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4.1 INTRODUCTION TO SIGNALING NETWORKS

Living cells receive various external stimuli and convert them into intracellular responses. This process is
collectively known as signal transduction, and involves a collection of interacting (macro)molecules such as
enzymes, proteins, and secondmessengers [1]. Signal transduction is an important part of a cell’s communication
with its surroundings. Signal transduction is crucial to the maintenance of cellular homeostasis and for cell
behavior (growth, survival, apoptosis, movement). Many disease processes such as developmental disorders,
diabetes, vascular diseases, autoimmunity, and cancer [2, 3] arise frommutations or alterations in the expression
of signal transduction pathway components.

Figure 4.1 illustrates the characteristic steps of signal transduction. Signal transduction processes are
activated by extracellular signaling molecules that bind to receptor proteins located in the cell membrane. The
signals are transferred inside the cell through changes in the shape of the receptor proteins and trigger a sequence
of biochemical reactions leading to the production of small molecules called second messengers. The signals are
amplified through additional biochemical reactions or protein-protein interactions in the cytoplasm, for example
phosphorylation of a protein by another protein called a kinase. The information can be passed to the nucleus
and can lead to changes in the expression of certain genes. Other signal transduction processes lead to a cellular
response at the protein level, such as opening of ion channels. At every step of the signal transduction process
feedbacks are possible and are often important.

Many signal transduction processes involve numerous and diverse components and interactions. For this
reason it is beneficial to represent them with a network, or graph. The components (e.g., biomolecules)
are represented by nodes (also called vertices), whereas the interactions and processes among the nodes
are denoted by edges (also called links). Edges in the network can be directed, indicating the orientation
of mass transfer or of information propagation, and can also have a positive or negative sign to repre-
sent activation or inhibition. The totality of the nodes and edges of a network form the network topol-
ogy. This network representation, called a signal transduction network or signaling network, provides a
basis for structural analysis and dynamic modeling of the underlying signal transduction process. These
mathematical analyses enable us to trace the propagation of information in the network, to determine the
key mediators, and to determine the system’s responses under normal circumstances and in the case of
perturbations.

Figure 4.2 depicts an example of a real signal transduction network, involved in activation-induced cell
death of white blood cells called cytotoxic T cells [5],[6]. This network is of interest because the process of
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FIGURE 4.1 Scheme of a hypothetical signal transduction process involving diverse interactions of cellular components. Figure
reproduced from Ref. [4].

activation-induced cell death is disrupted in the disease T-LGL leukemia, causing the survival of a fraction of
activated T cells, which later start attacking healthy cells. In Figure 4.2, the shape of the nodes indicates their
cellular location: rectangles indicate intracellular components, ellipses indicate extracellular components, and
diamonds indicate receptors. In addition, as this network represents only a small part of the cellular signaling
processes, hexagonal nodes are used to summarize its connections with other signal transduction mechanisms
or cell behaviors. Such nodes, called conceptual nodes, encapsulate behaviors that are relevant to the network
functions. For more details about this specific example see the legend of Figure 4.2.

4.2 A BRIEF SUMMARY OF GRAPH-THEORETIC ANALYSIS OF SIGNALING NETWORKS

A network representation of a signaling mechanism contains essential information, which can be incorporated
into its initial analysis. This analysis includes the use of graph-theoretic measures, such as centrality measures,
network motifs, and shortest paths, to describe the organization of the network [7].

In signal transduction networks, like in all directed networks, we can categorize the nodes by their incoming
and outgoing edges. The nodes with only outgoing edges are called sources, and nodes with only incoming edges
are sinks of the network. Source nodes generally correspond to the signals, while sink nodes denote the outcomes
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FIGURE 4.2 A signal transduction network involved in activation-induced cell death of white blood cells called cytotoxic T cells. The
key signals are Stimuli (representing stimulus of the cell by the presence of pathogens) together with the external molecules interleukin
15 (IL15) and platelet-derived growth factor (PDGF).These signals are identified as nodes with only outgoing links (nodes with this
property are called sources). The key output node of the network is Apoptosis, expressing programmed cell death. Note that this node has
no outgoing links (a node with this property is called a sink). The nodes of the network include proteins, mRNAs, and concepts. The shape
of the nodes indicates the cellular location: rectangles indicate intracellular components, ellipses indicate extracellular components, and
diamonds indicate receptors. Conceptual nodes are represented by hexagons. The background of the non-conceptual nodes corresponds
to the known status of these nodes in abnormally surviving T-LGL cells as compared to normal T cells: red (dark) indicates abnormally
high expression or activity, green (lighter) means abnormally low expression or activity. The full names of the nodes can be found in
[5, 6]. An arrowhead or a short perpendicular bar at the end of an edge indicates activation or inhibition, respectively. Figure reproduced
from Ref. [6].

of signal transduction networks. In signaling networks it is possible that nodes have an auto-regulatory loop, an
edge that both starts and ends at the node. Often it is beneficial to extend the definition of source and sink nodes
to allow for the presence of a loop. For example, in Figure 4.2 the nodes Stimuli, IL15, and PDGF represent
external signals acting on T cells, and indeed they are source nodes. The nodes Apoptosis, Proliferation, and
Cytoskeleton signaling represent outcomes of the signal transduction process. Proliferation and Cytoskeleton
signaling are sink nodes, and Apoptosis, which has a loop, can also be considered a sink node.
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Centrality measures describe the importance of individual nodes in the network. The simplest of such
measures is the node degree, which quantifies the number of edges connected to each node. For directed networks,
the in- and out-degree of a node is defined as the number of edges coming into or going out of the node,
respectively. The nodes whose combined in- and out-degrees are in the top 1% to 5% of all the nodes are termed
hubs. These hub nodes often play an important role in the network. For example, the node representing the NFκB
protein is a hub of the T-LGL network on Figure 4.2, having an out-degree of 11 and an in-degree of 5. This is
not surprising, as NfκB is a transcription factor that is known to be important in cellular responses to various
stimuli and in cell survival (see, e.g., Ref. [8]).

From a graph-theoretic standpoint, a path is a sequence of adjacent edges in the network. In networks that
can have both positive and negative edges, the sign of a path is positive if there are no or an even number of
negative edges in the path and is negative if there is an odd number of negative edges. A path containing two or
more edges that begins and ends at the same node is called a cycle. The length of a path or a cycle is defined to
be the number of its edges (loops can be considered as cycles of length one).

Networkmotifs are recurring patterns of interconnectionwith well-defined topologies [9]. Among thesemotifs
are feed-forward loops (in which a pair of nodes is connected by both an edge or short path and a longer
path) and feedback loops (directed cycles). An example of a feed-forward loop in Figure 4.2 is the subgraph
formed by the nodes STAT3, P27, and Proliferation; this is an incoherent feed-forward loop, as the STAT3–
Proliferation edge is positive and the path between them is negative. An example of a positive feedback loop on
Figure 4.2 is the directed cycle between S1P, PDGFR, and SPHK1, while the cycle between TCR and CTLA4 is
a negative feedback loop. Feed-forward loops are more abundant in the transcriptional regulatory and signaling
networks of different organisms compared to randomized networks that keep each node’s degree. They have
been found to support several functions, such as filtering of noisy input signals, pulse generation, and response
acceleration [9]. Positive feedback loops were found to support multistability while negative feedback loops
could cause pulse generation or oscillations [10]. Examples that illustrate such behaviors will be presented
in Section 4.7.

A signaling network, as all directed networks, is strongly connected if, for any two nodes in the network u
and v, there is a directed path from u to v and another path from v to u. If a network is not strongly connected, it
is informative to identify strongly connected components (or subgraphs) of the network. Having no strongly
connected components (SCCs) indicates that the network has an acyclic structure (i.e., it does not contain
feedback loops), while having a large SCC implies that the network has a central core. Signaling networks
tend to have a strongly connected core of considerable size [11]. For example, the network in Figure 4.2 has
a strongly connected component of 44 nodes, which represents 75% of all nodes. An SCC may have an in-
component (nodes that can reach the SCC) and out-component (nodes that can be reached from the SCC). In
biology, nodes in each of these subsets tend to have a common task. In signaling networks, the nodes of the
in-component represent signals or their receptors and the nodes of the out-component are usually responsible
for the transcription of target genes or for phenotypic changes [11]. The out-component of the T-LGL network in
Figure 4.2 consists mainly of conceptual nodes that represent cell behaviors, such as apoptosis (the genetically
determined process of cell destruction) or proliferation (the increase in the number of cells due to cell growth and
division).

Software packages for network visualization and analysis include yEd Graph Editor, available from http://
www.yworks.com/en/products/yfiles/yed/. Cytoscape[12], NetworkX [13], and Pajek [14].

Exercise 4.1. Consider the network depicted in Figure 4.3.
1. Is the network strongly connected? Explain your answer.
2. If the network is not strongly connected, identify its strongly connected components.
3. Does the network contain loops? If so, identify them.
4. Does the network contain cycles? If so, identify all cycles.
5. Are there any feed-forward loops? If so, identify them as positive, negative, or incoherent.
6. Are there any feedback loops? Identify them. Identify their sign as positive or negative.

http://www.yworks.com/en/products/yfiles/yed/
http://www.yworks.com/en/products/yfiles/yed/
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FIGURE 4.3 Figure for Exercise 4.1. The network is a part of a plant signal transduction network whose signal is the drought hormone
abscisic acid and whose outcome is the closure of the stomata (microscopic pores on the leaves) [15, 16]. An arrowhead or a short
perpendicular bar at the end of an edge indicates activation or inhibition, respectively. The full names of the nodes can be found in
[15, 16]. Figure reprinted from Ref. [17] with permission from Elsevier.

4.3 DYNAMIC MODELING OF SIGNALING NETWORKS

Representation as a network of nodes connected pairwise by edges offers a coherent representation of a system
of interacting biomolecules [7, 17, 18]. Going further, a dynamic model can describe how the abundances of
the biomolecules in the network change over time due to their interactions. This is done by associating each
node i of the signaling network with a variable xi. Dynamic modeling approaches can be continuous or discrete
according to the use of continuous or discrete variables. Continuous dynamic modeling [18, 19] describes the
rate of change of each continuous variable xi as a function of the other variables xj in the signaling network. These
models require the knowledge of mechanistic details for each interaction (e.g., the stoichiometric coefficients of
the molecules that participate in a reaction and the kinetic rate functions) and their parameterization with rate
constants. One also needs quantitative measurements of all the variables in the system in the initial condition
and also in at least one stable state, to use for model validation. Continuous modeling is most feasible for
well-characterized systems, where through decades of experimental work a sufficient amount of quantitative
information has been gathered. Unfortunately, the state of the art for most systems is far from this mark: in many
cases not all interactions have beenmapped out, the detailed mechanisms are not known, there are no quantitative
measurements of all the relevant variables, and kinetic parameter values are unknown and difficult to estimate.
Continuous modeling is not practical for these types of systems.

As an alternative, discrete dynamic modeling such as Boolean network models [10, 20], multivalued logical
models [21], and Petri nets [22] have been developed. These models use discrete variables that correspond to
logic categories rather than quantitative values and describe the future value of a variable xi (as opposed to
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its rate of change) as a function of the other variables xj in the signaling network. Discrete dynamic models
can be constructed from qualitative or relative measurements (e.g., whether a protein is more active in one
condition compared to another), have no or very few kinetic parameters, and are able to provide a qualitative
dynamic description of the system. They can be used to elucidate how perturbations may alter normal behavior
and thus lead to testable predictions which are especially valuable in poorly understood large-scale systems.
These approaches can be employed for systems with hundreds of components and have been used to model
signal transduction networks in unicellular organisms, plants, animals, and humans (reviewed in Ref. [4]).

This chapter focuses on Boolean models. Construction of a Boolean model starts with a compilation of a list
of components (nodes) and of the known interactions and regulatory relationships among these nodes, which will
become the edges of the reconstructed interaction network. The model construction continues with determining
Boolean functions which describe the regulation of each node based on the edges incident on the node and also
using information from the literature. The collection of the resting or pre-stimulus states of the nodes will be
used as an initial condition in the model. The model construction also includes a choice of how to represent the
passing of time; as we’ll see below, this choice has a subtle influence on certain outcomes of the model. Having
chosen the transition functions, initial conditions, and the representation of time, running the model will provide
a simulation of how the system evolves in time.

The model-indicated dynamic behaviors resulting from the simulations (e.g., long-term states) need to be
compared with the available biological information on the behaviors of the system. If there are qualitative
discrepancies that cast doubt on the model, the edges or Boolean functions of the model need to be rechecked and
suitably revised. On the other hand, qualitative agreement between the model’s results and biological knowledge
increases our confidence in the model and allows its use to generate understanding and new predictions. For
example, an often-used follow-up is a comprehensive analysis of the effects of node perturbations. We next
describe the modeling process in detail.

4.4 THE REPRESENTATION OF NODE REGULATION IN BOOLEAN MODELS

The Boolean model of a signaling network associates each network node (i.e., gene, protein, molecule) i with
a binary variable xi which describes its expression level, concentration, or activity. The value xi = 1 (ON)
represents that component i is active or expressed, or has an above-threshold concentration; the value xi = 0
(OFF) denotes that it is inactive or not expressed, or has a below-threshold concentration. The thresholds invoked
in the definition of states do not need to be quantified, as long as it is known that a concentration level exists
above which the component in question can effectively regulate its downstream targets. In Boolean models, the
future state of node i, denoted by x∗i , is determined based on a logic statement involving the current states of its
regulators, i.e., x∗i = fi. This statement fi, called a Boolean transition function (or a Boolean rule), represents the
conditional dependency of the input (regulator) nodes in the regulation of the downstream (target) node. This
function is usually expressed via the logic operators AND, OR, and NOT. For example, f4 = (x1 OR x2) AND
(NOT x3) is a Boolean function regulating the variable x4. It indicates that x4 will be ON when at least one of
x1 or x2 is ON and simultaneously x3 is OFF. When parentheses are used, as in this example, they determine the
order of operations explicitly. Alternatively, the order of precedence of the logical operators may be used: NOT
has the highest precedence, followed by AND, and then by OR, which has the lowest precedence. Any use of
parentheses overrides the precedence rules. As an example, the rule for f4 above can also be written as f4 = (x1
OR x2) AND NOT x3.

A Boolean transition function can also be represented by a truth table, in which each row lists a possible
combination of state values for the node’s regulators and the associated output value of the function. Table 4.1
presents the truth tables for the Boolean functions corresponding to the operations NOT (third column), OR
(fourth column), and AND (last column). The truth table of a Boolean function with k variables has 2k rows and
k + 1 columns (see Exercise 4.3).

Example 4.1. Consider the three-node signal transduction network depicted on Figure 4.4a. The source node
A is the signal to the network, and both A and B positively regulate the sink node C. Let’s identify transition
functions compatible with this network.
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TABLE 4.1 Truth Tables Illustrating the NOT, OR, and
AND Operators

xA xB fC = NOT xA fD = xA OR xB fE = xA AND xB

0 0 1 0 0

0 1 1 1 0

1 0 0 1 0

1 1 0 1 1

The third column (fC) indicates that the value of “NOT xA” is the opposite
(logic negation) of the value of xA. The fourth column (fD) indicates that “xA
OR xB” is 1 whenever either input is 1. The last column (fE) indicates that
“xA AND xB” is 1 only when both inputs are 1.

FIGURE 4.4 A Boolean model of a simple signal transduction network. (a) The signal transduction network. The edges with arrows
represent positive effects. Note that the network does not uniquely determine the Boolean updating function for node C. (b) The Boolean
transition functions in the model. The first transition function indicates that the state variable of node A does not change. The second
transition function indicates that the state variable of node B follows the state of node Awith a delay. The third transition function indicates
that the condition for the ON state of node C is that both A and B are on. (c) The truth tables of the Boolean updating functions given in (b).

Because node A is the signal to the network, we are free to choose its transition function as long as it is
independent of the other nodes. Let us assume that the state of node A stays constant, maintaining whatever
value it started from. The corresponding transition function is fA = xA, and the equation governing the state of
node A is x∗A = fA = xA. Node B is positively regulated by node A, and is not regulated by anything else, thus its
transition function is fB = xA. This indicates that the state of node B will follow the state of node A with a delay,
x∗B = fB = xA. Node C is positively regulated by node A and by node B. The network does not tell us how these
two influences are cumulated. There are two choices: fC = xA OR xB, and fC = xA AND xB. The first function
indicates that either A or B alone can successfully activate C (see column four of Table 4.1), while the second
expresses the more stringent condition that both A and B need to be on simultaneously in order to activate C (see
the last column of Table 4.1). Figure 4.4 indicates one of the two possible sets of transition functions, both as
Boolean expressions (b) and as truth tables (c). �

Exercise 4.2. Construct the transition function and truth table for the networks in Figure 4.5. Consider both
the AND and OR possibilities for the transition function of C for the network in Figure 4.5a and for the transition
function of the node B for the network in Figure 4.5b.

Exercise 4.3. Show that the truth table of a Boolean function with k variables has 2k rows and k + 1 columns.
Hint: Determine the number of different sequences of length k that can be formed from 0s and 1s.
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4.5 THE DYNAMICS OF BOOLEAN MODELS

In a Booleanmodel of a signal transduction network, time is usually discrete. This means that the model variables
are updated only at fixed-time instances separated by a certain number of time steps and that no updates are
being made between the time steps. As time is implicit in most Boolean models, one could think of a digital
clock running in the background, with updates occurring only when the time on the clock changes. The time
step between updates could vary from fractions of a second to hours, depending on the nature of the biological
system [9]. Mathematically, the state of the system containing n nodes with associated state variables x1, x2, …,
xn at time t can be represented by a vector (x1(t), x2(t),…, xn(t)) with the ith element representing the state of node
i at time t. By successively reevaluating each node’s state while applying the corresponding transition function,
the system’s collective state evolves over time and eventually reaches a steady state (i.e., a state that remains
unchanged over time) or a set of recurring states. These steady or recurring states are collectively referred to
as attractors. Attractors that are not steady states are called complex attractors. For each attractor, its basin of
attraction is comprised of all states that eventually lead to the attractor.

Exercise 4.4. Can you guess the attractor(s) of the Boolean model in Example 4.1? Consider the cases xA = 0
and xA = 1 separately.

The transition functions of a Boolean model specify the rules for updating the network variables, but the
order in which the updates are performed needs to be indicated separately. Various update schedules can be
implemented via synchronous or asynchronous update algorithms. The synchronous scheme is the simplest
update mode, wherein the states of all nodes are updated simultaneously according to the state of the system
at the previous time step [20]. One significant disadvantage of this type of update is that it implicitly assumes
that the timescales of all biological events in the system are similar and that the state transitions of components
are synchronized. However, many systems include a mixture of biological events of different timescales (e.g.,
from fractions of seconds for protein-protein interactions to several minutes for transcription [9]), making the
use of synchronous update inappropriate in those systems.

Asynchronous models aim to account for timescale diversity by updating the nodes in a nonsynchronous
manner. There are deterministic asynchronous schemes with fixed individual timescales or fixed time delays.
There also are stochastic asynchronous schemes wherein each node is updated with a certain probability, all
nodes are updated according to a random sequence, or one randomly selected node is updated at a time step
[23]. A parsimonious way to deal with diverse and unknown timescales is to use stochastic asynchronous
update and do many simulations. We next present several examples that illustrate the different update
algorithms.

Example 4.2. Assume that we have a network composed of nodes A and B. The edges do not matter in this
example. Let’s construct two deterministic and two stochastic updating schemes for this network.

In synchronous update, both nodes will be updated simultaneously at multiples of a time step, i.e., at time
instances 1, 2, 3, …, t. If we are currently at time step t, the future state of a node means the state at time t + 1.
Thus the state transitions of the two nodes will be xA∗ = xA(t + 1) = fA(t), xB∗ = xB(t + 1) = fB(t).

For another example of deterministic update, let us assume that node A can change state at multiples of a
timescale tA, while node B can change state at multiples of a timescale tB. For simplicity let’s designate the

FIGURE 4.5 Figure for Exercise 4.2 and several of the follow-up exercises. Two simple signal transduction networks. For both networks,
A is the source node (signal).
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smaller timescale as the unit, and express the bigger timescale as an integer multiple of the smaller, for example,
tA = 1, tB = 2. This means that node A will be updated at every time step while node B will be updated at even
time steps. So the update scheme is A, A and B together, A, A and B, A, A and B….

A popular stochastic update, called random order asynchronous update, is performed as follows: (1) generate
a permutation of the nodes and update them once in this order; (2) generate another permutation and update the
nodes in the new order; (3) continue, by selecting a random permutation of the nodes at each step and updating
the nodes in the order indicated by the permutation. The order of update in our example may look something
like this: A, B; A, B; B, A; A, B; …where the semicolons indicate the end of a time step, which here is interpreted
as a round of update. Whenever node B is updated, it uses the state of node A obtained at its most recent update,
which can be within the same round of update (such as in the first two rounds of our example). The same is true
for node A. Notice the difference here in comparison with the synchronous update schedule where the update of
B at time t + 1 always uses the value of A at time t.

Another frequently used stochastic update method is to update one randomly selected node at each time step.
This method is called general asynchronous update. The order of update of our two nodes may look like this:
B; A; A; A; B; B; …When considering a long sequence of updates, it is possible that node A is updated more (or
less) than node B using this method, while under random order asynchronous update they will be updated the
same number of times. Nevertheless, because the probability of choosing each node is equal, on average they
will be updated the same number of times. If we know that one node should be updated more frequently, we can
choose unequal selection probabilities. �

A compact representation of all possible trajectories is visualized through the state transition graph, whose
nodes are states of the system and whose edges denote the allowed transitions among the states according to the
chosen updating scheme [23]. The attractors of the system can be determined from network analysis of the state
transition graph. Fixed points will correspond to states that do not have any outgoing edges (transitions), only a
loop. Each complex attractor forms a terminal strongly connected component of the state transition graph (i.e.,
a strongly connected component with an empty out-component).

Example 4.1. (continued). Consider again the signaling network and Boolean model in Figure 4.4. Let’s
represent the system’s state as the triple xA xB xC. Let us first determine the system’s state transition graph in
the absence of a signal (xA = 0) when using synchronous update. We start from an initial state, let’s say 011,
and update each node’s state using their corresponding transition functions. It is easiest to look up the function’s
output from the truth tables. Node A will keep its OFF (xA = 0) state. The next state of node B is indicated by
the first row of the truth table on the left, giving 0. The next state of node C can be looked up from the second
row of the truth table on the right, yielding 0. Thus the next state of the system is 000. We have so far obtained
the first edge of the state transition graph, from state 011 to state 000. Let’s start from 000. Checking the first
row of both truth tables, we find that the state remains 000. This state is thus a steady state (fixed point) of the
system. Did you guess this state in Exercise 4.4?

We still have two states to consider as initial conditions. Let’s start from 010. From the first row of the left
truth table, the next state of node B is 0, and from the second row of the truth table on the right, the next state
of node C is also 0. So the state 010 transitions to 000. Finally, starting from state 001, we find 000 as well. All
initial conditions in which node A is OFF transition to the 000 steady state, thus the state transition graph has four
nodes and four edges, starting from each state and all ending in 000, as shown in the left panel of Figure 4.6a.

Exercise 4.5. Determine the state transition graph of the model in Figure 4.4 in the presence of a signal
(xA = 1) when using synchronous update. Compare with Figure 4.6a (right panel).

Exercise 4.6. Determine the state transition graphs for the networks in Figure 4.5, assuming synchronous
update. Consider both the AND and OR possibilities for the transition function of C for the network in panel (a)
and for the transition function of B for the network in panel (b). Consider both the sustained absence (xA = 0)
and presence (xA = 1) of node A.

Example 4.1. (continued). Let us consider again the network from Figure 4.4 with the absence of signal
(xA = 0) but use general asynchronous update, when one node is updated at any given time step.
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Because node A does not change state, its update does not need to be considered. But either node B or node
C can be updated with equal probability, so the state transition graph will need to include both transitions. In
general, the maximum number of transitions from any given state equals the number of nodes in the network.

Let’s start with state 011 as we did for synchronous update. To update node B, we look up its next state from
the first row of the truth table in Figure 4.4 on the left, and find that it is 0. The next state is thus 001, having
the same state for node A (which does not change) and for node C (which was not updated). If we start from
state 011 and update node C, its next state is 0, thus the next state of the system is 010. Thus state 011 has two
successors, namely, 001 and 010, which is a markedly different result than the single successor, 000, which we
found when using synchronous update (see Figure 4.6b, left panel, and compare with the state transition graph
in Figure 4.6a, left panel). Indeed, the transition under synchronous update involved the state change of both
node B and C, which is not possible under general asynchronous update.

The other two transitions we found for synchronous update involve a single state change, thus it is not a
surprise to find that they are preserved. (Check this result.)When updating nodeB in state 001, or updating nodeC
in state 010, the state remains unchanged, thus the transition is represented by a loop (Figure 4.6b, left panel).

Exercise 4.7. Determine the state transition graph of themodel in Figure 4.4 in the presence of signal (xA = 1)
when using general asynchronous update. Compare with Figure 4.6b (right panel).

Figure 4.6 summarizes the state transition graph corresponding to synchronous update (a) and general
asynchronous update (b). The asynchronous state transition graph has more edges, because there are up to twice
as many distinct transitions when updating two nodes one by one instead of simultaneously. Most of the extra
edges are loops and correspond to updates when a node’s state is reevaluated but does not change. Nevertheless,
the states that do not have any outgoing edges in addition to loops, i.e., the steady states 000 and 111, are identical
for both types of update. Is this result generally true? Or do we expect any changes in the system’s steady state
if we switch from synchronous to asynchronous update? We will explore this question in the next section.

Exercise 4.8. Determine the state transition graphs for the networks in Figure 4.5 when using general
asynchronous update. Consider both the AND and OR possibilities for the transition function of C for the

FIGURE 4.6 State transition graphs corresponding to the Boolean model presented in Figure 4.4. The symbols correspond to the states
of the system, indicated in the order A, B, C; thus 000 represents xA = 0, xB = 0, xC = 0. A directed edge between two states indicates
the possibility of transition from the first state to the second by updating the nodes in the manner specified by the updating scheme. An
edge that starts and ends at the same state (a loop) indicates that the state does not change during update. (a) The state transition graph
corresponding to synchronous update, when all nodes are updated simultaneously. The two states that have loops are the fixed points of
the system. (b) The state transition graph corresponding to updating one node at a time (general asynchronous update). While several
states have loops, indicating that at least one of the nodes does not change state during update, only the two states that have no outgoing
edges are fixed points of the system.
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(a) (b)

FIGURE 4.7 A simple signal transduction network composed of a source node I and two nodes, A and B, which form a mutual activation
loop. It is assumed that the positive inputs from I and B are independently sufficient to activate node A. (a) The network’s state transition
graph corresponding to synchronous update, when the signal is OFF (xI = 0). The states are specified in the node order I, A, B. (b) The
state transition graph corresponding to general asynchronous update, when the signal is OFF (xI = 0).

network in Figure 4.5a and for the transition function of B for the network in Figure 4.5b. Consider both the
sustained absence (xA = 0) and presence (xA = 1) of node A.

Exercise 4.9. For each of the cases considered in Exercises 4.6 and 4.8, compare the steady states obtained
when using synchronous update and general asynchronous update. Are the steady states the same?

Exercise 4.10. Consider the network in Figure 4.7. Determine the state transition graph of the network, using
first synchronous update and then general asynchronous update. For the case xI = 0, compare your graphs with
those in Figure 4.7.

4.6 ATTRACTOR ANALYSIS FOR STOCHASTIC ASYNCHRONOUS UPDATE

As we have already stated, attractors fall into two groups: fixed points (steady states), wherein the state of the
system does not change, and complex attractors, wherein the system oscillates, regularly or irregularly, among
a set of states. Fixed-point attractors usually correspond to the steady activation states of components or to
cellular phenotypes in signaling networks. For example, the three fixed points of a Boolean model of a T-helper
(Th) cell differentiation network [24] recapitulated the activation patterns of components observed in Th0, Th1,
and Th2 cells, respectively. Complex attractors correspond to cyclic and oscillatory behaviors such as the cell
cycle, circadian rhythms, or Ca2+ oscillations. The qualitative features of Boolean modeling make it suitable
for analyzing the repertoire of behaviors in a large-scale system, such as its possible multistability (the existence
of multiple stable steady states) [25], the initial conditions that lead to one attractor versus the other, and the
activity changes of components following a perturbation. For example, the Boolean model of the T-cell apoptosis
signaling network shown in Figure 4.2 indicated the existence of two fixed-point attractors, one corresponding
to apoptosis and the other to a survival state which embodies the abnormal T-cell fate seen in the disease T-
LGL leukemia [5, 6]. Analysis of the model also indicated the minimal perturbation that leads to the emergence
of the abnormal survival state. Interestingly, this minimal perturbation involves only the overexpression of two
external signals, IL15 and PDGF, suggesting that this disease does not necessarily have a genetic component. In
this section we examine in what ways different update schedules may affect the attractors of a Boolean model.
We consider fixed points (steady states) first.

Notice that arriving at a steady state in the state transition graph means that (after sufficiently many time
steps) all of the system variables become constant with respect to time, i.e., xi* = xi for all nodes i. Thus, as the
fixed points of a system are time independent, they are in fact the same for both synchronous and asynchronous
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updates. This also means that there is an alternative way to determine them. Because by definition xi* = fi,
the condition xi* = xi for all i leads to the set of equations fi = xi for all nodes i, which we can solve. This is
relatively easy if the network is small; for example, one can use elimination of variables. There are also advanced
methodologies, such as transforming the Boolean equations into polynomial equations and solving them using
Groebner bases (see Chapters 1 and 3 of [26]).

Exercise 4.11. Determine the steady states of Example 4.1 by solving the set of equations fA = xA, fB = xB,
fC = xC.

Example 4.3. Consider the hypothetical signal transduction network and its associated Boolean model in
Figure 4.7. Let us compare the state transition graphs corresponding to synchronous update (a) and general
asynchronous update (b) when xI = 0. The determination of these state transition graphs was the subject of
Exercise 4.10.

The synchronous state transition graph has two steady states (000 and 011) and a cyclic attractor formed
by the states 001 and 010. The asynchronous state transition graph has the steady states 000 and 011, and no
additional attractors. Indeed, synchronous models may exhibit limit cycles that are not present in stochastic
asynchronous models. These limit cycles depend on two or more variables changing state at the same time.
This synchronization among variables is not robust to stochasticity. The disappearance of the cyclic attractor
also causes a change in the basins of attraction of the two steady states. Even if no attractors are lost when
introducing asynchronicity, the choice of updating scheme can affect the attractors’ basins. Because each state
has a single successor under synchronous update, the attractors of a synchronous model have disjoint basins.
But as stochastic asynchronous update allows several successors of a state, it is possible that a state is in
the basin of two or more attractors. For example, in Figure 4.7b states 001 and 010 are in the basin of both
steady states.

Exercise 4.12. For each of the networks considered in Exercises 4.6 and 4.8,
1. Compare the complex attractors obtained when using synchronous update and general asynchronous update.

Are they the same?
2. Find the basins of attraction for each of the steady states.
Several software tools are available for Boolean dynamic modeling of biological systems. BooleanNet [27]
can be used to simulate synchronous and random order asynchronous models and to determine their state
transition graph. The R package BoolNet [28] provides attractor search and robustness analysis methods for
synchronous, asynchronous, and probabilistic Boolean models. SimBoolNet, a plugin to the biological network
analysis tool Cytoscape [12], determines state trajectories and attractors using sequential update (starting
from the external signals). The software ADAM [29] performs analysis of synchronous Boolean models as
examples of polynomial dynamical systems. For networks with less than 20 nodes ADAM can generate the
full state transition graph. For larger networks it indicates the fixed points and limit cycles of user-specified
length.

Exercise 4.13. Consider the network in Figure 4.8.
1. Determine the state transition graph and the attractors of the network using synchronous update. Find the

basins of attraction for each attractor.
2. Repeat number 1, now using general asynchronous update of the node states.

FIGURE 4.8 A simple three-node network for Exercise 4.13.
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4.7 BOOLEAN MODELS CAPTURE CHARACTERISTIC DYNAMIC BEHAVIOR

Having now introduced the basic characteristics and properties of Boolean networks, it is important to ask
if they can be used as realistic qualitative approximations of signal transduction dynamics in biology. In this
section we give examples that demonstrate the ability of Boolean models to capture complex dynamic behavior
such as excitation, adaptation, and multistability, which are common in signaling networks. For this section we
assume that the reader has basic familiarity with continuous models described by ordinary differential equations.
For a detailed introduction to the modeling of biochemical reactions with differential equations see Chapter 2,
Section 3, of [26].

As we mentioned in Section 4.2, positive feedback loops support multistability [10], coherent feed-forward
loops support the filtering of noisy input signals, and incoherent feed-forward loops support excitation-adaptation
behavior [9, 25]. The review article [25] gives examples of continuous dynamic models exhibiting a transient
excitation-adaptation behavior based on an incoherent feed-forward loop (Figure 4.9, top row) and a bistable
response based on a positive feedback loop (Figure 4.9, bottom row). Let’s see if Boolean models based on the
same network motifs can qualitatively reproduce these behaviors.

Excitation-adaptation behavior is frequently observed in chemotaxis, which means cells’ motion toward a
chemical attractant, and can be based on a negative feedback loop [30] or an incoherent feed-forward loop [31].

FIGURE 4.9 In the networks (left column), solid edges represent mass flow, such as synthesis or degradation of a protein, and dashed
edges represent regulation of synthesis or of degradation. The source node of the networks represents the signal, and one node is designated
as the response. The top row represents an example of feed-forward loop-based excitation-adaptation behavior, with S denoting the
strength of the signal and X and R denoting the concentrations of two proteins. In the bottom network, the cycle between the EP and E
nodes represents a phosphorylation-dephosphorylation cycle in which the total protein concentration is constant. This cycle is described
by Michaelis-Menten kinetics, while the rest of the processes are assumed to follow mass action kinetics. The diagrams in the middle
column indicate the absolute value of the rate of the synthesis and degradation of protein R as a function of the concentration of R.
The diagram in the top right indicates the time course of the concentration of protein R when the value of the signal is increasing in
a step-wise manner. The diagram in the bottom right indicates the steady state concentration of protein R as a function of the value of
the signal. Figure reprinted from Ref. [26] with permission from Elsevier.
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An example of feed-forward loop-based excitation-adaptation behavior is the model shown in the top row of
Figure 4.9. In a continuous model, such processes are usually modeled by differential equations describing the
dynamics of the concentrations of the biomolecules that make up the system. These models are continuous with
respect to both time and the values of the model variables, and the model equations describe the rate of change
for each of the variables as a function of all of them. The equations describing the continuous model for our
example are

dR

dt
= k1S− k2XR

dX

dt
= k3S− k4X

where S is the value of the signal, X is the concentration of protein X, R is the concentration of the output
protein R, and ki, i = 1 …4 are rate constants. The analysis of this model, discussed in [25], yields that the
steady-state (time-independent) concentration of R does not depend on the value of the signal. When the value
of the signal undergoes step changes, the concentration of R increases transiently, peaks, then decreases to the
signal-independent steady state (see top rightmost panel in Figure 4.9).

Example 4.4. Let’s construct a Boolean model of the incoherent feed-forward loop of Figure 4.9 (top left).
We start constructing the network of interactions by redefining the edges such that they represent regulatory
relationships among the three nodes, S, X, and R. Because S catalyzes the synthesis of R, there is a positive
relationship between S and R, indicated by a directed and positive edge starting from S and ending in R
(Figure 4.10). Similarly, there needs to be a positive edge starting from S and ending in X. X catalyzes the
degradation of R; thus the relationship between X and R is negative, indicated by a negative edge starting from X
and ending in R. The uncatalyzed (free) degradation of X and Rmay each be represented as a negative loop at the
respective node, but such degradation is usually left implicit when showing the networks that underlie Boolean
models. The reason for this is that decay is implicitly incorporated as a default in all transition rules that depend
only on the node’s regulators. For example, fR = xS already implements that xR decays to OFF if xS is OFF, even
if xR was ON before. The absence of decay, on the other hand, should be incorporated explicitly by including
the node’s own state variable in the transition rule, fR = xS OR xR. This case would be shown in the network by
adding a positive loop to R.

Figure 4.10 illustrates the network underlying the Boolean model. We can assume that xS stays constant
(fS = xS), the Boolean rule of X is unambiguous (fX = xS), and the transition function of R closest to the
continuous model is fR = xS AND NOT xX. The latter holds because S and X affect R simultaneously (that is, the
concentration of R is the result of two simultaneously ongoing processes: the increase of the concentration due
to the stimulus and the decrease of the concentration due to the catalyzed degradation of R by X). Let’s assume
that X and R have similar timescales, and use synchronous update.

Exercise 4.14. Determine the state transition graph for Example 4.4 when using synchronous update.
Compare with Figure 4.10b. Does the steady state of R depend on the state of the signal S? �

Now let’s reproduce a step-wise increase in the signal variable xS. The only such choice in a Boolean model
is from xS = 0 to xS = 1. Starting with xS = 0 and an arbitrary state for X and R, the system goes into the steady
state 000 in one step. Let’s now set xS = 1, leading to the state 100 (see transition shown with dashed lines in
Figure 4.10b). The state 100 is not an attractor, so the system’s state will change into 111, whereinR = 1. Thus the
step change in xS drove xR to change from 0 to 1 (excitation for R). The next state is 110, which is a steady state
of the system. In this steady state, xR is 0 (adaptation for R). Thus the Boolean model qualitatively reproduces
the excitation-adaptation behavior: the change in xS drove a transient excitation of xR, but the steady state value
of xR was the same for both values of xS.

Exercise 4.15. Consider the steady state 110 in Figure 4.10b and implement a step change in S from 1 to 0.
Is there an excitation (state change) in R?
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FIGURE 4.10 The Boolean correspondent of the model in the top row of Figure 4.9. (a) The network and Boolean transition functions. (b)
The state transition graph of the model. The node states are shown in the order S, X, R. The transitions shown as dashed lines correspond
to an externally set change in the value of the signal variable xS. The path that starts from the 000 steady state and ends in the 110 steady
state qualitatively reproduces the excitation-adaptation behavior of xR seen in the continuous model.

Exercise 4.16. Consider the network in Figure 4.5a.
1. Does it have a commonality with the network in Figure 4.10? Explain.
2. Consider the transition function fC = xB OR (NOT xA) for node C. Using the synchronous state transition

graphs calculated in Exercise 4.6, determine the trajectory of the system after xA undergoes a step increase
from state 001. Is there an excitation-adaptation behavior in xC?
Multistability is a phenomenon that arises often in physics, biology, and chemistry. Simply put, multistability

is the ability of a system to achieve multiple steady states under the same external conditions. When there are two
such states, we talk about bistability. In biology, bistability plays a key role in many fundamental processes such
as cell division, differentiation, gene expression, cancer onset, and apoptosis. The example in [25] reproduced
in the bottom row of Figure 4.9 illustrates that a signal-driven positive feedback loop can lead to bistability. The
equation for the concentration of protein R in this model is

dR

dt
= k0EP (R) + k1S− k2P

where EP(R) is a sigmoidal function shown as the lowest dashed curve in the bottom middle of Figure 4.9, and
ki, i = 0 …2 are rate constants. This model leads to an irreversible switch from the low-value steady state of R to
the high-value one at a critical value of the signal (see bottom right panel of Figure 4.9). This leads to a history-
dependent behavior (hysteresis): when the signal is gradually increased from zero, the steady state concentration
of R increases on the curve corresponding to the lower-value stable steady state, then switches to the higher
curve when S goes beyond the critical value. If we now gradually decrease the signal back to zero, the steady
state value of R stays on the upper curve.

Example 4.5. Let’s see if a Boolean model can recapitulate this memory-dependent behavior. First, note that
the sigmoidal nature of EP as a function of R lends itself easily to a Boolean approximation. We could pick a
value RT (T for threshold) such that the value of the function EP(RT ) is about one-half the size of the “jump.”
We’ll consider EP(R) to be 0 for values of R < RT and 1 for values of R ≥ RT . With this, we can think of EP as a
node in the Boolean network that is influenced by R and, in turn, it influences R. Because the function EP(R) is
increasing, the node R influences the node EP in a positive way. In Figure 4.7 and associated Exercise 4.10 we
have seen a Boolean model of a network having an input node (signal) and a positive feedback loop. Inspecting
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FIGURE 4.11 The Boolean correspondent of the model in the bottom row of Figure 4.9. The transitions shown as dashed lines correspond
to an externally set change in the value of the signal variable xS. For simplicity the loops that correspond to single node updates that do
not change the node’s state are not shown in the state transition graph, only loops that correspond to fixed points. The trajectory from
the state 000 through 100, 110, 111, and 011 qualitatively reproduces the hysteresis of the continuous model. The order of variables is
S, R, EP.

the regulation of R in the continuous model, we see that its synthesis is catalyzed independently by S and EP,
thus an OR rule is the appropriate choice. Thus the model in Figure 4.7, with a suitable renaming of the node
names, corresponds to the continuous model (see Figure 4.11). The transition functions are

fS = xS

fR = xS OR xEP

fEP = xR

Let’s consider general asynchronous update (the reader is encouraged to show as an exercise that using
synchronous update gives similar results). As we have seen in Exercise 4.10, this model yields two fixed-point
attractors when the signal is OFF, and a single attractor when the signal is ON. The continuous model also had
two stable steady states for low values of the signal, and only one (the higher-value one) for signal levels above
the critical level. Now consider that the system is initially in the steady state 000, and let’s increase xS to 1. The
state 100 is not a steady state, and the system converges into the steady state 111. Thus the steady state value of
R has switched from 0 to 1. Now let’s decrease xS to 0. The state 011 is a steady state, and the system remains
there. Thus the steady state value of R did not go back to 0. We can conclude that the Boolean model qualitatively
reproduces the hysteresis of the continuous model.

Exercise 4.17. Consider the network in Figure 4.5b.
1. Does this have a commonality with the network in Figure 4.11? Explain.
2. Consider the transition function fB = xA OR (NOT xC) for node B. Using the general asynchronous state

transition graphs calculated in Exercise 4.8, determine the trajectory of the system when xA is switched to 1
from steady state 001, then switched to 0 in steady state 110. Does this system exhibit hysteresis?

4.8 HOW TO DEAL WITH INCOMPLETE INFORMATION WHEN
CONSTRUCTING THE MODEL

In the discussion so far, we have assumed that the entire signaling network is well known and well understood,
with no knowledge gaps regarding its structure and mechanisms of interaction. In reality, however, there is
often a need to deal with limited or incomplete experimental information while building a model. The following
situations are typical: (1) not all links in network topology may be known with certainty; (2) when it is known
that two or more nodes influence a node, the exact nature of the influence may still be unclear; (3) the initial
condition for the system, which, ideally, should correspond to a relevant biological state, may not be known
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a priori; and (4) when detailed information on the biomolecular kinetics of the signal transduction is lacking,
deciding on an update algorithm may be challenging. We now briefly address each of these cases and outline
some possible remedies.

4.8.1 Dealing with Gaps in Network Construction

There are two major types of causal experimental evidence from which information on edges of a network
can be extracted: physical or biochemical evidence indicating direct interaction between two components, and
evidence of the effect of the genetic mutation or pharmacological inhibition of a particular component on another
component. The latter evidence indicates a causal relationship between the two components, which may be due
to a direct interaction or to a relationship mediated by other components. The integration of the indirect causal
evidence is often challenging, as each such apparent pair-wise relationship may in fact reflect a set of adjacent
edges (a path) in the network, and it may involve other known or unknown nodes. In some cases, evidence from
multiple experiments yields composite causal relationships, which then need to be broken down to component-
to-component relationships, depending on the concrete situation.

Example 4.6. Consider a hypothetical signal transduction networkwith input node I and output nodeOwhich
includes two known mediators,M1 andM2, and an unknown number of so-far unidentified mediators. Assume
that experimental inhibition of mediatorM1 has led to the conclusion thatM1 is a positive regulator of the signal
transduction process. This can be schematically represented by drawing an edge between I and O (to stand for
the whole signal transduction process) and also drawing an edge that starts from M1 and points to the edge
between I andO. A similar experiment has led to the conclusion thatM2 is also a positive regulator of the signal
transduction process, thus we can draw an edge that starts from M2 and points to the edge between I and O.
A third experiment has indicated that the up-regulation of I leads to the up-regulation ofM1. This is represented
by a positive edge directed from I to M1. A fourth experiment has led to an edge starting from M1 and ending
in M2. Figure 4.12a shows the resulting network, which is not yet in the form of a graph, as there are edges
pointing to edges.

Our goal now is to find the most parsimonious network graph consistent with the combined experimental
evidence reflected in Figure 4.12a. To transform this into a graph, let us interpret the edge that starts at M1
and points to the I → O edge asM1 activating an unknown node situated between I and O. Let’s represent this
unknown node with a black dot. Similarly, we can interpret the edge that starts at M2 and points to the I → O
edge asM2 activating a second unknown node situated between I and O (Figure 4.12b).

(a)

(c) (d)

(b)

FIGURE 4.12 Illustration of the interpretation and simplification of causal information in order to find the most parsimonious signal
transduction network. The interpretation involves the addition of unknown mediators, here shown as black dots. The simplification steps
include transitive reduction and the collapsing of unknown mediator nodes.
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Because the edges of this network correspond to causal effects but not to actual interactions, some of them
are redundant as longer paths also express the same causal effect. For example, the edge between I and the
upper unknown node (upper black dot) is explained by the two-edge path mediated by M1. Similarly, the edge
between I and the lower black dot is explained by the three-edge path mediated byM1 andM2. These redundant
edges can be deleted; this process is called transitive reduction. The upper black dot now has one incoming edge
(from M1) and one outgoing edge (to O), thus it does not add any new causal information. For this reason, it
can be eliminated by merging it with M1 (or alternatively with O), leading to a direct edge between M1 and O.
Figure 4.12c shows the current incarnation of the network. Notice that we can now do another step of transitive
reduction by deleting the edge between M1 and O, because it is explained by the M1 → M2 → • → O path.
Finally, we can compress the black dot between M2 and O, yielding the linear network shown in Figure 4.12c.
In summary, the most parsimonious explanation of the four causal relationships is a linear path between I and O
in which M1 is first and M2 is second.

The approach illustrated in Example 4.6 was used to construct a model of drought-induced signal transduction
in plants [15], specifically, the closure of stomata (microscopic pores on the leaves) in response to the drought
hormone abscisic acid. We have seen a part of this network in Figure 4.3. Li et al. [15] collected more than
140 causal relationships derived from more than 50 literature citations on the regulation of stomatal closure by
abscisic acid. The majority of these relationships were of type “C promotes the process (A promotes B).” The
network resulting from the synthesis, interpretation, and simplification of these relationships had 54 nodes and
92 edges. The method was later formalized by DasGupta et al. [32, 33] and implemented in the software NET-
SYNTHESIS. The software and its documentation can be downloaded from http://www2.cs.uic.edu/~dasgupta/
network.synthesis/. The best use of this software is in iteration with additional literature search until the most
appropriate network representation of the available experimental observations is found. This software can be
used to construct the most parsimonious network consistent with a set of causal experimental evidence or to
simplify an existing directed network in such a way that the causal relationships are preserved.

Exercise 4.18. Consider the list of causal evidence shown in Table 4.2. Use the software NET-SYNTHESIS
to construct the most parsimonious signal transduction network.

Exercise 4.19. Consider the network specified by the list of edges in Table 4.3. Use the software NET-
SYNTHESIS to simplify this network by designating the nodes TCR, PDGFR, NFKB, and Caspase as pseudo-
nodes and merging pseudo-nodes with regular nodes. An easy way to designate a node as pseudo-node in
NET-SYNTHESIS is to precede its name by * (e.g., *TCR), either in the input file or by right-clicking on the
node name in the displayed network.

4.8.2 Dealing with Gaps in Transition Functions

We have already noted several times that for nodes with multiple regulators the knowledge of the incoming
edges (positive and negative regulators) does not uniquely determine the dependency relationships among the
node states. Thus, even complete knowledge of the networks does not by itself contain enough information to
determine the transition rules for the nodes with multiple incoming edges. Assume, as an example, we know that
two nodes A and B regulate a third node C. This could be an AND regulation (that is, both A and B would need
to be ON to turn C ON) or it could be an OR relationship (when it would be enough for either one of A and B to
be ON to turn C ON). Thus, additional information is needed.

One way to deal with this problem is to knock out one of the regulators, A or B, then examine the effect on C.
In genetics, “gene knockout” is a technique used to make a gene inoperative. The term knockout here is used in
the same sense: knockout of node A means setting and maintaining xA = 0. If C remains permanently OFF after
knockout of A, that would mean that both A and B are needed to turn C ON (thus, the transition function of C
would be fC = xA AND xC); if not, we could conclude that the activation ofC requiresA orB, corresponding to the
transition function fC = xA OR xC. In case of more than two regulators, the process also begins with examining
the effect of knockout of one of the regulators on the state of the target node. If the information is still insufficient,
several versions should be constructed and compared.

http://www2.cs.uic.edu/~dasgupta/network.synthesis/
http://www2.cs.uic.edu/~dasgupta/network.synthesis/
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TABLE 4.2 A List of Causal Evidence Representative of What Could Be
Synthesized from the Experimental Literature

Source Node Causal Effect Target Node or Edge Direct Interaction?

ABA Activates InsPK No

ABA Activates NO No

ABA Activates PLD No

NO Activates CIS No

PA Activates ROS No

ROS Activates CaIM No

Ca2+
C Activates AnionEM No

Ca2+
C Activates NO No

PLD Activates PA Yes

CIS Activates Ca2+
c Yes

CaIM Activates Ca2+
c Yes

AnionEM Activates Closure Yes

KOUT Activates Closure Yes

InsPK Activates ABA → CIS No

Ca2+
ca Activates NO → AnionEM No

CaIM Activates ABA → KOUT No

This list is derived from the work in [16] and has the same node names, but it is much simpler
than the original.

Example 4.7. Consider the network in Figure 4.8, and assume the Boolean transition functions are unknown.
Because A is the signal to the network, its transition function is clear: fA = xA. Inspecting the figure, the transition
function for node B depends on xA and on (NOT xC), while the transition function of node C depends on (NOT
xA) and on (NOT xB). Thus the possibilities are:

fB = xA OR (NOT xC)

f ′B = xA AND (NOT xC) ;

fC = (NOT xA) OR (NOT xB)

f ′C = (NOT xA) AND (NOT xB)

Let’s now imagine that we search the literature and find evidence for a steady state in which xA = 1, xB = 1
and xC = 0. Does this information eliminate any of the candidate transfer functions?

Plugging in those state values we obtain fB = 1, f ′B = 1, fC = 0, f ′C = 0. Both transfer function variants give
the same result, which is in agreement with the node’s steady states; thus, this information did not help limit the
possibilities.

Imagine now that aftermore searchwe find that in the casewhen xA = 1 and simultaneously nodeB is knocked
out (i.e., xB is set to 0), the steady state of C is 0. In this case fC = 1 and f ′C= 0, and only the latter is consistent
with the observed xC = 0. Thus, we should conclude that the transfer function of node C is f ′C = (NOT xA)AND
(NOT xB).

Finally, let’s assume that a third observation indicates that in the case when xA = 0 and simultaneously nodeC
is knocked out, the steady state of B is 1. In this case fB = 1 and f ′B = 0, of which only the former is consistent with
the observed steady state. Thus, we conclude that the transfer function of node B is fB = xA OR (NOT xC).
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TABLE 4.3 The List of Edges in a Two-Signal, One
Output Signal Transduction Network Used in
Exercise 4.19

Source Node Causal Effect Target Node

Stimuli Activates TCR

TCR Activates RAS

PDGF Activates PDGFR

S1P Activates PDGFR

PDGFR Activates S1P

RAS Activates FAS

S1P Inhibits FAS

FAS Inhibits S1P

FAS Inhibits NFKB

FAS Activates Caspase

NFKB Inhibits Caspase

Caspase Activates Apoptosis

This network is derived from the T cell apoptosis signaling network
displayed in Figure 4.2, and has the same node names, but it is
much simpler than the original.

The approach illustrated in Example 4.8 was used in [34] to construct and refine Boolean models from
an initial signal transduction model by calibrating the model against measurements of protein abundance or
activity. The initial signal transduction model was first simplified to collapse nodes for which no measurements
were available, in a way similar to the collapsing of pseudo-nodes we saw in Example 4.6 and Exercise 4.19.
Then an ensemble of models was generated from every possible transition function consistent with the network.
Finally, those models were evaluated by comparing their steady states with the experimental observations and
the most consistent and also most parsimonious model was selected. Application of this method to the signal
transduction network that mediates early signaling downstream of seven cytokine and growth factor receptors in
human liver cells, using measurements of sixteen proteins in this network, led to significant refinement (mostly
edge deletion, but also a few additions) of an original database-derived network. The final network and Boolean
model was validated by follow-up experimental measurements. This method is instantiated in the freely available
software package CellNOpt [35].

Exercise 4.20. Consider the networks in Figure 4.5.
1. Assume that for the network in Figure 4.5a, an experimental observation is consistent with the steady state

xA = xB = xC = 1. What transition function does this imply for node C?
2. Assume that for the network in Figure 4.5b, an experimental observation is consistent with the steady state

xA = xC = 1 and xB = 0. What transition function does this imply for node B?

4.8.3 Dealing with Gaps in Initial Condition

Ideally, the model’s starting state should be the biologically relevant resting or pre-stimulus state, if it is known a
priori. If the available information is insufficient, one can enumerate or, if that is difficult, sample a large number
of initial conditions wherein certain nodes are in a known state while the state of others can vary. A large number



Signaling Networks: Asynchronous Boolean Models Chapter| 4 85

of replicate simulations should be done, and the results need to be summarized over these replicate simulations.
For example, one calculates the fraction of realizations of a certain attractor. We can think of these replicate
simulations as a population of cells which differ in their pre-stimulus states, and the fraction of realizations of
an attractor can be interpreted as the probability that the system attains the corresponding cellular phenotype.
This approach was used, e.g., by Li et al. in [15] in the context of constructing a model of abscisic acid-induced
closure. Becausemany of the nodes of this network are also involved in the response to other signals, for example,
light and atmospheric CO2, it is difficult to estimate their state prior to receiving the abscisic acid signal. Thus,
the initial state of 38 intermediary (non-source, non-sink) nodes was randomly chosen, and 10,000 replicate
simulations were performed. The authors studied the fraction of simulations in which the output node Closure
was ON, and found that it reached 1 after eight updates of all the nodes (using random order asynchronous
update). Thus, they were able to conclude that the initial state of the intermediary nodes did not affect the steady
state of the node Closure.

Exercise 4.21. What initial conditions should be considered for Example 4.1 if we are interested in the
system’s response to a sustained signal?

Exercise 4.22. How many initial states should be considered for an N-node network if we have no
information on the actual initial state?

4.8.4 Dealing with Gaps in Timing Information

We can choose an updating scheme that is most realistic for the biological system of interest, or compare different
schemes with the same system. In cases where there is no information to guide the choice of update scheme,
updating one node at a time (general asynchronous update) is the most parsimonious choice because its results
are also representative of the random order update [16]. The biological system of interest for the study [16] was
the signal transduction network by which plants respond to the drought hormone abscisic acid, first modeled
in [15]. The study found that the state of the majority of the nodes, including Closure, stabilized regardless of
the updating scheme used. A subset of nodes regulated by cytosolic Ca2+ had one or two different behaviors:
fluctuations that eventually decayed, leading to a steady state in which cytosolic Ca2+ was OFF, and sustained
oscillations if and only if strict relationships among the timing of Ca2+ production and decay were satisfied.
There is evidence in the experimental literature for abscisic acid induced oscillations in Ca2+, but not enough
to establish whether they are sustained or not. Likewise, the timing or kinetics of Ca2+ production and decay
are not known. However, the model suggested that a transient increase in Ca2+ was sufficient for a successful
closure response and sustained oscillations were not necessary. We encourage the reader to examine this article
as a way to develop further understanding of the effect that different updating schemesmay have on the long-term
behavior of Boolean models.

4.9 GENERATE NOVEL PREDICTIONS WITH THE MODEL

A Boolean model can be used to analyze the changes in the system’s attractor repertoire in the case of system
perturbations. Knockout of a component can be simulated by fixing the corresponding node in the OFF state;
constitutive expression can be simulated by fixing the node’s state as ON. Transient perturbations can also be
studied by implementing temporary (reversible) changes to the node’s states. The model can predict the changes
in the attractors of the system and their basins of attraction and identify the perturbations that lead to dramatic
changes. This way, perturbation analysis can identify key components that are essential to phenotype traits
[5, 6, 15]. If the studied phenotype corresponds to a disease, the identified essential components are candidate
targets for therapeutic interventions.

Exercise 4.23. Consider Example 4.1 (shown in Figure 4.4) when node B is knocked out (i.e., xB is set to 0).
What is the relevant state space now? Construct the state transition graph corresponding to synchronous update
and general asynchronous update. Compare with Figure 4.13.
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FIGURE 4.13 State transition graph for Example 4.1 (the network in Figure 4.4) when node B is knocked out. Because nodes A and B
are not updated (A is a sustained signal and B is knocked out), synchronous and general asynchronous update are equivalent in this case.

Exercise 4.24. Compare Figure 4.6 with Figure 4.13. How did the steady states of the system change due to
the knockout of node B?

Exercise 4.25. Determine the state transition graph of the network in Example 4.1 (Figure 4.4) for
synchronous update when node C is knocked out.

Exercise 4.26. Determine the state transition graph of the network in Figure 4.4 for general asynchronous
update when node C is knocked out.

Exercise 4.27. Compare Figure 4.6 to your results in Exercises 4.25 and 4.26. How did the steady states of
the system change due to the knockout of node C? �

An example of perturbation analysis is the study of nodes whose knockout can impair abscisic acid-induced
closure [15, 16]. Using stochastic asynchronous update, the unperturbed system had a single fixed-point attractor
which included the ON state of the node Closure. Systematic study of each intermediary node’s knockout
led to the identification of three perturbation categories: knockouts that led to the normal steady state (which
represented 75% of all knockouts), knockouts leading to a steady state in which Closure was OFF (22.5% of
all knockouts), and a single knockout, which represents the clamping of the cytosolic pH level, leading to a
complex attractor in which Closure fluctuated between ON and OFF. Thus, one could conclude that the signal
transduction process was robust to the large majority of perturbations, but also sensitive to the impairment of
a few key nodes. These key nodes should be studied further to establish the ways in which their perturbations
could be prevented.

Exercise 4.28. Consider the model of Example 4.3. As shown in Figure 4.7b, the system has two steady
states, 000 and 011, when the signal is OFF (xI = 0). Under general asynchronous update, both steady states are
reachable from the initial conditions 001 and 010. Let’s assume that steady state 000 is undesirable. Can you
find a state manipulation (fixing the state of a node) such that state 000 becomes unreachable?

As we have seen in Exercise 4.17, mutual inhibition among two nodes can lead to the same behavior as mutual
activation between the same nodes. Mutual inhibition between two groups of nodes is in fact a key feature of the
T-cell apoptosis signaling network (see Exercise 4.19). Indeed, as in Example 4.3, the Boolean model of this
network has two steady states, one corresponding to apoptosis and one corresponding to an abnormal cell fate
seen in T-LGL leukemia [5, 6]. A state manipulation that could potentially eliminate this latter steady state is to
fix a node’s state in the opposite state that it stabilizes in the T-LGL steady state. Considering this manipulation
for each intermediary node in the network led to the identification of nineteen potential therapeutic targets for the
disease [6]. More than half of thesemanipulations were supported by available experimental data or by follow-up
experiments, and the rest can guide future experiments.

4.10 BOOLEAN RULE-BASED STRUCTURAL ANALYSIS OF CELLULAR NETWORKS

Analysis of all relevant dynamic trajectories of a system that is bigger than the simple examples we have
considered here is complex and time consuming. The good news is that sometimes important conclusions can
be drawn without dynamic simulations, based on graph-theoretic analysis alone. A first step in this direction is
to resolve the ambiguity pertaining to nodes with multiple regulators by incorporating the Boolean rules into the
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FIGURE 4.14 Illustration of methods that integrate the structure and logic of regulatory interactions. (a) A hypothetical signal
transduction network. (b) The expanded representation of the network which integrates the Boolean transition functions fB = xA AND
NOT xC , and fO = xA OR xB. The expanded network includes five complementary nodes, indicated by preceding the node name by ∼,
and two composite nodes, indicated by small black filled circles. (c) The stable motifs of the expanded network in the case of a sustained
input signal (xI = 1). The first stable motif corresponds to the state 11101 (in the order I, A, B, C, O), while the second stable motif
corresponds to the state 11011.

network topology [36]. Specifically, one introduces a complementary node for each node of the network, and a
composite node for each set of interactions with conditional dependency. We illustrate the process with the next
example.

Example 4.8. Consider a signal transduction network composed of the input node I, intermediary nodes A,
B, and C and the output node O (Figure 4.14a). This network shares some features of the core T-LGL network
derived in [6]. The network does not completely specify the transition functions of nodes B and O. Let’s specify
the transition functions as fB = xA AND (NOT xC), and fO = xA OR xB. The complete set of transition functions
now is:

fA = xI
fB = xA AND (NOT xC)

fC = NOT xB
fO = xA OR xB

Let’s now construct the expanded network that integrates the transition functions. The expanded network
features the addition of a complementary (negated) node for each real (original) node in the system, denoted by
preceding the real node’s name with ∼. The state of this node is the negation of the state of the corresponding real
node, and the transition function of the negated node is the logic negation of the transition function of the original
node. For example, the transition function of the complementary node∼A is f∼A = NOT xI = x∼I , indicating that
∼A is positively regulated by the complementary node ∼I. The transition function of the complementary node
∼B is f∼B = NOT (xA AND (NOT xC)) = (NOT xA) OR xC. This means that ∼B is positively regulated by ∼A
and C.1 The transition function for ∼O is f∼O = NOT (xA OR xB) = (NOT xA) AND (NOT xB). The complete
set of transition functions for complementary nodes is now

f∼A = NOT xI
f∼B = (NOT xA) OR xC
f∼C = xB
f∼O = (NOT xA) AND (NOT xB)

Next, we introduce composite nodes. For this the transition functions need to be specified in a disjunctive
normal format, meaning that AND clauses are grouped and separated by OR’s. For example, the expression
(A AND B) OR (C AND D) is in a disjunctive normal form, while the expression A AND (B OR C) is not.

1. Recall the De Morgan laws for Boolean expressions: (1) NOT (A AND B) = (NOT A) OR (NOT B) and (2) NOT (A OR B) = (NOT A)
AND (NOT B).
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FIGURE 4.15 An expanded network for Exercise 4.29.

Inspecting the transition functions, we can verify that they are in the disjunctive normal format. We now add
a composite node for each AND clause in the transition functions. Specifically, there will be a composite node
for the expression xA AND (NOT xC), which regulates B, and another one for (NOT xA) AND (NOT xB), which
regulates the complementary node ∼O.

The expanded network is shown on Figure 4.14b. Note that the update rules for all nodes with multiple inputs
are now uniquely determined from the topology of the expanded network. All multiple inputs for a composite
node are of type AND, while for the rest of the nodes multiple dependencies are of type OR.

Exercise 4.29. Consider the expanded network in Figure 4.15. Construct the transition functions of the
nodes A, B, C. Construct the transition functions of the complementary nodes ∼A, ∼B, ∼C. Verify that the
transition function of each complementary node is the logic negation of the transition function of the respective
original node.

In Example 4.8 and Figure 4.14b, the expanded network is composed of two components that are
disconnected from each other. The first component starts with the input node I, ends in the output node O,
and contains A, B, ∼C and a composite node shown as a black dot. The second component is made up by
four complementary nodes, node C, and a second composite node. We can interpret the two subgraphs as the
information transmission networks corresponding to the presence of the signal (left) and to the absence of the
signal (right). The fact that the left subgraph contains both the input and output node indicates that there is at least
one path that connects the input and output of the system (the signal and the system’s response). The shortest
such path is I, A, O. The next shortest is I, A, composite node, B, O. Is this path a context-independent conduit
of information, or does its success depend on other nodes?

Because it involves a composite node, which stands for an AND clause embodying conditionality, this
path is, in fact, dependent on the complementary node ∼C. Only a subgraph that contains all regulators of
a composite node can serve as an independent information propagation conduit. This concept was termed an
elementary signaling mode in [36] and is defined as the minimal set of components able to perform signal
transduction independently. Thus, the network in Figure 4.14 contains two elementary signaling modes between
input node I and output node O: the path I, A, O and the subgraph that contains I, A, the composite node, ∼C,
B and O. Both of these are minimal because taking a node or edge away would obstruct the propagation of
the signal.

The elementary signaling modes can be used to quantify the importance of nodes in mediating the signal.
For example, in Figure 4.14b the loss of node A eliminates both elementary signaling modes between
I and O, but the loss of node B leaves one of them intact. Application to several signaling networks,
including those for abscisic acid-induced closure [15] and for T-cell apoptosis signaling [5], showed that
nodes whose loss disrupts all elementary signaling modes were also essential to the model’s dynamic
attractor(s), in the sense that their knockout made this attractor unreachable [6, 36]. These results indicate that
elementary signaling mode analysis, a method that involves Boolean logic and graph theory but no dynamic
simulations, can be effectively used as a preliminary to or even as a substitute for dynamic perturbation
analysis.
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Exercise 4.30. Consider the model of Figure 4.14a in the case of a sustained signal (xI = 1).
1. Determine the attractors of the system under general asynchronous update. Which of these attractors

corresponds to a response to the signal?
2. Set node A to OFF. Determine the attractors of the system. Did at least one attractor remain that corresponds

to a response to the signal? What is your conclusion? Is node A essential for the signal transduction
process?

3. Set node B to OFF. Did at least one attractor remain that corresponds to a response to the signal? What is
your conclusion? Is node B essential to the signal transduction process?

4. Let’s assume that the ON state of the output node (xO = 1) is undesirable. What node interventions would
make this outcome impossible?
The expanded network can also be used as a basis for network simplification. As shown in [37], a topological

criterion can be used to identify network motifs (subgraphs) that stabilize in a fixed state regardless of the
rest of the network. A stable motif in the expanded network is defined as the smallest strongly connected
component (SCC) with the following properties: (1) the SCC cannot contain both a node and its complementary
node and (2) if the SCC contains a composite node, it also contains all of its input nodes. For example, in
Figure 4.14b the nodes ∼B and C form a stable motif. The fixed state of the nodes in the stable motif can
be directly read out from the expanded network: if the stable motif contains the node, the node stabilizes
in the ON state, and if the stable motif contains a complementary node, the corresponding node stabilizes
in the OFF state. These fixed states can be plugged into the transition functions of other nodes, leading to
simpler functions, and consequently to a simpler expanded network. Iterative searching for stable motifs and
network simplification leads to one of two possible outcomes: either there are no nodes with unknown states,
in which case a fixed point of the system is identified, or no new stable motifs are found, in which case the
remaining nodes are expected to oscillate. Thus stable motif analysis serves as a preliminary to or as a substitute
for attractor analysis. For example, the T-cell apoptosis signaling network has four stable motifs. Iterative
simplification of these stable motifs leads to the system’s steady states, the same as those found from dynamic
simulations. Interestingly, the stable motif formed by three nodes close to the PDGF signal can solely determine
the steady state, regardless of the other motifs or the trajectory of the system leading up to the stabilization of the
motif [37].

Overall, these integrated structural and logic methods are fruitful as exploratory analysis of large signaling
networkswhere dynamicmodeling is computationally impractical, or as a first step that guides follow-up targeted
computational or experimental studies.

Exercise 4.31. Consider the sustained presence of the input signal (xI = 1) in Figure 4.14a. Simplify the
transition functions of the nodes and construct the expanded network corresponding to this case. Compare with
Figure 4.14c.

Exercise 4.32. Determine the stable motifs of the expanded network in Figure 4.14c. Compare with the
steady states found in Exercise 4.30.

Exercise 4.33. Consider again the network in Figure 4.14a, but this time consider the following update rules
for nodes B and C: fB = xA OR (NOT xC), and fO = xA AND xB.
1. Construct the expanded network.
2. Determine the elementary signaling modes between input node I and output node O in the expanded

network.
3. Determine the essential signal-mediating nodes based on the elementary signaling modes.
4. Consider the sustained absence of the signal xI = 0. Determine the expanded network, its stable motifs, and

the corresponding steady states.

Exercise 4.34. Consider the network in Figure 4.16. Construct two sets of transition functions that are
consistent with this network. For each set,
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FIGURE 4.16 A simple three-node network for Exercise 4.34.

1. Construct the expanded network.
2. Determine the stable motifs in the expanded network and the corresponding steady states.
3. Verify your results for part 2 by determining the model’s steady states analytically.

4.11 CONCLUSIONS

Although Boolean network models have a limited capacity to describe the quantitative characteristics of dynamic
systems, they do exhibit considerable dynamic richness and have proven effective in describing the qualitative
behaviors of signal transduction networks, in predicting key components, and in proposing effective intervention
strategies. The fact that Boolean models do not require the knowledge of kinetic parameters makes them a
preferred choice for systems where these parameters have not been measured. Thus Boolean models pass the
two key tests: they are useful, and they help us to better understand the systems for which they are formulated.
The success of Boolean models illustrates that in at least a subset of biological systems the organization of
network structure plays amore important role than the kinetic details of the individual interactions. Thus, Boolean
networks can serve as a foundation for the modeling of signaling networks, uponwhich more detailed continuous
models can be built as kinetic information and quantitative experimental data become available. The simpler
Boolean model can be used for efficient exploratory analysis to fix the model’s structure and to help develop a
refined continuous model, which in turn can be further compared with quantitative biological observations.
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