined wavelet transform and the 
EKF filter in a recursive formulation. Several scenarios were conducted in a three-tank benchmark 
system under different noisy conditions to demonstrate the performance of the proposed algorithm in 
comparison with an alternative algorithm (Xu et al., 2004) in terms of SNR and MSE evaluating 
parameters. 
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Nomenclature 

EKF : Extended Kalman filter 

LMS  : Least mean square 

MMSE : Minimum mean square error 

MSE : Minimum square error 

MSDF : Multisensor data fusion 

SNR : Signal to noise ratio 

WT  : Wavelet transform 

References 

De Dona Jose, A., Seron Maria, M., and Yetendje, A., Multisensor Fusion Fault-tolerant Control with 
Diagnosis via a Set Separation Principle, IEEE Conference on Decision and Control, p. 7825-
7830, Shanghai, 15-18 December, 2009. 

Mendonca, L. F., Sousa, J., and Costa, J. M. G., Fault Accommodation of an Experimental Three-tank 
System Using Fuzzy Predictive Control, IEEE International Conference on Fuzzy Systems, p. 
1619-1625, Hong Kong, 1-6 June 2008. 

Radunovic, D., Wavelet from Math to Practice, Academic Mind, Springer-Verlag, 2009 
Rao Anil, M. and  Jones Douglas, L., A Denoising Approach to Multisensor Signal Estimation, IEEE 

Trans on Signal Processing, Vol. 48, No. 5, p.1225-1234, May 2000. 
Salman, A., Lars, B., and Brendan, H., Image Data Fusion for the Remote Sensing of Freshwater 

Environments, Applied Geography, Vol. 32, p. 619-628, 2012 
Shaopeng, L., Multisensor Data Fusion for Physical Activity Assessment, IEEE Trans on Biomedical 

Engineering, Vol. 59, No. 3, p. 687 - 696, March 2012. 
Wasif, N., Sutton, R., and Xu T., An integrated Multisensor Data Fusion Algorithm and Autopilot 

Implementation in an Uninhabited Surface Craft, Ocean Engineering, Vol. 39, No. 1 , p. 43-52, 
2012. 

Sun Shu, L. and Deng Zi, L., Multisensor Optimal Information Fusion Kalman Filter, Automatica, 
Vol. 40, No. 6, p. 1017-1023, 2004. 

Wang, H., Yugui, Z., Ling, M., and Zhikun, Ch., The Research of Fire Detector Based on Information 
Fusion Technology, Conference on Electronic & Mechanical Engineering and Information 
Technology, Harbin, Heilongjiang, Vol. 9, p. 3678-3681, 2011. 

Xu, L., Zhang, J. Q., and Yan, Y., A Wavelet-based Multisensor Data Fusion Algorithm, IEEE Trans. 
Instrum. Meas., Vol. 53, No. 6, p. 1539-1545, 2004. 


