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One of the key components of sequencing technologies is proper separation of a sin-
gle species/strain/allele of the targeted sequence from a sample. In traditional tech-
niques, this has been achieved chemically (e.g., using specific primer sequences),
however, multiple different but related species can still possibly be picked up with
the same primer. This is especially problematic in sequencing RNA or proviral
DNA, when the virus in question is highly variable and each individual is infected
with a different swarm of viral strains. In case of HIV, for example, when the
dominant sequences in the population differ by one or more insertions and dele-
tions, the standard sequencing techniques fail to recover any of the components
strains sufficiently well. We show that the chromatograms of mixed sequences can
be used to accurately infer the individual strains, removing the need for additional
sequencing steps, e.g. new primer synthesis or cloning of individual viral variants.
To this purpose, we have developed a statistical generative model of raw chro-
matogram data and an appropriate inference algorithm based on maximizing the
likelihood of an observed chromatogram. To illustrate this technique, we used an
automated ABI 3730XL sequencer to capture mixed samples of pro-viral DNA of
HIV-infected patients. The chromatograms of the mixed samples were analyzed by
the presented algorithm, providing the inferred individual strains for each mixture
as output. The mixture components were then compared with the sequences of
the original clones. In many cases, the separated components had fewer than 1%
differences to the ground truth which compares favorably to the output of the basic
sequencer, whose errors went up to 40%.

1. Introduction

In immunology research, obtaining as complete as possible a population of
viral strains by sequencing a single sample is highly desirable, but difficult

∗Chromatography data provided by C. Abha, C. Moore, S. Mallal at the Centre for
Clinical Immunology and Biomedical Statistics, Royal Perth Hospital, Perth, Australia
and D. Goodridge, D. Sayer at Conexio 4, East Fremantle 6158, Western Australia.
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due to drawbacks of current sequencing technology. Sequencing highly poly-
morphic organisms, such as viruses, is complicated by diversity present in a
sample. Current Sanger sequencing typically provides only the readout of a
single dominant strain in the mix with some detectable ambiguities corre-
sponding to individual site polymorphisms. However, linking polymorphic
variants at different sites and disambiguating complete multiple strains is
not possible using standard software. Furthermore, signals from strains
with very low concentrations is obliterated by more dominant strains.

The field of gene sequencing is at the crossroads. On the one hand, new
techniques such as those proposed by 454 Life Sciences 1, allow sequencing
of a large number of short (up to about 100 nucleotides) subsequences, pos-
sibly allowing detection of segments of strains that are present in fairly low
concentrations. On the other hand, assembly of short segments acquired
this way into full strains is an area of active research, while the more tradi-
tional Sanger sequencing provides much longer readouts, but the problem
of extraction of multiple strains from these signals is unsolved. It is possi-
ble that the combination of these two techniques will lead to best results.
In this paper, we provide a new algorithm for analysis of chromatogram
data that can help resolve the problem of disambiguating mutliple strains
from a single chromatogram signal, which on the one hand, makes Sanger
technology more directly useful for population sequencing, and on the other
provides a way for improving new generation of sequencing solutions, by
providing a multi-strain skeleton for mapping short readouts.

Intermediate output of sequencing technologies (e.g, smoothed chro-
matograms obtained by ABI sequencers) can often appear to be of low
quality when in fact it should be appreciated as containing more usable
data than a clean, high quality signal. Unreadable chromatograms are of-
ten caused by the presence of multiple strains or alleles of the targeted
sequence region, especially when these strains differ from each other by one
or more deletions and/or insertions. This situation will tend to appear in
the most important sequencing tasks — the ones targeting variable regions
of the sequence of interest. One such example is HIV sequencing, wherein
a large fraction of chromatograms is discarded even though the very cause
of the unreliable readout — the presence of multiple HIV strains — is of
great interest to the research community.

In §3, we point out the cues that could reveal the individual strains
in the chromatograms of mixtures, then develop a statistical generative
model that uses these cues to assign likelihood to different chromatogram
decodings, and the inference algorithm that separates the components in
the mixture by maximizing this likelihood. We also present preliminary,
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but strongly indicative experimental validation of the algorithm: we show
that in controlled mixing situations, where we can know the sequences for
the mixed strains, we can infer the component mixtures with high accuracy
(less than 1% of erroneously decoded nucleotides). The mixed components
all have insertions and deletions, and they also differ by up to 10% of point
mutations, which makes the decoding especially error prone using standard
sequencing methods (up to 40% error).

2. Chromatography Background

Chromatography is a fast and effective mode for sequencing DNA, and is
most commonly performed with the chain termination method 9. First,
DNA molecules selected for sequencing will be amplified through rounds
of PCR. Once the concentration is sufficiently high, a final annealing is
performed. Previously, this would require the four deoxyribonucleotide
triphospates (dNTPs: dATP, dCTP, dGTP, dTTP) as nucleotide build-
ing blocks to help grow the strands, but this time a small amount of a
synthetic dideoxynucleotides (ddNTPs: ddATP, ddCTP, ddGTP, ddTTP)
are added instead. They differ by not having a hydroxide ion on their sugar
component where the next nucleotide would attach; thus, the growing chain
terminates. This process takes place stochastically at different locations in
the strand for each molecule, thus the resulting mixture will contain some
DNA fragments of each intermediate length.

Secondly, polyacrylamide gel electrophoresis is applied to sort fragments
by mass (i.e. length). The mixture is placed into gel-filled capillaries 10 and
a voltage is applied to draw the DNA fragments to one end. Upon reaching
this point, they pass by a laser, and since ddNTPs are also labeled with dif-
ferent fluorescent compounds 8, they emit a color distinct to each nucleotide
that can be detected and recorded. The ABI 3730 machine automates this
process and includes four-channel scanning of the lanes, base-calling (inter-
preting the traces of the scanner), and output into a standard AB1 file.

Because this process, like PCR, relies on primers to isolate DNA, it
is susceptible to getting mixtures DNA sequences that differ in regions
outside the primer. This is a common cause of noisy chromatogram trace
files that confound standard base-callers looking for pure traces. We believe
that there are important cues in these mixed chromatogram files, such as
precise positioning and amplitude of peaks, that should enable decoding of
chromatograms with more than one sequence.
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3. The statistical generative model of chromatograms

The built-in ABI base-calling software is designed to operate on clean data
and thus disregards much of the signal amplitude and position information
present in chromatograms. More sophisticated base-callers, such as Phred
2 account for uncertainty and release confidence measures for each base
they call, but they still only model and extract a single sequence from each
chromatogram input.

In order to develop an algorithm for extracting more information from
mixtures, we first develop a generative model that describes the variability
typically observed in chromatograms of mixed signals through various in-
volved variables such as component sequences, their amplitudes, and their
phase offsets. The model is statistical in nature, and is described by condi-
tional probability distributions which allow various types of noise and un-
certainty in the model. The product of these conditionals forms the joint
probability distribution over all model variables, and given a noisy chro-
matogram, the estimate of the variables of interest (e.g., the component
sequences) can be obtained by statistical inference.
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Figure 1. Chromatography data from the ABI 3730, with one trace for each nucleotide.
(A) shows raw data, before correcting for gel and mobility effects and smoothing, as
shown in (C). (B) shows how the data can be seen as a four-channel histogram of DNA
sequence fragments terminated by ddNTPs.

We will describe the model from bottom up, starting with a simple
model of a chromatogram trace obtained from the ABI sequencer. ABI se-
quencer performs low-level signal processing on raw channel traces as shown
in Fig. 1A, correcting for nonlinear gel mobility effects, and other effects
which we are currently not modeling. Beginning with the signal for one
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nucleotide, x(t), we can consider the signal as a histogram of terminating
ddNTP appearance frequencies plotted against time (or mass), t, as illus-
trated in Fig. 1B. We construct a probability model of the data and express
the likelihood of the data given the model as:

P (x | model) =
∏

t
P [ddNTP appearance at t]x(t) (1)

If we treat ddNTP as being normally-distributed about discrete positions

|← →|

|←A C G T (A) (B)2ia π iσit 2ia π
→|← ��A C G T (C) it(1 )2i ia επ −2i ia επiσ it

Figure 2. Peaks in a chromatogram treated as components in a Gaussian mixture model.
(A) shows the basic model with peak amplitude (ai), position (ti), and width (σi) param-
eters. (B) generalizes to a four-channel signal with the peak being located in exclusively
in one nucleotide’s channel. (C) further generalizes this by modelling uncertainty (al-
lowing ‘leakage’) of proportion εi to other nucleotide channels.

in the DNA chain, the probability model becomes a familiar mixture of
Gaussians with a latent class variable c = {c1, c2, . . . , ct, . . .} assigning a
class label to each time value:

P [ddNTP appearance at t] = act

1√
2πσct

e−(t−tct)
2
/2σ2

ct (2)

where the model parameters, Θ, are as follows: act represents the amplitude
(mixture proportion), tct the peak position (mean of the Gaussian), and σct

the peak width (standard deviation of the Gaussian). One such peak (with
index ct = i) is shown in Fig. 2A. This leads to the following complete
log-likelihood of the data and class labels:

log P (X, c|Θ) =
∑

t
x(t) log

{
act√
2πσct

e−(t−tct)
2
/2σ2

ct

}
(3)

The EM algorithm could be used to infer class labels and learn model pa-
rameters separately for each of the four data channels, {xA(t), xC(t), xG(t)},
but we find it advantageous to consider the channels jointly, storing a class
label for each (channel, time value) pair, clt. We also introduce a nucleotide
parameter, `clt

, for each class:

log P (X, c|Θ) =
∑

l∈{A,C,G,T}

∑
t
xl(t) log

{
[l=`clt

] aclt√
2πσclt

e−(t−tclt)
2
/2σ2

clt

}
(4)
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Here the Iverson notation is used where [true] = 1 and [false] = 0; this
peak-to-nucleotide assignment is shown in Fig. 2B. It is important to keep
class labels consistent with nucleotide parameters i.e. the label of chan-
nel A at time t, cAt, should index a Gaussian whose nucleotide label is
also A, which means `At = A or else (4) will give a log-likelihood of −∞.
This leads to optimization difficulties in the EM algorithm — nucleotide
labels will never greedily optimize beyond initialization — so we introduce
a nucleotide ‘uncertainty’ or ‘leakage’ parameter, εlt, (see Fig. 2C) repre-
senting the proportion of the Gaussian placed on all other nucleotides. The
complete log-likelihood then becomes:

log P (X, c|Θ) =
∑

t,l

xl(t)log
{

aclt

ε
[l=`clt

]
clt

(1−3εclt
)
[l6=`clt

]

√
2πσclt

exp
(
−(t−tclt)

2

2σ2
clt

)}
(5)

Next, we label each Gaussian with an ordered pair (i, k) where i indexes
the base pair (there are typically several hundred in a chromatogram) and
k = {1, . . . ,K} indexes the strain number. We confine our experimental
results to chromatograms containing K = 2 distinct strains.
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Figure 3. Conjugate priors on latent model variables. Because peak widths are well-
known to fall within a certain range, it is given a tight gamma prior distribution as
illustrated in (A). Mixing proportions are assumed to be a shared property of the entire
mixture (one concentration per strain), and this is controlled with a Dirichlet prior as
illustrated in (B) in two dimensions. Peaks spacing is fairly constant (C) – in increments
equivalent to the incremental mass of each DNA fragment – so they are given a Gaussian
prior around the previous peak location plus a global constant, ∆.
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We use additional information in the form of conjugate prior distribu-
tions over parameters to help with sequencing. First, we put a gamma
prior on σ−2

ik reflecting the knowledge that peak width (i.e. ddNTP mass)
is relatively constant between molecules:

P (σ−2
ik ) ∝ (

σ−2
ik

)γ−1
e−σ−2

ik /β (6)

where γ and β are shared shape and scale hyperparameters, respectively,
dependant on signal resolution only. This is shown in Fig. 3A.

Chromatography emission levels i.e. amplitudes on chromatogram
traces are proportional to the concentration of DNA fragments with a par-
ticular terminating ddNTP nucleotide. These tend to decrease as frag-
ment mass increases (strains lengthen) beyond a certain point and signal
quality degrades. In small neighborhoods, however, relative amplitudes of
peaks should be approximately proportional to the relative concentrations
of strains and thus can provide a clue for decoding. We use a Dirichlet
prior with one hyperparameter (µ1, . . . , µK) per strain so P (aik) ∝ (aik)µk ,
where µk is a constant reflecting the relative abundance of the strain in the
mixture. See Fig. 3B for a multidimensional illustration of this distribution.

As discussed previously, the position of each peak in a chromatogram
trace is proportional to the time a DNA fragment terminating at that lo-
cation takes to reach the sensor. This time may depend on the mass, ori-
entation, and shape of each fragment, with fragments from the same strain
being correlated by these properties. For example, the mass of fragments in
each strain grows in discrete steps corresponding to the mass of each dNTP,
and so after enough differences between strains, the mass difference may
become sufficient to incur a delay of one strain with respect to the other
as they travel through the gel. Thus, it is important to capture statistical
dependencies among the assigned peak positions by modeling the ith peak
position in the kth strain as being normally-distributed about the previous
peak position in the same strain, plus a constant, ∆:

P (tik|ti−1,k) = 1√
2πφk

e−(tik−ti−1,k−∆)2/2φ2

Here, ∆ is assumed to be a constant dependant on the sample resolution of
the chromatogram, and φ2 a shared variance representing the importance
placed on this prior. This is illustrated in Fig. 3C.

The model can specialize on a certain species by involving its diversity
profile. For our purposes, we use an HIV profile, H, computed from the
data in 7. This profile consists of position-independent multinomial dis-
tributions (over four nucleotides) for the 9700 HIV base positions. The
assigned peaks describe a decoding of each strain k, and this decoding is
expected to be in accordance with this profile, given some alignment bk.
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While this alignment is most generally another mapping of the base pairs, in
our implementation of the model we consider the chromatograms in shorter
overlapping windows and so it is sufficient to describe the alignment bk as
a single specific location in the profile. We use this information as a prior
on the nucleotide assignments of each peak as follows:

P (`ik|bik) = (1− 3εik) · hbik
(`ik) + εik · (1−hbik

(`ik))

where bik is a base position pointer into the profile for the ith peak in the
kth strain and H = {h1(l), h2(l), . . . , h9700(l)} with l ∈ {A, C, G, T} is the
HIV diversity profile. For example, the probability that the nucleotide at
position 6500 in the envelope region of the profile is ‘G’ is h6500(G).

To compute the most likely decodings for all strains, in our preliminary
experiments we used a fast approximate variational inference technique 5.
We approximate the product of the likelihood, P (X, C|Θ), and the priors
described above, with another distribution, Q(C):

P (X, c|Θ)P (σ−2
ik )P (aik)P (tik)P (`ik|bik) ≈ Q(c) (7)

where

Q(c) =
∏

i

∏

k

∏

l

∏
t

q
[clt=(i,k)]·xl(t)
iklt s.t.

∑

i,k

qiklt = 1 ∀l, t (8)

There will inevitably be a considerable amount of uncertainty in some
strain assignments where amplitude, profile, and spacing cues for peaks are
inconsistent. In these cases, reversing a close decision involves switching
peaks between strains which does not happen easily if the Gaussians are
already mostly-fit and the free energy is near a local minimum. For this
reason, we introduce a final latent variable, r, associated with each peak
position, i, and use it to enumerate all possible strain permutations. For
two-strain case, there are 2! = 2 possible permutations, namely (1, 2) →
(1, 2) and (1, 2) → (2, 1). The Q-distribution is modified accordingly:

Q(c, r) = Q(c) ·
∏

i

K!∏
κ=1

(ρiκ)[ri=κth permutation] s.t.
K!∑

κ=1

ρiκ=1 ∀i (9)

We then proceed to minimize the free energy:

F =
∫

r

∫

c

Q (c, r) log
Q(c, r)

P (X, c|Θ) P (σ−2)P (a)P (t)P (`|b)
(10)

Minimization is efficiently performed by setting parameter derivatives to
zero (i.e. co-ordinate descent). The one exception is the b profile pointer
parameter, which we learn in each iteration by maximizing the correlation
between overlapping windows (e.g. 30 base pairs) of the decoded sequence
and the profile.



July 16, 2007 23:58 Proceedings Trim Size: 9in x 6in chromatography

9

4. Experimental Results: Identifying mixtures of sequences

We tested our algorithm on ten chromatograms obtained from HIV patients
in the Centre for Clinical Immunology and Biomedical Statistics in Perth,
Australia. Four of the chromatograms, labeled ‘C3’, ‘G4’, ‘A1’, and ‘A2’,
were obtained from ‘clean’ samples, i.e., the chromatogram contained one
unambiguous sequence. The remaining six (‘A4’,‘D4’,‘F3’,‘C1’,‘E1’,‘G1’)
were created by mixing clean samples in different proportions in the lab,
and then performing chromatography on them.

After analyzing these six chromatograms with our algorithm, we aligned
the inferred mixture strains with each of the ground truth sequences com-
prising the mixture, and obtained error rates shown in Table 1. ABI base-
calling refers to the decoding provided by the standard ABI software, de-
signed with the assumption that the sample is clean. Since the samples
were in fact mixed, ABI software must fail to decode one of the sequences,
and so we report a single error rate for the one that was bestdecoded. To
establish an error rate for ABI software, we compared its decoding with
both mixture components as shown in Fig. 4.

Figure 4 shows alignment and error rates of each the six mixed
chromatograms to the corresponding pair of mixture component chro-
matograms. As chromatogram quality declines after several hundred bases
(and may be spotty at the beginning too), we compute error rates only
in central regions (kept consistent across all algorithms for each sample)
shown as green backgrounds. The component sequences were substantially
different from each other: sequences C3 and G4 contained much of the
gp120 envelope region in HXB2 and differed in 16% of the sites. In addi-
tion, while C3 and G4 have the same start, they differ by an insertion of
three nucleotides followed later by a deletion of three nucleotides. Clean se-
quences A1 and A2 contained the gp41 envelope region and differed in 14%
of sites, and also exhibit differences due to insertion/deletions. The sample
mixes were created so that they lead to typical ambiguous chromatograms
that HIV researchers encounter in practice, but in a controlled environ-
ment where the ground truth is known. It should be noted that ENV genes
are very important for vaccine design, as the ENV protein is potentially
exposed to antibodies. However, the immune pressure leads to high vari-
ability in this region of HIV, and so most of the ENV chromatograms are
not single-strain. More often than not, they are similar to the mixtures we
analyze here. In practice, however, a mixed sample is typically discarded
and a new sample is taken.

Table 1 shows that in most cases our method dramatically outperforms
the single sequence decoding provided by the ABI software, while, impor-
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Table 1. Error rates for identifying DNA mixtures by ABI base calls and our method,
after alignment with ground truth. Some chromatograms deteriorate sooner than oth-
ers, so we compute error rates for different regions of some samples as shown in Fig. 4’s
green backgrounds. Mixture concentration estimates are also shown for our method.

Chromatogram Composition Decoding Mixture Difference
label (ground truth) Method Estimate

F3 ABI basecaller G4 42.54%

(50% C3 + decoded strain #1 59% G4 + 0.55%
50% G4) #2 41% C3 2.39%

A4 ABI basecaller C3 30.59%

(62.5% C3 + decoded strain #1 60% C3 + 0.34%
37.5% G4) #2 40% G4 1.01%

D4 ABI basecaller C3 0.75%

(83% C3 + decoded strain #1 75% C3 + 0%
17% G4) #2 25% G4 19.58%

C1 ABI basecaller A2 38.35%

(50% A1 + decoded strain #1 59% A1 + 9.02%
50% A2) #2 41% A2 8.65%

E1 ABI basecaller A1 9.86%

(62.5% A1 + decoded strain #1 64% A1 + 9.02%
37.5% A2) #2 36% A2 8.65%

G1 ABI basecaller A1 1.62%

(83% A1 + decoded strain #1 74% A1 + 2.83%
17% A2) #2 26% A2 22.10%

tantly, decoding both components from the mixture.
For example, we get good results for all mixture concentrations of C3

and G4. While we were able to extract both underlying clean sequences
with low error rate, the traditional ABI base-caller’s 30.6% error rate in
mixture A4 and 42.6% in mixture F3 are higher than the genetic diversity
in the region, thus rendering sequencing output useless. This is the reason
why mixed chromatograms with insertions or deletions between strains in
ENV region are typically discarded in the HIV community. In this case, C3
and G4 sequences, though binding to the same primer, differ by deletions
and insertions which create more ambiguities than there really are site
mutations. We should note that even extending the sequencing further
into a less reliable part of the chromatogram, we were able to decode over
500 nucleotides from both strains with similarly low error rates.

It is interesting that in case of 50/50 mixtures, which we had expected
to be harder due to equal expected amplitudes of both components, were
decoded well by our algorithm. This indicates the strength of the position
(ti − ti−1 ≈ ∆) cue for disambiguation. On the other hand, when one
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Figure 4. Alignment and differences between clean sequences (C3, G4, A1, A2) and
mixed sequences (F3, A4, D4, C1, E1, G1) with differences marked as a red ¤. Error
rates for the interpretable regions (shown with green background) appear in the upper-
left for each algorithm. The multiple-strain decoding algorithm achieves much lower error
rates than the ABI sequencer except in 83/17 mixtures with one extremely-dominant
component.

strain is present in very low concentrations, the algorithm found it difficult
to lift it out of the noise, which explains the worse performance for weaker
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component of 83/17 mixes. In the case of chromatogram G1, if the algo-
rithm decodes it assuming K = 1 strains instead of K = 2, the error rate
is reduced to 1.48%, beating the ABI basecaller.

We also found that chromatogram amplitude was a fairly good indi-
cator of the ground truth mixture proportions of the clean sequences in
samples other than 50/50 mixtures. This was estimated from the µ1 and
µ2 amplitude hyper-parameters, which were optimized in the algorithm.

5. Conclusion

We have shown that for chromatograms of mixed sequences, probabilis-
tic techniques can be employed to accurately infer the individual strains’
sequences. This can be done by exploiting information overlooked by tra-
ditional base-callers, such as exact amplitude and position information.

This setup enabled us to identify and sequence mixtures of clean se-
quences in many cases. More sophisticated techniques, such as including
raw (unsmoothed) trace data in the model, are currently being explored.
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