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Abstract

In 1984, Kurt Mahler posed the following fundamental question: How
well can irrationals in the Cantor set be approximated by rationals in the
Cantor set? Towards such a theory, we prove a Dirichlet-type theorem for
this intrinsic diophantine approximation on Cantor-like sets. The result-
ing approximation function is analogous to that for Rd, but with d being
the Hausdorff dimension of the set, and logarithmic dependence on the
denominator instead.
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1 Introduction

The diophantine approximation theory of the real line is classical, extensive,
and essentially complete as far as characterizing how well real numbers can be
approximated by rationals (Schmidt 1980 is a standard reference). The basic
result on approximability of all reals is

Theorem 1 (Dirichlet’s Approximation Theorem). For each x ∈ R, and for
any Q ∈ N, there exist p, q ∈ N, q ≤ Q, such that∣∣x− p

q

∣∣ < 1

qQ
.

Corollary 1. For each x ∈ R, there exist infinitely many p, q ∈ N satisfying∣∣x− p

q

∣∣ < 1

q2
.

It is a classical result of Hurwitz that Corollary 1 is false if 1 is replaced
by any constant less than 1√

5
. Furthermore the rate cannot be improved for

most irrationals, in the sense that if the exponent 2 is replaced by any real
number greater than 2, the resulting set for which the inequality holds (VWA)
is null. In addition, the subject of approximating points on fractals by rationals
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has been extensively studied in recent years; see for example Kleinbock-Weiss
(2005), Kristensen et al. (2006), and Fishman (2009) for the BA case, and Weiss
(2001) and Kleinbock et al. (2004) for VWA. In 1984, Mahler posed a natural
problem concerning not whether the metric properties of these diophantine sets
are preserved under intersection with fractals, but studying approximation of
irrationals in the fractal by rationals also in the fractal. As far as the authors
are aware, nothing is known about such intrinsic diophantine approximation on
fractals (though there is such research for algebraic varieties, for example Ghosh
et al. 2010). We present a first step towards an intrinsic theory determining the
analogous rate of approximation for the Cantor set C (and those constructed
similarly). Namely, our result implies

Corollary 2. For all x ∈ C, there exist infinitely many solutions p ∈ N, q ∈ N,
p
q ∈ C to ∣∣x− p

q

∣∣ < 1

q(log3 q)
1/d

,

where d = dimC.

We conjecture that the set of numbers x satisfying, for some ε > 0,∣∣x− p

q

∣∣ < 1

q1+ε(log3 q)
1/d

for infinitely many p and q is null with respect to the standard measure on C.
This would be analogous to the classical setting, where VWA has zero Lebesgue
measure. (See section 3.)

2 Theorem

Let C denote the Cantor-like set consisting of numbers in I = [0, 1] which can be
written in base b > 2 using only the digits in S ⊂ {0, 1...b−1}, where

∣∣S∣∣ = a >
1. Obviously this is equivalent to partitioning I into b equal subintervals, only
keeping those indexed by S, and successively continuing this on each remaining
subinterval. (The usual middle-thirds set is given by b = 3, S = {0, 2}.)

Throughout the paper we denote by {x} the fractional part of x and by bxc
the integer part. To state the theorem we also associate to the set the number
b0, where b0 is the least integer such that C is invariant under x 7→ {b0x} (as
we shall see, this is simply equal to b except when the given definition of C is
redundant in a certain sense).

Theorem 2 (Dirichlet for Cantor sets). For all x ∈ C, for every Q of the form
bn, there exists p/q ∈ Q ∩ C, such that∣∣x− p

q

∣∣ < 1

qQ
,

where q ≤ Q if C = I or q ≤ bQ
d

0 otherwise, where d = dimC and b = br0 for
some r ∈ N.



Intrinsic Approximation on Cantor-like Sets 3

Remark 1. Notice it follows from the statement that for any Q ∈ N, the same
statement holds with the bound multiplied by b (by letting bn ≤ Q < bn+1.)

Proof. First we need a characterization of the rationals in C:

Lemma 1. A rational number is in C if and only if it can be written either as
a terminating base-b expansion (left end points in the construction) or as(∑k+l−1

i=0 cib
k+l−1−i −

∑k−1
j=0 cjb

k−1−j)
bk+l − bk

. (1)

where l, k ∈ N, and ci ∈ S.
Equivalently (1) can also be expressed in terms of base-b expansions, i.e.,(

(c0c1...ck+l−1)b − (c0c1...ck−1)b
)

bk+l − bk
. (2)

Proof. A rational in C has either a terminating b-ary expansion (consisting of
digits from S) or an eventually periodic one. If it is purely periodic of period l,
it has the form

n=∞∑
n=1

bl−1x0 + bl−2x1 + ...+ xl−1
(bl)n

=
bl−1x0 + bl−2x1 + ...+ xl−1

bl − 1
,

where the digits xi are in S. If the rational is not purely periodic then one
must insert some number k of initial zeros and then add the initial terminating
expansion of length k, so we obtain the form

bl−1x0 + bl−2x1 + ...+ xl−1
(bl − 1)bk

+
(bl − 1)(bk−1y0 + bk−2y1 + ...+ yk−1)

(bl − 1)bk

for some digits yi ∈ S. Rearranging this gives the result.

Now let x ∈ C \Q. Given any n ∈ N, let Q = bn. Denote by M = (mi) the
semigroup of positive integer multiplication maps mod 1 leaving C invariant.
We order the elements in increasing order from 1 = m0.
There are an possibilities for the first n digits in the b-ary expansion of {qx}.
Consider the elements of C given by 0, {m0x},...{man−1x}. By the pigeonhole
principle either there exist 0 ≤ q, q′ < an such that {mqx} and {mq′x} have
the same first n digits, or the same holds for some 0 ≤ q < an and 0. That is,
they are in the same interval of the n-th stage of C’s construction. Assuming
the former, it follows that |{mq′x} − {mqx}| < 1

Q . Rewriting gives

∣∣mq′x− bmq′xc −mqx+ bmqxc
∣∣ < 1

Q
.

Setting p = bmq′xc − bmqxc we get∣∣x− p

m′q −mq

∣∣ < 1

(m′q −mq)Q
.
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If one of the above values is 0 rather than an mi the calculation is trivial. If
M is generated by more than one element, by Furstenberg’s result (1967) that
the only infinite closed subset of R/Z invariant under M is R/Z itself, C = I.
Thus C is invariant under all integers, i.e. M = N, so mq′ −mq ≤ an = Q and
Dirichlet’s original function is recovered.

If M has a single generator, denote it b0, and then b = br0 for some r, and
a = ar0. In this case C is also the set constructed in the corresponding way for
b0, and some S0 (which can be defined as the set satisfying that when written
as base b0 digits, S = Sr0 , the r-fold concatenations of elements of S0.) Then
mQ−1 ≤ ba

n−1
0 . Since mq′ −mq = bk0(bd0 − 1) for some integers k, d, following

(2) it suffices to observe that p =
⌊
bk+d0 x

⌋
−
⌊
bk0x
⌋
. Thus p

mq′−mq
∈ C, and

mq′ −mq < ba
n

0 = bQ
d

0 .

Corollary 2. For all x ∈ C, there exist infinitely many solutions p ∈ N, q ∈ N,
p
q ∈ C to ∣∣x− p

q

∣∣ < 1

q(logb0 q)
1/d

.

Notice that the approximation function’s asymptotic behavior gets better as
d → 0, even though the first such q whose existence we prove can tend to
infinity as b does.

3 Further investigation

The obvious next step would be to check whether this is the “right” rate of ap-
proximation for C. For this purpose, we make the following definitions: whereas
the usual set BA consists of all reals x such that∣∣p

q
− x
∣∣ > c(x)

q2
∀p/q ∈ Q,

we define, relative to the approximation function proven above, the intrinsic BA
numbers to be all x ∈ C satisfying

∣∣p
q
− x
∣∣ > c(x)

q(logb0 q)
1/d
∀p/q ∈ Q ∩ C,

and in comparison to the classical VWA definition∣∣p
q
− x
∣∣ < 1

q2+ε(x)

for infinitely many p/q, the intrinsic VWA numbers are those in C with∣∣p
q
− x
∣∣ < 1

q1+ε(x)
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for infinitely many p/q ∈ C instead1. Then, one could say this function is correct
if one proved that intrinsic BA is nonempty (and perhaps of full dimension), or
that intrinsic VWA has zero Hausdorff measure. These results appear difficult
to achieve, however, without having a deeper understanding of the rationals in
C. For the real line, there exists a large arsenal of useful information regarding
distribution properties of rationals, their quantity within bounds on q, etc.,
whereas for C nothing is even known about which denominators can appear -
in reduced form, of course; the expression (2) is not useful here since it is not
reduced. In fact Mahler points out basically the same fundamental difficulty.
To obtain the desired results, we believe a major new piece of information such
as knowing exactly which denominators appear in C within given bounds (i.e.
their ”density” in the same sense as the classical number-theoretical study of
the density of the primes), or knowing how these rationals “repel” each other as
a function of q, will be necessary. Until then, however, we make the following
conjecture (which seems to be supported by our experimentation with some
computer data):

Conjecture 1. Let Φ(i, j) = #{pq ∈ C, gcd(p, q) = 1, i ≤ q ≤ j}. Then

Φ(bn0 , b
n+1
0 ) = O(a

(1+ε)n
0 ), for all ε > 0.

This would imply that Intrinsic VWA has zero d-Hausdorff measure.

1This set is equivalent to the one defined by a similar inequality with a (logb0 q)1/d factor
in the denominator, so the definition is analogous to the traditional one in that we simply
divide our approximation function by qε. We remove the logarithmic factor for simplicity.
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