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Abstract

We derive a general expression for interferencing intensity in two Bose–Einstein condensates
with Josephson-like coupling when the two Bose–Einstein condensates are initially in arbitrary
quantum pure states. The expression can be used to numerically calculate the intensity. As
examples, we study the time behaviors of the intensity when the two Bose–Einstein condensates
are initially in coherent states, Fock states, and squeezed states, respectively. c©1999 Elsevier
Science B.V. All rights reserved.
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The experimental realization of Bose–Einstein condensation of trapped rubidium
[1], sodium [2], and lithium [3] atoms has initiated new areas of atomic, molec-
ular and optical physics. Many of these new areas are based on the analogy be-
tween the matter waves and electromagnetic waves, or between bosonic atoms and
photons.
Recent developments include reports of a new trap capable of holding larger number

of atoms and measurements of condensate fraction and mean-�eld energy [4], non-direct
observation of the development of the condensate [5], measurements of the collective
oscillations of the condensate [6–8] and an output coupler for an atomic Bose–Einstein
condensate (BEC) [9]. The measurements of the collective excitations have been found
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to be in excellent agreement with the theoretical predictions from mean-�eld theory [10
–13].
Wright et al. investigated the interference of two BECs in small samples [14,15].

Kuang and Zeng studied the interferencing intensity in two BECs with a Josephson-
like coupling when the two BECs are initially in coherent states [16] and found
that there exist quantum collapses and revivals in the time evolution of the
intensity.
In this paper, we consider the interference of two BECs with a Josephson-like cou-

pling when the two BECs are initially in arbitrary quantum pure states. As examples,
we study the time behaviors of the intensity when the two BECs are initially in coherent
states, Fock states and squeezed states, respectively.
We consider a system which consists of atoms trapped in two identical magnetic

optical traps a and b. In the formalism of the second quantization, such a system is
described by the Hamiltonian

H =Ha + Hb + HI ;

Hi =
∫
dx̃  ̂

†
i (̃x)

[
−˜

252

2m
+ Vi (̃x) + Ui ̂

†
i (̃x) ̂ i (̃x)

]
 ̂ i (̃x) (i = a; b) ;

HI =
1
2
˜�
∫
dx̃ [ ̂

†
a (̃x) ̂ b(̃x) +  ̂ a(̃x) ̂

†
b (̃x)] ; (1)

where  ̂ i (̃x) and  ̂
†
i (̃x) are the atomic �eld operators which annihilate and create

atoms at position x̃ and satisfy the standard bosonic commutation relations [ ̂ i (̃x);

 ̂
†
j (̃x

′)] = �ij�(̃x − x̃ ′). Ha and Hb describe the atoms in traps a and b in the
absence of interaction between atoms in traps a and b. In Eq. (1) Ui = 4�˜2asc

i =m,
and asc

i are s−wave scattering lengths for collisions. For the sake of simplicity,
we assume that asc

a =asc
b =asc; Va(̃x)=Vb(̃x), and Ua=Ub=U . HI describes Josephson-

like coupling and term Ui ̂
†
i (̃x) ̂ i (̃x) in Hi describes the elastic collisions in

trap i.
The atomic �eld operators in the above Hamiltonian can be expressed as a mode

expansion over single-particle states:  ̂ a(̃x) = a�aN (̃x) +  ̃ a(̃x) and  ̂ b(̃x) = b�bN (̃x) +

 ̃ b(̃x), where a† =
∫
dx̃ �aN (̃x) ̂

†
a (̃x) and b† =

∫
dx̃ �bN (̃x) ̂

†
b (̃x) create particles with

distributions �aN (̃x) and �bN (̃x) with [a; a†] = 1 and [b; b†] = 1; respectively. The �rst
term in the expansion of  ̂ i (̃x) acts only on the condensate state vector, whereas the
second term  ̃ i (̃x) accounts for non-condensate atoms.
For the two condensates a and b, substituting the mode expansion into the second

quantized Hamiltonian (1), retaining only the �rst term representing the condensates,
we obtain the following Hamiltonian

H = ˜!(a†a+ b†b) + ˜q(a†2a2 + b†2b2) + ˜g(a†b+ b†a) ; (2)
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where parameters !; q and g are given by

˜!=
∫
dx̃
[
˜2
2m
(| 5 �aN (̃x)|2 + | 5 �bN (̃x)|2) + V (̃x)(|�aN (̃x)|2 + |�bN (̃x)|2)

]
;

˜q= U0

∫
dx̃(|�aN (̃x)|4 + |�bN (̃x)|4) ;

˜g= �
2

∫
dx̃ [�†

aN (̃x)�bN (̃x) + �†
bN (̃x)�aN (̃x)] :

In the above Hamiltonian, the second term describes interatomic collisions in each
condensate. The third term is the Josephson-like tunneling Hamiltonian, in which ab†

describes the annihilation of a BEC atom in trap a and the creation of a BEC atom in
trap b and a†b describes reverse process.
Now, we introduce the unitary transformation V (�) = exp[�(a†b − b†a)]. It is easy

to obtain the following property:

V †(�)
(a
b

)
V (�) =

(
cos � sin �
−sin � cos �

)(a
b

)
: (3)

Under the transformation V (�=4), the Hamiltonian H is transformed to

H ′ = V (−�=4)HV (�=4) = ˜!(a†a+ b†b) + ˜g(b†b− a†a)

+1
4˜q[3(a

†a+ b†b)2 − 2(a†a+ b†b)− (a†a− b†b)2 + 2a†2b2 + 2b†2a2] :

(4)

Now, we drop the term a†2b2 as well as its Hermitian conjugate b†2a2, i.e., neglect
the physical process of annihilation and creation of two BEC atoms. Finally, the
Hamiltonian H ′ is approximated as

H1 = ˜!(a†a+ b†b) + ˜g(b†b− a†a) + 1
4˜q[3(a

†a+ b†b)2

−2(a†a+ b†b)− (a†a− b†b)2] : (5)

From Eq. (4), the unitary evolution operator corresponding to Hamiltonian H is
given by

U (t) = exp(−iHt=˜) = V (�=4)U1(t)V (−�=4) ; (6)

where U1(t) = exp(−iH1t=˜). The state vector | (t)〉 at time t is formally written as

| (t)〉= U (t)| (0)〉 : (7)

Each of the two BECs is assumed consisting of N atoms with momenta ka and kb
directed along the x-axis, respectively. Atoms are detected on a screen placed below
the two BECs. A detection at position x is represented by the �eld operator for the
sum of two condensates, �̂(x)= [a+ b exp(i�(x))]=

√
2, where �(x)= (kb − ka)x. Then

the operator for the intensity of atoms is given by [15,16]

�̂
†
(x)�̂(x) = 1

2 [a
†a+ b†b+ cos�(x)(a†b+ b†a) + i sin�(x)(a†b− b†a)]: (8)
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From Eqs. (6) and (7), the expectation value of the operator �̂
†
(x)�̂(x) on the state

vector | (t)〉; i.e., the interferencing intensity I(t) is evaluated to be

I(t) = 1
2 [〈 (0)|a†a+ b†b| (0)〉+ cos�(x)〈 (0)|a†b+ b†a| (0)〉

+i sin�(x)〈 ′(t)|a†b− b†a| ′(t)〉] ; (9)

where

| ′(t)〉= U1(t)V (−�=4)| (0)〉 : (10)

Only the last term in Eq. (9) is dependent on time. We make a choice �(x) = �=2 to
suppress the spatial dependence of the intensity. In this case, the intensity becomes

I(t) = 1
2 〈 (0)|a†a+ b†b| (0)〉+ i12 〈 ′(t)|a†b− b†a| ′(t)〉 : (11)

Let the two BECs be initially in arbitrary quantum pure state | (0)〉a and | (0)〉b,
which are expanded as

| (0)〉a =
∞∑

n′=0

Cn′ |n′〉a ;

| (0)〉b =
∞∑

m′=0

Dm′ |m′〉b ; (12)

where |n′〉a and |m′〉b are the usual Fock states. Then the initial state can be written as

| (0)〉=
∞∑

n′=m′=0

Cn′Dm′ |n′; m′〉 ; (13)

where |n′; m′〉= |n′〉a ⊗ |m′〉b.
From Eqs. (7), (10) and (13), the state vector | ′(t)〉 is obtained as

| ′(t)〉=
∞∑

n=m=0

exp[− i
(n; m)t]A(n; m)|n; m〉 ; (14)

where

A(n; m) =
∞∑

n′=m′=0

Cn′Dm′Vnm;n′m′(−�=4) ;

Vnm;n′m′(�) = 〈n; m|V (�)|n′; m′〉 ;


(n; m) = !(n+ m) +
q
2
[(n+ m)(n+ m− 1) + 2nm] + g(m− n) : (15)

The matrix elements Vnm;n′m′(�) are given by [17]

Vnm;n′m′(�) =
min(n;n′)∑

k=0

(−1)n′−k
((

n′

k

)(n
k

)( m
n′ − k

)(
m′

n− k

))1=2

cos � m′−n+2ksin � n+n′−2k ; (16)

where
( n
k

)
denotes the binomial coe�cient n!=[(n− k)!k!].
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From Eqs. (11) and (14), the intensity is evaluated to be

I(t) =
1
2

( ∞∑
n=0

n|Cn|2 +
∞∑
m=0

m|Dm|2
)

+
∞∑

n=m=0

A(n+ 1; m)A(n; m+ 1)
√
(n+ 1)(m+ 1)sin [2gt − q(m− n)t] :

(17)

The intensity obtained above is general for arbitrary initial states of the two BECs.
Next, we consider several special cases of initial states of the BECs.
Case 1: | (0)〉a = |�〉a; | (0)〉b = |�〉b (� and � are real). Here |�〉a = Da(�)|0〉a

and |�〉b = Db(�)|0〉b are coherent states. Da(�) and Db(�) are displacement operators
de�ned as

Da(�) = exp(�a† − �∗a) ;

Db(�) = exp(�b† − �∗b) : (18)

The two BECs are initially in coherent states. Using the relation

V (−�=4)Da(�)Db(�)V (�=4) = Da[(�− �)=
√
2]Db[(�+ �)=

√
2] ; (19)

we can obtain the quantity A(n; m) in Eq. (17) as

A(n; m) = exp
[
1
2
(�2 + �2)

](
�− �√
2

)n(�+ �√
2

)m/√
n!m! : (20)

Substituting the above equation into Eq. (17), we get

I(t) = 1
2 (�

2 + �2) + 1
2 (�

2 − �2) sin [2gt − 2�� sin (qt)] exp[− 2(�2 + �2) sin2 qt
2 ] :

(21)

The above equation is slightly di�erent from that obtained in Ref. [16]. We have
numerically tested that Eqs. (21) and (17) are identical. Time behaviors of the intensity
have been discussed in detail [16] and will not be addressed again.
Case 2: | (0)〉a= |n〉a; | (0)〉b= |m〉b. The two BECs are initially in Fock states |n〉a

and |m〉b.
From Eqs. (16) and (17), we can numerically calculate the interferencing intensity.

Fig. 1 gives the time evolution of the intensity for various cases of inter-atomic colli-
sions and atomic tunneling. In the strong tunneling regime, g¿q, we can clearly see
the quantum collapses and revivals. When atomic tunneling e�ect becomes comparable
to inter-atomic collision e�ect (i.e., g ∼ q), the intensity exhibits a simple periodical
oscillation and does not show the quantum collapses and revivals. In the weak coupling
regime, g¡q, the intensity shows neither periodical oscillations nor quantum collapses
and revivals. The times behaviors of the intensity in the weak tunneling region is quite
di�erent from those in the strong tunneling region. We also �nd that the intensity is
independent of time t when n= m.



X.-G. Wang et al. / Physica A 274 (1999) 484–490 489

Fig. 1. Time evolution of the interferencing intensity when the two BECs are initially in Fock states for
(a) I(t); g = 10; (b) I(t) + 5; g = 1; (c) I(t) + 10; g = 0:1. Here we take q = 1; n = 1; m = 10.

Case 3: | (0)〉a = Sa(r1)|�〉a; | (0)〉b = Sb(r2)|�〉b (r1 and r2 are real), i.e., the two
BECs are in squeezed states. Sa(r1) and Sb(r2) are squeezing operators de�ned as

Sa(r1) = exp[r1(a†2 − a2)] ;

Sb(r2) = exp[r2(b†2 − b2)] : (22)

The squeezed state |r; �〉= S(r)D(�)|0〉 (r is real) can be expanded in Fock space as
[18]

|r; �〉= (cosh r)−1=2 exp[− |�|2=2 + �2 tanh r=2]

×
∞∑
n=0

Hn[�=
√
sin (2r)]√
n!

(
1
2
tanh r

)n=2
|n〉 : (23)

Fig. 2 gives the numerical results of the intensity when the two BECs are initially in
squeezed states for di�erent squeezing parameters. We �x r2=0:05 and let r1 vary. For
r1 = r2; the intensity does not depend on time. We �nd that the intensity for r1 =0:025
is of opposite phase to that for r2 = 0:075.
In conclusion, we have given the expression for interferencing intensity when the

two BECs are initially in arbitrary quantum pure states. The expression can be used
to numerically calculate the interferencing intensity. As examples, we studied the time
behaviors of the intensity when the two BECs are initially in coherent states, Fock
states and squeezed states, respectively. For the initial states which are coherent states,
we obtain the analytical expression for the intensity, which is slightly di�erent from
that obtained before. We have numerically tested its validity. When the initial states
are Fock states, we �nd that there exists the quantum collapses and revivals. The time
behaviors of the intensity in the weak and strong tunneling regime are discussed in
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Fig. 2. Time evolution of the interferencing intensity when the two BECs are initially in squeezed states
for (a) I(t); r1 = 0:01; (b) I(t) + 0:04; r1 = 0:025; (c) I(t) + 0:08; r1 = 0:05; (d) I(t) + 0:12; r1 = 0:075;
(e) I(t) + 0:16; r1 = 0:1. Here we take � = � = 1; g = 0:1; q = 1; r2 = 0:05.

detail. We also investigated the time behaviors of the intensity when the two BECs
are initially in squeezed states.
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