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A Refined Laminated Plate Theory 

S. T. M A U 1 

Introduction 
ELASTICITY solutions on layered composite plates [1, 2]2 

indicate the inadequacy of the classical laminated plate 
theory [3, 4], in which the Kirchhoff-Love kinematic assumptions 
are adopted and the effects of transverse shear deformation are 
neglected. Accurate modeling of the laminated plate behavior is 
possible only if the assumptions of nondeformable normals is 
abandoned as was done in the derivation of a laminated cylindri­
cal shell theory [5]. More recently, laminated plate theories are 
derived using separate assumptions for the displacements of each 
layer [6]. In this Note, a refined laminated plate theory similar 
to one of those in reference [6] is derived. In the present theory, 
the interlamina shear stresses are introduced as additional un­
known variables. Numerical results show excellent agreement 
with elasticity solutions. 

Laminated Plate Equations 

For each layer of a plate, the following displacement field is 
assumed: 

m = u°i(x, y) + Zi[\px(x, y)]i 

Vi = v°{x, y) + 2,[>/vfo V)]i 

Wi — w{x, y) 

(1) 

where z; is measured from the middle surface of the -ith layer. 
The continuity conditions are, with hi representing the thickness 
of the i'th layer, 

fi — Wj + l ' - [fci+idrU'+i + hi(^)i]/2 = 0 

Bi = »?+i - »? - [hi+i(^v)i+i + hi{^y)i\/2 = 0 
(2) 

Introducing the interlayer shear stresses (\x)i and {\y)i as 
Lagrange multipliers, the governing equations can be obtained by 
minimizing the following modified potential energy functional: 

7r' = H I I I o Ci'tie>dV ~ | | VwdA 

B - l 

where a,- is the elastic modulus mati-ix and p is the normal load. 
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Fig. I Dimensionless transverse shear stress of a three-layer rectangular 
plate (a/h = 4) 

Both the original cy and the reduced modulus Qij [6] are used in 
this study. The resulting equations include, in addition to equa­
tion (2), the following set of equations: 

[Auu°xx + 2Aitu%„ + Amu°yV + Auv°xx + (An + Am)v°xll 

. + A^v°yv\i + (Kx)i - (\x)j_i = 0 

[Ait,u°xx + (An + Au)u%y -f- A2liu%y + Amv%x + 2Amv°xy 

+ Atf)°Vy]i + (X„)< - (Ky)i-l = 0 

[Dn\f/X,xx + 2DnfM , + D6S\l/x,yy + DK\l/y,xx 

+ (Z>12 + Dm)i/y,xv + DK\py,yy - AK(^x + W,x) 

- Auifa + w,y)]i + [(Xx)i + {\x)i-i]-hi/2 = 0 (4) 

[Dw^x,xx + (Dn + DnS)\j/x,xy + Dm\l/x,yy + Dmfa.xx 

+ 2Dm\l/y,Xy + Dltily.yy ~ A46(^'x + W,X) - AU(^y + W,y)]t 

+ [(\)i + (A,)i-i]'V2 = 0 i = 1, 2,. . ., n 

n 
^ 2 [A6i(4'x,X + W.xx) + Aisi^x.y + \py.x + 2lO ,Xy) 

t = l 

+ Autyy.y + W.yy) + Autyy.y + )] + V = 0 

with 

and 

(Xz)o = iW = (Xi)n = (X„)» = 0 

[Aik,Dik]i = [ejh(h,hy\2)}i. 

If \ x and Xj, are eliminated from equation (4), then the present 
theory reduces to one of those in reference [6]. By retaining Xi 
and \y, however, not only does one obtain a more convenient 
recursive form, but also the interlamina shear stresses are now 
among the direct solutions of equations (2) and (4). Thus they 
need not be calculated indirectly from the displacement function 
(1), which actually lead to discontinuous transverse shear stresses 
across the interfaces. 

Numerical Example 
A three-layer crossply (0 deg/90 deg/0 deg) laminated rec­

tangular plate (6 = 3a) simply supported along all edges and sub-
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BRIEF NOTES 

Table 1 Maximum transverse deflection 
plate, w = lOOETw/iVfao"4) 

or a three-layer rectangular 

No. 
of 

layers 
3 

6 

9 

Case 
a 
b 
a 
b 
a 
b 

Exact [2] 
Note: a: 

4 
2.736 
2.741 
2.797 
2.802 
2.820 
2.825 
2.82 

10 
0.898 
0.901 
0.912 
0.915 
0.915 
0.918 
0.919 

a/h 
20 

0.602 
0.605 
0.606 
0.609 
0.607 
0.609 
0.610 

50 
0.517 
0.520 
0.518 
0.520 
0.518 
0.521 
0.520 

Original modulus, b: reduced modulus. 

100 
0.505 
0.508 
0.505 
0.508 
0.505 
0.508 
0.508 

Table 2 Maximum transverse shear stresses at the middle surface of the 
plale,* fe 5»z) — 10A(<7M, CBZ)/(q0a) 

Case 10 
a/h 
20 

"• j /2 

50 
4.39 
4.39 
4.39 
0.115 
0.118 
0.110 

100 
4.39 
4.39 
4.39 
0.114 
0.107 
0.108 

a 3.48 4.20 4.34 
b 3.49 4.20 4.34 
Exaotf 3.51 4.20 4,34 
a 0.317 0.153 0.124 
b 0.312 0.147 0.117 
Exactf 0.334 0.152 0.119 

Note: a: Original modulus, b: reduced modulus 
* From the 6-layer division. 
t Reference [2]. 

jected to the loading p = q0 sin (wx/a) sin (jry/b) is analyzed. 
The material properties are: Eh = 25 X 106 psi; ET = 106 psi; 
GLT = 0.5 X 106 psi; GTT = 0.2 X 106 psi; and VLT = VTT = 
0.25. The plate is equally divided into 3, 6, and 9 sublayers. 
The solutions are 

[•n't, (ipx)i, (\x)i\ =. [At, Bh (&),•] eos (irx/a) sin {iry/b) 

[»?, Wv)u (\)i\ = [d< Di, (£„),-] sin (irx/a) cos (iry/b) (5) 

w = E sin (wx/a) sin (iry/b) 

The calculated dimensionless transverse deflections and trans­
verse shear stresses are listed in Tables 1 and 2. The transverse 
shear stresses at the midpoint of an edge is depicted in Fig. 1. 
It is seen that the results are in very good agreement with those of 
the exact theory [2]. 

Discussion and Conclusion 

The present theory represents a more precise approach to the 
problem of thick laminated plates. The governing equations are 
recursive and thus numerical techniques such as the finite-
difference method can be applied easily. Also, a finite-element 
model [7] can be derived by using separate assumptions for each 
layer. Using reduced moduli in the present theory yields slightly 
different results. Some improvements, though negligible in the 
example given, are observed for thin plates (large a/h). This 
seems to confirm the findings of reference [8] in which the two 
approaches are compared on plate theories with nondeformable 
normal assumptions. 
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On the Natural Frequencies of Transverse 
Vibrations of an Elastic Plate (With In-
Plane Forces) Resting on a Winkler 
Foundation 

B. KISHORi 

The present Note describes a method of obtaining natural fre­
quencies of transverse vibrations of an elastic plate, with in-plane 
time-invariant forces, resting on a constant modulus Winkler 
foundation. The method used here consists of transforming the 
system equation into a 2 X 2 matrix equation. This matrix 
equation is transformed into Banach space through double finite 
Fourier sine transform and then natural frequencies of vibration 
are deduced. 

The equation of motion of free transverse vibrations of an elas­
tic plate resting on a Winkler foundation and subjected to the 
action of uniformly distributed and constant in-plane force, Q, 
may be given by 

DVhu(x, y, t) - QV2w(x, y, t) + ph 
d2iu(:c, y, t) 

+ hw(x, y,t) = 0 (1) 

where 

D = 
Eh3 

= plate flexural rigidity 
12(1 - v*) 

Q = forces acting along the edges of the plate, having 
dimensions force/length 

p = plate density 
h = plate thickness 
k = foundation modulus, having dimensions force/ 

length3 

w(x, y,t) = transverse deflection of the middle surface of the 
elastic plate 

V4 = V2-V2 

\ d z 2 dy") 

For the case when the plate is executing simple harmonic mo­
tion, the transverse deflection w{x, y, t) can be expressed as 

w(x, y, t) = u{x, y)eic (2) 

Since equation (1) is defined in a linear vector space having 
only linear differential operators we get the following with the 
help of equation (2): 

£>V2(V2 - Q/D)u(x, y) = (phcomn
2 - k)u{x, y) (3) 
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