
Co-spatial Searcher: Efficient Tag-Based Collaborative
Spatial Search on Geo-social Network

Jinzeng Zhang1, Xiaofeng Meng1, Xuan Zhou1,2, and Dongqi Liu1

1 School of Information, Renmin University of China, Beijing, China
2 Key Labs of Data Engineering and Knowledge Engineering, Ministry of Education, China

{zajize,xfmeng,xzhou}@ruc.edu.cn

Abstract. The proliferation of geo-social network, such as Foursquare and Face-
book Places, enables users to generate location information and its corresponding
descriptive tags. Using geo-social networks, users with similar interests can plan
for social activities collaboratively. This paper proposes a novel type of query,
called Tag-based top-k Collaborative Spatial (TkCoS) query, for users to make
outdoor plans collaboratively. This type of queries aim to retrieve groups of geo-
graphic objects that can satisfy a group of users’ requirements expressed in tags,
while ensuring that the objects be within the minimum spatial distance from the
users. To answer TkCoS queries efficiently, we introduce a hybrid index struc-
ture called Spatial-Tag R-tree (STR-tree), which is an extension of the R-tree.
Based on STR-tree, we propose a query processing algorithm that utilizes both
spatial and tag similarity constraints to prune search space and identify desired
objects quickly. Moreover, a differential impact factor is adopted to fine-tune the
returned results in order to maximize the users’ overall satisfaction. Extensive ex-
periments on synthetic and real datatsets validate the efficiency and the scalability
of the proposed algorithm.

Keywords: Spatial collaborative search, Tag, Geo-social network, Shadow
prefix-tree.

1 Introduction

With the wide application of location-acquisition technologies, such as GPS, Wi-Fi and
Social Networks, Geo-Social Network (GeoSN) is increasingly being used in our daily
lives. Some examples of GeoSNs include Google Buzz, Foursquare, Facebook Places,
etc. In a GeoSN, a variety of spatial objects (e.g.restaurants, hotels, businesses) are
marked on the map and annotated with user generated tags. GeoSN users can search
for interesting spatial objects, and share information about their location and activities.
More importantly, users with similar interests can plan for social activities collabora-
tively, such as going to somewhere for dining and shopping, or taking a cycling tour
together. To make such plans, it is essential to identify a group of spatial objects, such
as restaurants, shops and parks, which can maximally satisfy the users’ needs.

In this paper, we study how to find suitable spatial objects to meet GeoSN users’
needs in collaborative activity planning. We formulate a new kind of spatial queries
called Tag-based top-k Collaborative Spatial (TkCoS) Query, which aims to retrieve
top-k groups of objects for meeting users’ needs. In essence, the spatial objects returned

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 560–575, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Co-spatial Searcher: Efficient Tag-Based Collaborative Spatial Search on GeoSN

p3:t1,t5

p5:t1,t4

p7

p6:t2,t3
N6

N3

N4

p8:t3,t5

p7:t2,t5

N5

N2

p4:t1,t2,t2

p1:t3,t3,t5

N1

p2:t3,t5

q2:t2,t4

q1:t5

q3:t2

Fig. 1. Example of TkCoS query

by a TkCoS query should satisfy the following conditions: (1) they should be annotated
with as many tags specified in the query as possible; (2) the objects in the result should
be as close to one another as possible, such that the maximum diameter of the area cov-
ering the objects is minimized; (3) the maximum distance between the users’ locations
and the objects should be minimized.

Figure 1 illustrates the proposed TkCoS query by an example. Points p1...p8 rep-
resent different spatial objects distributed in the region of Los Angeles, each object is
annotated with a number of descriptive tags ti. Suppose three users of a GeoSN, Bob,
Tom and Mary, plan to find places to meet. They collaboratively submit a TkCoS query
Q= {〈RowenaAve : ModeratePizza〉, 〈MononSt : FreeParking,cinema〉,〈RussellAve :
cinema〉}, where Rowena Ave(q1) and Monon St(q2) and Russell Ave(q3) represent the
users’ locations, and Moderate Pizza(t5), Free parking(t4), cinema(t2) are query tags
that express their needs. As shown in Figure 1, the group of objects {p3, p4, p5} appears
to be the best choice, since it can (1) cover all the user’s tags, (2) cover the smallest area,
and (3) be near to the users’ locations. In contrast, the objects {p2, p5, p6} are not suit-
able. Although they are optimal choices for some individual users (e.g. p2 for q1), not
all the users’ needs are well covered.

TkCoS query can be used in many real world applications. For example, a group
of people who want to co-rent a house may have a number of requirements regarding
the house’s quality, utility, and distance to their working places. These requirements
can be met by a single TkCoS query. Despite its usefulness,TkCoS query poses several
challenges to the existing techniques (e.g., [3], [6]) of spatial query processing. Typ-
ical spatial keyword queries consider only a single query location (see section 2 for
a detailed comparison), and cannot be directly applied to process TkCoS queries. A
possible adaptation is to use existing (e.g. [6]) methods to execute the sub-queries of
a TkCoS query separately, and then merge all the results returned by the sub-queries.
However, this approach is inefficient. On the one hand , each sub-query has to return a
large number of objects to ensure the optimality of the final query results. On the other
hand, it will incur high CPU and I/O overheads, as the same data needs to be accessed
repeatedly by different queries.

J. Zhang et al.

To process TkCoS queries efficiently, we devise an efficient hybrid index structure
called Spatial-Tag R-tree (STR)-tree, which integrates the tag information into a R-tree.
To retrieve a group of spatial objects that maximize the users’ satisfaction, we propose
an algorithm to perform a best-first traversal in the tree. In the algorithm, we employ a
shadow prefix-tree model to generate candidate sets of search space. An upper bound
constraint and a bidirectional constraint are used to prune search space. In addition, we
define a differential impact factor to avoid finding the group of objects with covering
only a subset of users’ requirements. We conduct extensive experiments to evaluate our
algorithm using synthetic data sets and real-world data sets. The results demonstrate
that the proposed algorithm is efficient and scalable and exhibits superior performance
over the brute force method.

The rest of this paper is organized as follows. Section 2 introduces the related work.
We formally define the problem of tag-based collaborative spatial search in Section 3.
Section 4 introduces the STR-tree. Section 5 introduces our algorithm for processing
TkCoS queries. Section 6 presents our experimental evaluation. We summarize our work
and discuss future work in Section 7.

2 Related Work

In recent years, we have seen an increase in the research dedicated to spatial keyword
search. In the query processing of spatial-keyword search, indexing techniques[1],[2],
[3],[4],[7] for both text and geographic data are used. Hariharan et al. [1] addressed the
problem of spatial keyword queries by utilizing region constraints. Their approach ex-
ploits a hybrid index called KR*-tree, which extends R*-tree by augmenting each node
with a set of the keywords that appear in the descendants of the node. The query results
are the objects located in the query region that are annotated with the query keywords.
Felipe et al. [2] proposed a similar kind of query and used IR2-tree, a combination of
R-tree and signature files, to perform query processing. It only contains the information
to determine whether a given document contains a query keyword. It is unable to rank
the documents based on textual relevance. The work [3] proposes the location-aware
top-k text retrieval (LkT) query, which takes into account both location proximity and
text relevancy. And introduces a hybrid index called IR-tree which integrates R-tree and
inverted lists. However, in Web applications, as the number of documents and keywords
can be very large, they can result in fat nodes in the IR-trees. The above approaches aim
to retrieve only single objects as query results. In contrast, our goal is to find groups of
objects such that the objects in a group collectively satisfy the needs of multiple users.

Zhang et al. [4],[5] addressed the problem of m-closest keyword (mCK) query. The
mCK query aims to find the spatially closest tuples which match m user-specified key-
words. It utilizes bR*-tree, an integration of R*-tree and bitmap. Each node in the tree
is augmented with a keyword MBR to support pruning in the tree traversal. However,
as the approach assumes that each object in the result set corresponds to a unique query
keyword, it cannot be applied to the cases where multiple constraints are specified on
a single object. The work [6] proposes the collective spatial keyword query, aiming to
retrieve a group of spatial objects, such that the group’s keywords cover the query’s
keywords and the objects are the nearest ones to the query location. Our TSkCo query

Co-spatial Searcher: Efficient Tag-Based Collaborative Spatial Search on GeoSN

differs from above approaches in three aspects. First, our query helps multiple users
in different locations to search for spatial objects collaboratively. Second, compared to
[4][6], our approach aims to find the top-k groups of spatial objects and support partial
match of query tags. Third, we exploit vector space model to calculate tag similarity
rather than treating all query keywords equally. To summarize, the semantics of TkCoS
query are different from those of the mCK query and collective keyword query.

3 Problem Statement

Let D be a set of spatial objects. Each object in D is represented by a pair o=〈loc, t〉,
where loc represents spatial location information and t is a bag of tags for describing
the object. In the vector space model of IR[8][9], t can be treated as a vector in finite-
dimensional space. This vector can be utilized to calculate the similarity between two
sets of tags.

A TkCoS query can be represented as Q= {〈q1.loc,q1.t〉, ...,〈qm.loc,qm.t〉}, where
qi.loc is the ith user’s location and qi.t represents a set of tags that describe the users’
requirements or preferences. The TkCoS query intends to retrieve the top-k groups of
spatial objects R=〈r1, ...,rn〉 with the smallest aggregated distance from the users, the
minimal spatial coverage and the highest similarity to Q measured in descriptive tags.

In order to search for the top-k best object groups from a spatial dataset, we propose
a ranking function to measure how well a search result satisfies a TkCoS query. The
function takes into account both the spatial proximity and the similarity between tag
sets. The spatial proximity, denoted by D(Q,R), can be measured by two components.
One is the maximum distance between the sub-query locations of Q and the result set
R, denoted by D1(Q, R). The other is the maximum diameter of the area of covering R,
denoted by ODiam(R). That is to say,

Rank(Q,R) = α
D(Q,R)
maxD

+(1−α)(1−Tr(Q.t,R.t)) (1)

D(Q,R) = β D1(Q,R)+ (1−β)ODiam(R) (2)

D1(Q,R) = max
qi∈Q

(
n

∑
j=1

(dist(qi,r j))) (3)

In Formula (1), Tr(Q.t,R.t) denotes the tag similarity between Q.t and R.t. maxD de-
notes the maximal distance between any two objects in D. It is used as a normalization
factor. In Formula (3), dist(qi, r j) denotes the Euclidean distance between an object r j

∈ R and a sub-query’s location qi ∈ Q. The parameters α ,β ∈ (0,1) are used to adjust
the tradeoff between the factors. To measure the maximal diameter of the area covering
R, ODiam(R), we give the following definition.

Definition 1. Given a set of spatial objects R=〈r1, ...,rn〉, the diameter of R, denoted as
ODiam.

ODiam(R) = max
ri∈R,r j∈R

(dist(ri,r j)) (4)

where dist(ri,r j) measures the Euclidean distance between the two objects ri and r j.

J. Zhang et al.

Compared to a normal document, a tag set usually consists of a much smaller number
of terms. Therefore, a direct application of a traditional IR model to measure the tag
similarity Tr(Q.t,R.t) in Formula (1) can lead to inadequate results. In this paper, we
adopt the method proposed in [10] as our similarity metric, which is defined as follows:

Tr(Q.t,R.t) = ∑
qi∈Q,r j∈R

(simt(qi.t,r j .t)) (5)

simt(qi.t,r j.t) =
(qi.t)C(r j .t)T

√
(qi.t)C(qi.t)T

√
(r j .t)C(r j.t)T

(6)

In Formula (6), C is a tag similarity matrix, which can be represented by C=(ci, j)n×n,
where n is the number of distinct tags, and ci, j is the similarity value between two tags
ti and t j.

Finally, the goal of a TkCoS query is to find groups of spatial objects with the smallest
Rank(Q,R). Our problem can be defined as follows.

Definition 2. (TkCoS Retrieval). Given a dataset D and a TkCoS query Q= {〈q1.loc,q1.t〉,
. . . ,〈qm.loc,qm.t〉}, find k groups of objects {R1,R2, . . . ,Rk} (Ri={ri1,ri2, . . . ,rin}), such
that there does not exist R′ �∈ {R1,R2, ...,Rk} that satisfies Rank(Q,R′) < Rank(Q,Ri)
where Ri ∈ {R1,R2, ...,Rk}.

4 STR-Tree: A Refined Hybrid Indexing Mechanism

To answer TkCoS queries efficiently, we introduce an efficient hybrid index structure
called Spatial-Tag R-tree (STR-tree), which is an extension of IR-tree [3] and the origi-
nal R-tree [11]. It clusters spatially close and semantically relevant objects together and
stores the tag information in the nodes of the R-tree [11].

In the STR-tree, a leaf node includes entries in the form (optr, loc,oti), where optr
is a pointer to an object in D, oti represents the tag information of an object, which is
indexed by inverted lists [12]. A intermediate node contains these entries in the form
(N ptr,MBR,Ntsum), where Ntsum represents the tag summary information of its child
nodes referred by Nptrs. The Ntsum includes two parts: tag maximum information Tmax
and tag minimum information Tmin. Note that each tag in the inverted lists is associated
with a tag frequency (tf) and the number of objects containing the tag (df). To minimize
storage overhead, for each tag, the Tmax (resp. Tmin) of each non-leaf node Ni stores
only the df and the maximum (resp. minimum) tf among all the child nodes rooted at
Ni. This maximum (resp. minimum) tf provides an upper (resp. lower) bound of the tag
similarity between a query and the nodes in the subtree rooted at Ni.

Fig.2 gives an example of STR-tree for the spatial objects in Figure 1. Fig. 2(a) shows
the Tmax and Tmin information of the non-leaf node N1. In Fig. 2(b), the objects p1 and
p2 are grouped into the node N1. Likewise, p3 and p4 are grouped into N2. These two
non-leaf nodes form a intermediate higher-level node N5, and so on.

The construction of a STR-tree is conducted through a sequence of insert operations,
which are a well studied operation in the original R-tree. The only difference is that it
needs to update the tag maximal and tag minimal information. Similarly, the update and
delete operations of STR-tree are simple extensions of those of R-tree too.

Co-spatial Searcher: Efficient Tag-Based Collaborative Spatial Search on GeoSN

(b)

N1

p1 p2

N2

p3 p4

N3

p5 p6

N4

p7 p8

IL1 IL8IL7IL6IL5IL4IL3IL2

(a)
Inverted List

N7

N5 N6

TSum6TSum5

N6

N3 N4

TSum4TSum3

N5

N1 N2

TSum1 TSum2

Tag

t3

t5

Tag Summary
{dft,N1,tft,N1}

{2,2}

{2,1} {2,1}

{2,1}

Tmax Tmin

Fig. 2. STR-tree indexing structure

5 Processing TkCoS Queries

Comparing with other types of spatial keyword queries, a TkCoS query is a collabora-
tive query composed of multiple locations associated with multiple tags. A brute force
approach is to process each sub-query qi in Q independently, and merge all the results
returned by the sub-queries. Obviously, this approach will lead to high processing cost.
First, the same node will be accessed repeatedly in different sub-queries. Second, we
need to keep the result set of each sub-query sufficiently large, to ensure the merged
results contain the top-k.

In this section, we present a more efficient algorithm to answer TkCoS queries. Our
idea is to perform a best-first search on the STR-tree. When performing the search, we
maintain a ranked list of candidate node sets, where each set is a set of the nodes in the
STR-tree that can potentially contain a top-k result. In each step of the search, we pick
the candidate node set with the minimal rank score, and start from its node to traverse
the STR-tree. Then we use the new nodes encountered in the traversal to form new
candidate node sets, and insert them into the ranked list. The candidate node sets are
ranked based on the minimum possible score of the results it could contain. During the
best-first search, we utilize several pruning strategies to truncate the irrelevant nodes in
the STR-tree, such that a significant part of the tree can be skipped.

5.1 Query Algorithm

The efficiency of the query algorithm depends on how we evaluate the fitness of each
candidate node set. It determines how fast we can reach the bottom of the STR-tree and
how many irrelevant nodes can be pruned during the search process. To evaluate each
candidate node set, we utilize two metrics, that is, the lower bound and the upper bound
of the possible scores (defined in Formula (1)) of the results this candidate node set
contains. Let NS be a candidate node set, and let Q be the query, we denote the lower
bound and upper bound by MinRank(Q,NS) and MaxRank(Q,NS) respectively.

Obviously, the lower bound MinRank(Q,NS) is used to rank the candidate node sets
encountered during the search and prune the paths of the search space in the hybrid

J. Zhang et al.

index, so as to guarantee that the top-k results returned sequentially.We compute Min-
Rank(Q,NS) as follows:

Definition 3. Given a TkCoS query Q and a node set NS, the minimal possible score of
the results in NS w.r.t Q (MinRank) is:

MinRank(Q,NS) = α
MINDε (Q,NS)

maxD
+(1−α)(1−maxTr(Q.t,NS.u)) (7)

MINDε (Q,NS)) = β max
ni∈NS

minDist(Q,ni)+ (1−β)(max
ni,n j∈NS

minDist(ni,n j)) (8)

where MINDε (Q, NS) is the minimal spatial proximity between Q andNS, maxni∈NS

minDist(Q,ni) is the minimal Euclidian distance between Q and NS, maxni,n j∈NS minDist
(ni,n j) is the minimal diameter of NS, maxT R(Q.t,NS.u) is the maximal tag similarity
of Q and NS, and α,β and maxD are the same as those in Forumla (1)and (2).

Lemma 1. MinRank(Q, NS) satisfies the following property.

∀os ∈ OsetRank(Q, os)≥MinRank(Q, NS) (9)

where Oset is the spatial object set contained in node NS, os is any subset of Oset.

Proof. First, according to Formula (3), we have D1(Q, os) ≥ minDist(Q, NS). Second,
according to Definition 1, the diameter of a node set is the maximal distance of any
pair of its nodes. Thus, we have: ODima(os) > maxni,n j∈NS minDist(ni,n j). Third, since
maxTr(Q.t, NS.u) is the upper bound of tag similarity between Q and NS, we can Tr(Q.t,
o.t) ≤ maxTr(Q.t, NS.u). We can derive Rank(Q, os)≥MinRank(Q, NS) for any os.
�

Lemma1 proves that MinRank(Q, NS) is a true lower bound. Therefore, if we traverse
a STR-tree in the ascending order of MinRank(Q, NS), we guarantee to find the top-k
results of Q.

The upper bound MaxRank(Q,NS) is used to prune the inappropriate candidate node
sets as early as possible in search processing. It is calculated as follows.

Definition 4. Given a TkCoS query Q and a node set NS, the maximum possible score
of the results in NS w.r.t Q (MaxRank) is:

MaxRank(Q,NS) = α
MAXDε(Q,NS)

maxD
+(1−α)(1−minTr(Q.t,NS.l)) (10)

MAXDε(Q,NS)) = β max
ni∈NS

maxDist(Q,ni)+ (1−β)(max
ni,n j∈NS

maxDist(ni,n j)) (11)

where MAXDε (Q, NS) is the maximal spatial proximity between Q andNS, maxni∈NS

maxDist(Q,ni) is the maximal Euclidian distance between Q and NS, minTR(Q.t,NS.l)
is the minimal tag similarity between Q and NS, and maxni,n j∈NS maxDist(ni,n j) is the
maximal diameter of NS, denoted as maxDima.

Co-spatial Searcher: Efficient Tag-Based Collaborative Spatial Search on GeoSN

Lemma 2. MaxRank(Q, NS) satisfies the following property.

∀os ∈ OsetRank(Q, os)≤MaxRank(Q, NS) (12)

where Oset is a spatial object set contained in node NS, os is any subset of Oset.

Proof. This lemma can be proved in a similar way as Lemma 1.
�

Lemma 3 (Upper Bound Constraint). Given a TkCoS query Q and a candidate node
set NS, Let CNSk be the kth candidate node set based on the ascending order of MaxRank
in the maintained list. The node set NS can be disregarded during traversing the STR-
tree if MinRank(Q,NS)> MaxRank(Q,CNSk).

Proof. Denoted by os the object set enclosed in the node set NS. According to
Lemma 1, we have: Rank(Q,os) ≥ MinRank(Q,NS). As MinRank(Q,NS)> MaxRank
(Q,CNSk), we can derive that Rank(Q,os) ≥ MaxRank(Q,CNSk). Therefore, NS cannot
contain any top-k results.
�

Lemma 2 and 3 proves that MaxRank(Q,CNSk) is a upper bound(denoted as uppC) of
the candidate node sets. Using Lemma 3, we can prune the candidate node set that
cannot possibly contain top-k.

In the query processing, apart from considering the ranking function in Formula 1,
we should also care the satisfaction degree of each individual user. The objects returned
only covering a handful of users’ needs should be eliminated from the results. In our
work, we adopt Bayes theory to define Contribution Degree of each sub-query qi in Q.

Definition 5. (Contribution Degree.) Given a TkCoS Q= {〈q1.loc,q1.t〉, ...,〈qm.loc,
qm.t〉} and a node set NS, let q1,q2, ...,qm be a partition of Q. Contribution Degree of
qi can be defined as follows.

P(qi|NS) =
P(NS|qi)P(NS|qi)

P(NS)
(13)

where P(qi)=simt(qi.t, NS.t), P(NS|qi)=|qi.t ∩NS.t|/|NS.t|, and P(NS) = |Q.t ∩NS.t|/|Q.t|.

According to Formula (13), when the contribution degree of each sub-query respec-
tively infinitely tend to the proportion of | qi.t | in | Q.t |, the users can be maximally
satisfied. Therefore, we use the difference between the contribution degree of and qi

and |qi.t|
|Q.t| to measure degree of satisfaction. We call this difference Differential Impact

Factor.

Definition 6. (Differential Impact Factor) Given a TkCoS Q= {〈q1.loc,
q1.t〉, ...,〈qm.loc,qm.t〉} and a node set NS, the differential impact factor δ is defined as
follows.

δNS =

√
∑m

i=1(P(qi | NS)− |qi.t|
|Q.t|)

2

√
mmax(P(qi | NS)− |qi.t|

|Q.t|)
(14)

J. Zhang et al.

To take the users’ satisfaction degree into account, we use δNS to modify the lower
bound MinRank(Q, NS). Note that the value of δNS is smaller, the overall satisfaction is
better. If δNS ∈ (0,1) is too small, the searching order can be changed obviously. To be
specific, we apply eδNS MinRank(Q, NS) to rank the candidate node sets.

Lemma 4 (Bi-directional Constraint). Given a node set NS and the current node
set CNS with the smallest MinRank score, if eδNS MinRank(Q, NS) ≥ eδCNS MinRank(Q,
CNS), then the node set NS is pruned.

Proof. Obvious from Lemma 1 and definition 3 and 5.
�
In order to find top-k groups of spatial objects, STR-tree is traversed from the root node
following the best-first traversal strategy. The pseudocode is shown in Algorithm 1. Let
a min-priority queue U keep track of candidate node sets E with eδE MinRank(Q, E) ,
while an ordered link list LL store the same nodes in U associated with MaxRank(Q,E)
and the maxDima(E) in the ascending order of MaxRank. The process iteratively checks
the first entry E in U(line 4-23). If E contains only spatial objects, it is returned as a
top-k result. Otherwise, If E is a intermediate node set, we invoke Algorithm 2 to the
children of the nodes in E, and compose them into new candidate node sets Snl (line 11).

Algorithm 1: COSS(Q, STR-tree, k)
Input: Q: a TkCoS query;

STR-tree: a hybrid indexing;
Output: The top-k groups of objects satisfying Q;
1: U ← new min-priority queue; LL← new a ordered link list;
2: U .Enqueue(STR-tree.root, 0); LL.Insert(STR-tree.root,∞,∞);
3: uppC← ∞; uppDima← ∞;
4: while U is not empty do
5: E←U .Dequeue(); LL.Delete(E);
6: uppC← LL[k]; uppDima← max(maxDima(LL[1..k]));
7: if E is a group of objects then
8: R← R ∪{E};
9: if | R | =K then goto 25;
10: else if E is a intermediate nodeset then
11: Snl← GenCSet(E, uppC, uppDima);
12: for each nodeset NS in Snl do
13: if | U.length|< k or MinRank(NS, Q) < uppC then
14: U.Enqueue(NS, eδNSMinRank(NS, Q));
15: LL.Insert(NS, MaxRank(NS, Q),maxDima(NS));
16: uppC← LL[k]; uppDima← max(maxDima(LL[1..k]));
17: else if E contains leaf nodes then
18: Sl← GenCSet(E, uppC, uppDima);
19: for each objectset os in Sl do
20: if MinRank(os, Q) < uppC then
21: U.Enqueue(os, eδos Rank(Q, os));
22: LL.Insert(os, MaxRank(os, Q),maxDima(os));
23: uppC← LL[k]; uppDima← max(maxDima(LL[1..k]));
24: return R

Co-spatial Searcher: Efficient Tag-Based Collaborative Spatial Search on GeoSN

Then, we consider each of the new node sets. If the node set NS in Snl does not satisfy
the condition in Lemma 3, it is enqueued to U together with eδNS MinRank(Q, NS) and is
inserted LL with MaxRank(Q,NS) and maxDima(NS). Otherwise, NS will be discarded,
because it cannot contain any top-k. Whenever LL changes, we need to update uppC,
which represents k-th smallest MaxRank(Q,NS) in U, and uppDima that is the maximal
maxDima of top-k element in LL(line 16). Likewise, if E is a leaf node set, we process
E in the same way to the non-leaf nodes (line 17-23). The algorithm repeats the above
procedure. Once R contains k groups of objects or no more groups of objects can be
found, the algorithm terminates and outputs R.

5.2 Generating Candidate Node Sets of Search Space

During each step of the best-first search algorithm, it needs to expand the nodes in a
candidate node set, and use their child nodes to generate more concrete candidate node
sets. An efficient generation approach is essential to ensure the efficiency of the top-k
algorithm. However, if we exhaustively enumerate all the subsets, it could incur high
computing overhead, as the number of subsets grows exponentially with the number of
child nodes. In order to reduce the cost of I/O and computation, we need to filter out
irrelevant node sets as early as possible. We exploit the apriori property among the set
and its superset to reduce search space in generating candidate node sets. By using the

Algorithm 2: GenCset(S, uppC, uppDima)
Input: S: a set of spatial nodes;
Output: A list of candidate spatial node sets SList;
1: Slist← /0; T← SPF-tree(S,uppDima);
2: for each node ni in S do
3: for each childnode cni in ni do
4: if cni.t ∩ Q.t �= Φ and αMINDε (cni,Q) < uppC then
5: I1 ← I1∪ cni;
6: for k form 2 to |Q.t| do
7: NNk← GenNeighbor(Ik−1, T);
8: for each nodeset NS in NNk do
9: if αMinDistε (NS,Q) < uppC then
10: Ik ← Ik∪ NS;
11: L←∪kIk;
12: for each nodeset NS ∈ L do
13: if (MinRank(NS, Q) < uppC) then
14: add NS to SList;
15: return SList;
Procedure GenNeighbor(Ik−1, SPF-tree)
16: for each nodeset l in Ik−1 do
17: PreOrderTraverse(SPF-tree);
18: for each node ni in l do
19: CSni← Get-Childnodeset(ni);
20: CommonCS← ∩ni CSni;
21: for each node CN in CommonCS do
22: C←Merge(ni,CN); add C to NNk;
23: return NNk;

J. Zhang et al.

upper bound of candidate node sets uppC and the upper bound of the diameter uppDima
introduced in section 5.1, we devise two pruning mechanisms to filter out the candidate
node sets that cannot possibly contain any top-k result.

Lemma 5. Given a TkCoS query Q and a node set NS, if αMINDε (NS,Q) > uppC,
then the node set NS and all its supersets cannot contain any top-k result.

Proof. According to definition 3, we have MinRank(Q,NS) = α MINDε (Q,NS)
maxD + (1−

α)(1−maxTr(Q.t,NS.u). On the one hand, the minimal spatial proximity of a superset
of NS is larger than MINDε (Q,NS). On the other hand, the tag similarity maxTr(NS,Q)
is in the range between 0 and 1. If we set maxTr(NS,Q) to 1, then αMINDε (Q,NS) is
the lower bound of the MinRank of all its superset. Therefore, when αMINDε (NS,Q)
> uppC holds, any superset of NS has larger MinRank score than the scores of the
current top-k candidate node sets (because uppC is a upper bound). Thus NS and all its
supersets cannot contain any top-k result.
�
By applying Lemma 5 to the generation of the candidate node sets, the node sets that
cannot affect the query results can be discarded as early as possible. We call the node
set that does not satisfy the condition in Lemma 5 Relevant Node Set, denoted as I.
Besides, we still utilize the the upper bound of diameter uppDima for pruning.

Lemma 6. Given a node set NS=〈N1, . . . ,Nk〉, if the diameter of NS is larger than up-
pDima where uppDima is the maximal maxDima of top-k element in link list, then NS
and its superset can be pruned.

Proof. According to definition 1, if the diameter of NS is larger than uppDima, then
there exists two nodes Ni,Nj ∈ N with minDist(Ni,Nj) ≥ uppDima. Any superset of
NS must contain Ni,Nj and its diameter exceeds the uppDima. Thus NS and its superset
does not provide a query result with a diameter less than uppDima.
�
Lemma 6 says that the diameter of the candidate node set can not exceed uppDima. In
generating candidate node sets, we only care these node sets with neighbor relationship
that the distance of any two nodes is less than uppDima. Once any two nodes in NS
satisfy neighbor relationship, we call it a Neighbor Node Set, denoted as NN.

(a) (b)

u1u2; u2u3v1v2; u3v1Uc

Vc v1v2; v2v3; v3

u2

null

U V

u1 u2
u3 v1 v2 v3

u3 v1 v2 v2 v3v1

Fig. 3. The construction of shadow prefix-tree

In the sequel, we proceed to propose the strategy of generating candidate node sets.
A good candidate generation method keeps the aprior properties, as well as avoids

Co-spatial Searcher: Efficient Tag-Based Collaborative Spatial Search on GeoSN

amounts of join operations. Based on this principle and lemma 6, we propose a shadow
prefix-tree model that materializes the neighbor relationship between childnodes of NS.
The number of subtree is determined by the number of nodes in NS while each branch
in subtree records the neighbor relationship of childnodes of NS. Figure4 illustrate an
example of shadow prefix-tree about node set (U(u1,u2,u3),V (v1,v2,v3)). we can find
the neighbor node set by traversing the shadow prefix-tree according to lemma 7.

Lemma 7. (Neighbor Node Set Generation) Given a relevant node set Ik−1={n1,n2, ...,
nk−1}, if a node nk is contained in the intersection of child nodes of each node in Ik−1,
NNk={n1,n2, ...,nk} is a size k neighbor node set.

Proof. Each node ni in Ik−1={n1,n2, ...,nk−1} has neighbor relationship with other node
of Ik−1. If a node nk is the child node of {n1,n2, ...,nk−1}, then indicates that nk has a
neighbor relationship with all nodes in Ik−1. In addition, the neighbor relationship is
symmetric. So NNk={n1,n2, ...,nk} is a size-k neighbor node set.
�
Algorithm 2 shows the process of generating candidate node sets. In this algorithm, NNk

represents size-k neighbor node sets, Ik is the size-k relevant node sets. The shadow
prefix-tree T is firstly built by utilizing S and the upper bound of diameter uppDima
(line 1). Then, we invoke procedure GenNeighbor (line 16-23) to generate the neighbor
node sets NNk based on T and node set Ik−1. Ik can be obtained by filtering the node sets
in NNk that satisfy the condition of lemma 5 (line 9-10). Finally, all of node sets in Ik

are appended to list L(line 11). After all node sets L are found, we check each node set
in L to see whether its MinRank score is less than uppC (line 12-14). Those that cannot
qualify the conditions are eliminated. On contrary, we do not check this constraint in
the process of node set Ik since if a node set does not contain query tags, it can still
combine other nodes to covering the missing tags. As long as it is relevant to the tag of
query, we keep it in list L of node set Ik.

6 Experiments

This section presents an extensive experimental evaluation of the proposed method for
TkCoS queries using synthetic and real datesets.

6.1 Experimental Setting

We used two Baseline Algorithms to compare with our proposed algorithm COSS.
Baseline1 First separate last union (FSLU). In FSLU, we process each subquery qi

separately using an existing spatial keyword query processing method proposed in [2].
We utilize STR-tree to retrieve the object set with smallest rank score for each qi. Then
we merge the results of the sub-queries to obtain the final top-k.

Baseline2 Centroid-based Iterative Search Algorithm (CISA). In CISA, we use an
aggregation centroid c to substitute for a TkCoS query Q. The tag information of the
centroid c can be considered as the tags combination of each subquery in Q. The query
processing iteratively utilizes the methods of [2] to retrieve the group of objects that
cover all tags and are nearest to centroid c. It firstly finds the object with the smallest

J. Zhang et al.

distance that matches a part of tags. The uncovered tags together with the location of
centroid c form a new query. This process terminates until the tags are either matched
or skipped (for there is no matching object).

Datasets and Queries. Our experiments used two datasets, whose properties are sum-
marized in Table 1.The real data set DATA1 is obtained from the online web data
resource PocketGPSWorld [13] that consists of points of interest locations in United
Kingdom. DATA2 is a synthetic dataset generated to simulate a geo-social application.
We extracted 3000,000 tags from del.ic.ious [14] and combined the tags with the real
spatial dataset about California’s streets to generate DATA2. We generated 5 query sets
for DATA1, each containing 2,4,8,16,32 tags respectively. Similarly, we generated 5
query sets for DATA2. Each of the query sets comprises of 50 queries and each query is
randomly generated. Based on the query sets, we generate 6 group query sets for each
dataset. The number of the sub-queries in each group query ranges from 2 to12.

We implement all the algorithms using VC++. In all the experiments, the index struc-
tures were disk-resident and the page size was fixed at 4KB. In an index, the number of
children in each node is determined solely by the size of a page. All our experiments
were executed on a Windows platform with an Intel(R) Core(TM)2 Duo CPU of T7500
@ 2.66GHZ and 4GB RAM.

Table 1. Shows more details of the two datasets

Dataset Total # of objects Total # of unique tags Total # of tags
DATA1 125,313 47,672 877,191
DATA2 2,249,727 289,175 8,998,908

6.2 Performance Evaluation

top5 top10 top15 top20 top25 top30
0

0.5

1

1.5

2
x 10

4

Top−k

R
un

tim
e(

m
ill

is
ec

on
d)

CISA
COSS
FSLU

(a) DATA1

top5 top10 top15 top20 top25 top30
0

1

2

3

4

5
x 10

4

Top−k

R
un

tim
e(

m
ill

is
ec

on
d)

CISA
COSS
FSLU

(b) DATA2

Fig. 4. Effect of the k value

2 4 6 8 10 12
0

0.4

0.8

1.2

1.6

2
x 10

4

Groupsize

R
un

tim
e(

m
ill

is
ec

on
d)

CISA
COSS
FSLU

(a) DATA1

2 4 6 8 10 12
0

1

2

3

4

5
x 10

4

Groupsize

R
un

tim
e(

m
ill

is
ec

on
d)

CISA
COSS
FSLU

(b) DATA2

Fig. 5. Effect of the group size

We compare our algorithm COSS against FSLU and CISA in answering TkCoS queries.
The running time is used as our performance metric. We conduct four sets of experiment
in total.

Effect of k. In this set of experiments, we evaluate the performance of the three al-
gorithms with a varying k. As shown in Fig.4(a) and 4(b), the COSS method notably
outperforms FLSU and CISA for all values of k. Meanwhile, CISA performs better than
FSLU. This is mainly because COSS can prune irrelevant nodes more effectively than

Co-spatial Searcher: Efficient Tag-Based Collaborative Spatial Search on GeoSN

the other two methods. As expected, the running time of all the approaches increases
with increasing k.

Effect of the Group Size of Query. The objective of our second set of experiments is
to study the efficiency of the three algorithms in dealing with different sizes of query
groups. The results on DATA1 and DATA2 are shown in Fig.5(a) and 5(b). We can
see that COSS significantly outperforms both FSLU and CISA. For all the approaches,
the query running time increases as group size grows. This is because when increasing
group size, it takes more time to process the increasing number of entries in the hybrid
index. Nevertheless, the growth rate for COSS is much smaller than the others.

Effect of α and β . Fig.6(a) shows the performance of CISA and COSS on DATA1
with respect to different α . It is clear that COSS significantly outperforms CISA for all
the values of α . Recall that α can adjust the importance between the spatial proximity
and the tag similarity. A larger α means that the spatial distance is more important,
while a smaller α means that the tag information is more important. We notice that
the running time increases as α increases. This is mainly because spatial proximity
is normally less selective in pruning irrelevant results. The impact of the parameter β
on the performance of CISA and COSS algorithm is shown in Fig.6(b). As mentioned
earlier, β is introduced to balance the importance of the distance between query Q and
results R and that of the covering area of R. We obverse that COSS also outperforms
CISA slightly in most cases.

0 0.15 0.35 0.55 0.75 0.95
0

50

100

150

200

250

Alpha

R
un

tim
e(

se
co

nd
)

CISA
COSS

(a) α

0 0.15 0.35 0.55 0.75 0.95
0

50

100

150

200

Beta

R
un

tim
e(

se
co

nd
)

CISA
COSS

(b) β
Fig. 6. Effect of α and β

Scalability in Terms of Dataset Size. In order to simulate the real geo-social network-
ing in which the number of objects and tags continuously increasing, our final set of
experiments is conducted to evaluate the scalability of three algorithms by varying the
number of objects. We increase the size of the synthetic dataset steadily from 2 million
to 12 million. Fig.7 shows the running time of the algorithms as the data size increases.
When the group size is small, the CISA and COSS shows the similar rate of increase in
running time. As group size grows, CISA’s running time increases more dramatically.
We can also see that all the algorithms scale smoothly when the number of objects is not
greater than 4 million. However, the performance of FLSU and CISA declines quickly
when the dataset size is above 4 million. On the contrary, our COSS method scales well
even with large dataset size.

J. Zhang et al.

2M 4M 6M 8M 10M 12M
0

2

6

10

14

Number of objects

R
un

tim
e(

se
co

nd
)

FSLU
CISA
COSS

(a) groupsize=2

2M 4M 6M 8M 10M 12M
0

20

40

60

80

Number of objects

R
un

tim
e(

se
co

nd
)

FSLU
CISA
COSS

(b) groupsize=4

2M 4M 6M 8M 10M 12M
0

40

80

120

160

Number of objects

R
un

tim
e(

se
co

nd
)

FSLU
CISA
COSS

(c) groupsize=6

2M 4M 6M 8M 10M 12M
0

100

200

300

400

500

Number of objects

R
un

tim
e(

se
co

nd
)

FSLU
CISA
COSS

(d) groupsize=8

Fig. 7. Scalability in terms of dataset size

7 Conclusions

In this paper, we study the problem of tag-based top-k collaborative spatial (TkCoS)
query , which aims to find groups of objects with the smallest rank score and the high-
est satisfaction degree for multiple users. We present an efficient query processing al-
gorithm that is based a hybrid index, STR-tree and employ upper bound constraint and
bi-directional constraint to prune irrelevant subtree. This algorithm tackles the key chal-
lenge by building a shadow prefix tree model to generate candidate search space. Our
experimental evaluation shows that the proposed algorithm is efficient and scalable and
superior performance compared with baseline method. Our results can be used as a
value-added service in today’s social networking websites or geo-based applications.

Acknowledgments. This research was partially supported by the grants from the Natu-
ral Science Foundation of China (No. 61070055, 60833005, 91024032, 91124001), the
Fundamental Research Funds for the Central Universities, and the Research Funds of
Renmin University of China (No. 12XNLJ01, 11XNL010, 10XNI018), National Sci-
ence and Technology Major Project (No. 2010ZX01042-002-003).

References

1. Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing spatial keyword (sk) queries in ge-
ographic information retrieval systems. In: 19th IEEE International Conference on Scientific
and Statistical Database Management, pp. 161–170. IEEE Press, Washington (2007)

2. Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: 24th IEEE
International Conference on Data Engineering, pp. 656–665. IEEE Press, Washington (2008)

3. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web
objects. J. Proc. of VLDB Endowment 2(1), 337–348 (2009)

4. Zhang, D.X., Chee, Y.M., Mondal, M., Tung, A.K., Kitsuregawa, M.: Keyword search in
spatial databases: Towards searching by document. In: 25th IEEE International Conference
on Data Engineering, pp. 688–699. IEEE Press, Washington (2009)

5. Zhang, D.X., Ooi, B.C., Tung, A.K.H.: Locating mapped resources in web 2.0. In: 26th IEEE
International Conference on Data Engineering, pp. 521–532. IEEE Press, Washington (2010)

6. Cao, X., Cong, G., Jensen, C.S.: Collective spatial keyword querying. In: 31th ACM Inter-
national Conference on Management of Data, pp. 373–384. ACM Press, New York (2011)

7. Khodaei, A., Shahabi, C., Li, C.: Hybrid Indexing and Seamless Ranking of Spatial and Tex-
tual Features of Web Documents. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.)
DEXA 2010. LNCS Part I, vol. 6261, pp. 450–466. Springer, Heidelberg (2010)

Co-spatial Searcher: Efficient Tag-Based Collaborative Spatial Search on GeoSN

8. Wong, S.K.M., Ziarko, W., Raghavan, V.V.: On modeling of information retrieval concepts
in vector space. ACM Transaction on Database System 12(2), 299–321 (1987)

9. Anh, V.N., de Kretster, O., Moffat, A.: Vector space ranking with effective early termina-
tion. In: ACM 24th International Conference on Research and Development in Information
Retrieval, pp. 35–42. ACM Press, New York (2001)

10. Park, J., Choi, B.C., Kim, K.: A vector space approach to tag cloud similarity ranking. J.
Information Processing Letters 110(12-13), 489–496 (2010)

11. Guttman, A.: R-Trees: A dynamic index structure for spatial searching. In: 4th ACM Inter-
national Conference on Management of Data, pp. 47–57. ACM Press, New York (1984)

12. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Surveys 38(2),
6 (2006)

13. PocketGPSWorld, http://www.pocketgpsworld.com/modules.php?name=POIs
14. Delicious, http://www.delicious.com/

http://www.pocketgpsworld.com/modules.php?name=POIs
http://www.delicious.com/

	Co-spatial Searcher: Efficient Tag-Based CollaborativeSpatial Search on Geo-social Network
	Introduction
	Related Work
	Problem Statement
	STR-Tree: A Refined Hybrid Indexing Mechanism
	Processing TkCoS Queries
	Query Algorithm
	Generating Candidate Node Sets of Search Space

	Experiments
	Experimental Setting
	Performance Evaluation

	Conclusions

